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Abstract

We begin by discussing the relation between fusion algebras and
Cartan algebras in Mn(IR); as a result of our analysis, we arrive at
a very simple prescription for starting from ‘most’ real symmetric
matrices and arriving at a ‘signed Hermitian fusion algebra’, which
turns out, in many cases to have non-negative structure constants
and consequently defines a genuine fusion algebra.

We next show that the fusion rule algebras su(2)n introduced by
Geppner and Witten have structure constants with a simple geometric
meaning involving quadrilaterals in the plane. This is then reinter-
preted into graph theoretic terms involving certain walks on trees (or
more general graphs) called procrastinations and allows us to asso-
ciate to any graph a (generally non associative) algebra P(X) which
we call the procrastination algebra of X. Apart from associativity,
this is seen to be a Hermitian fusion rule algebra which contains the
adjacency matrix of the graph as the matrix of multiplication of a
distinguished vertex. Remarkably, for many examples this procras-
tination algebra coincides with the fusion rule algebra of the graph
K(X) defined earlier and thus provides an alternate explicit interpre-
tation of the fusion rules.
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1 Fusion algebras and Cartan algebras

We begin by getting various definitions and notational conventions out of the
way.

Definition 1 A (finite-dimensional) fusion algebra is an associative uni-
tal *-algebra A with a distinguished basis {x0, x1, · · · , xn} such that the ‘struc-
ture constants’ Nk

ij defined by the equation

xixj =
n

∑

k=0

Nk
ijxk

satisfy the following conditions:
(i) Nk

i0 = Nk
0i = δk

i ; in other words, x0 is the identity of the algebra A;
(ii) Nk

ij ≥ 0;
(iii) there exists an involution i 7→ i∗ of the index set {0, 1, · · · , n} such

that:
(a) x∗

i = xi∗, and
(b)

N0
ij =

{

1 if i = j∗

0 if i 6= j∗

We shall call A a signed fusion algebra if it satisfies conditions (i) and
(iii)(a), (b) above and the requirement that Nk

ij ∈ IR (rather than (ii) above).

Finally, we shall call a (signed) fusion algebra Hermitian if it is the case
that x∗

i = xi ∀i.

Before proceeding further, we pause to make a few remarks about this
definition.

Remark 2 (1) Suppose we are given a *-algebra A with basis {xi} as above,
and with associated structure constants Nk

ij. By a ‘re-normalisation’, let us
mean the choice of another basis {yi} for A of the form yi = aixi, for some
constants ai > 0 such that a0 = 1 and ai∗ = ai. It should be clear that the
yi’s also yield a basis which contains the identity and is *-closed; further,
the basis {yi} will satisfy the positivity condition (ii) of the above definition
precisely when the basis {xi} does.
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(2) Suppose that we have a *-algebra A with a basis {xi} satisfying all the
conditions of the above definition, except that, instead of condition (iii)(b),
we now require that N0

ij 6= 0 ⇔ i = j∗. (Thus, we have just dropped the
normalisation condition N0

ii∗ = 1.) It is then true that there exists a re-
normalisation - in the sense of (1) above - such that the new basis satisfies
the normalisation condition (iii)(b) of the Definition.

It is also true that there exists yet another re-normalisation, such that the
structure constants (call them nk

ij) for the new basis (call it {c0, c1, · · · , cn})
satisfy the slightly different sort of normalisation condition given by

∑n
k=0 nk

ij =
1. It is customary to call such a collection {ci} a hypergroup.

The proofs of the two assertions in this remark - concerning the existence
of the two kinds of re-normalisations - may be found in [6], for instance, as
also a proof of the fact that these two re-normalisations are uniquely deter-
mined by their ’normalising requirements’.

(3) If x, y are self-adjoint elements of a *-algebra, the following conditions
are clearly equivalent: (a) xy = yx; (b) xy is also self-adjoint. (Reason: If
x = x∗, y = y∗, then (xy)∗ = yx.) It follows that a Hermitian (signed) fusion
algebra is necessarily commutative. (Note that a real linear combination of
self-adjoint elements is self-adjoint.)

We will be concerned primarily with Hermitian signed fusion algebras in
this paper. We pause to record a simple fact which we shall have cause to
use.

Lemma 3 Suppose A is a *-algebra with basis {x0, x1, · · · , xn}, such that the
structure constants Nk

ij satisfy all the requirements of a signed fusion algebra,
except that we replace the condition (iii)(b) of Definition 1 by the requirement
that

N0
ij 6= 0 ⇔ i = j∗ .

Then the following conditions are equivalent:
(i) A is a Hermitian signed fusion algebra;
(ii) A is commutative, and N0

ii = 1;
(iii) Nk

ij is a symmetric function - call it Nijk - of i,j,k.

Proof: The implication (i) ⇒ (ii) follows from Remark 2(3).
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(ii) ⇒ (iii): Note that

xixjxk =
n

∑

l=0

N l
ijxlxk

=
n

∑

l,m=0

N l
ijN

m
lk xm ,

whence the coefficient of x0 in (xixjxk) is seen to be equal to
∑n

l=0 N l
ijN

0
lk = Nk

ij,
since our hypothesis is that N0

pq = δpq. Since A is assumed to be commuta-
tive, we thus find that Nk

ij is indeed invariant under arbitrary permutation
of the indices i, j, k.

(iii) ⇒ (i): The assumed symmetry shows that

N0
ii = N i

i0 = 1 ,

which, under the hypothesis of this lemma, shows that i = i∗, as desired. 2

We now pause to describe one manner in which we will think of fusion
algebras. Given A and xi’s as in the definition, we shall write Li (or Lxi

,
if it is necessary to avoid possible ambiguity) to denote the matrix, with
respect to the ordered basis {xj}, of left-multiplication by xi; thus, Li is
the (n + 1) × (n + 1) matrix - with rows and columns indexed by the set
{0, 1, · · · , n} - defined by xixj =

∑

k Li(k, j)xk.
It is a fact - see [6] - that the mapping xi → Li extends to a *-algebra

homomorphism from A into Mn+1(C), and consequently A has the structure
of a finite-dimensional C∗-algebra. Thus, we shall think of A as a finite-
dimensional inner product space for which {xi} is an orthonormal basis.
When we wish to distuingish the algebra structure and this inner-product
structure, we shall denote the inner-product space as L2(A).

It is further true - see [4] or [3], for instance - that the equation

τ(f) = 〈f, x0〉 (1.1)

defines a faithful tracial state on the C∗-algebra A. In fact, we may iden-
tify L2(A) with the Hilbert space underlying the GNS representation of A
associated with τ .

Conversely, if A is a finite-dimensional C∗-algebra, and if τ is a faithful
tracial state on A, it is possible to find a basis for A - call it {x0, x1, · · · , xn}
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- which contains the identity, is closed under formation of adjoints, and is
orthonormal (with respect to the inner product of L2(A)). (Reason: If A =
Mk(C), then τ is necessarily the normalised trace - τ(a) = 1

k

∑

i aii; then a
candidate for the desired basis is given by {xij : 1 ≤ i, j ≤ k}, where

x11 = 1 (the identity matrix)

xjj =

√

k

j(j − 1)
(
∑

i<j

eii − (j − 1)ejj), 1 < i ≤ k

xij =
√

k eij, 1 ≤ i 6= j ≤ k ,

where {eij : 1 ≤ i, j ≤ k} denotes the usual system of matrix units. A
general finite-dimensional C∗-algebra is isomorphic to a finite direct sum of
full matrix algebras, and the desired assertion is seen to follow.) Thus, we
see that every finite-dimensional C∗-algebra has the structure of a ‘complex’
fusion algebra (which is defined just like a signed fusion algebra, except that
the structure constants are permitted to be complex).

However, the positivity requirement in a fusion algebra is quite restrictive;
for instance, it is true - see [6] - that any fusion algebra admits a unique
algebra homomorphism into C which attains strictly positive values on the
basis; in particular, such a C∗-algebra necessarily has an ideal of co-dimension
1. The following question is natural.

Question : Which finite-dimensional C∗-algebras admit bases which en-
dow them with the structure of a fusion algebra?

Some of our investigations are motivated by an attempt to understand
the reason for the validity of the following known result - see [5], for instance:

Theorem 4 Let A = Adj(G) denote the (vertex-) adjacency matrix of the
graph G, where G is one of the following Coxeter diagrams: An, D2n, E6, E8.
Then, there exists a unique fusion algebra such that Lx1

= A (in the notation
of the paragraph immediately after the proof of Lemma 3).

Furthermore, we have the following:
(i) this fusion algebra is Hermitian in all the above examples except for

the cases where G = D4n; and
(ii) when G ∈ {D2n+1, E7}, there exists no fusion algebra such that A =

Lx1
(although there exists a signed fusion algebra with this property).
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Note that if A ∈ Mn+1(IR), and if there exists a signed fusion algebra
such that A = Lx1

, then A is necessarily a symmetric matrix of the following
form:

A =



















0 ∗ ∗ · · · ∗
1 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

. . .
...

0 ∗ ∗ · · · ∗



















(1.2)

The next result is a sort of complement to the last theorem.

Theorem 5 Let A ∈ Mn+1(IR) be a real symmetric matrix which has the
form displayed in equation 1.2. Let us write {v0, v1, · · · , vn} for the standard
basis for IRn+1 (with the use of which we think of A as a linear transformation
of IRn+1).

(a) Then the following conditions are equivalent:
(i) There exists a Hermitian signed fusion algebra A such that A = Lx1

;
(ii) v0 is a cyclic vector for the commutant {A}′ = {T ∈ Mn+1(IR) :

AT = TA} of A.

(b) The following conditions are equivalent:
(i) There exists a unique Hermitian signed fusion algebra A such that

A = Lx1
;

(ii) v0 is a cyclic vector for the commutant {A}′ of A, and further, the
matrix A is ‘regular’, meaning that A has distinct eigenvalues.

We digress briefly before getting to the proof of the theorem. We need a
definition. For this, note that the following conditions on a subalgebra C of
Mn+1(IR) are equivalent:

(a) dim C = n + 1, and C consists entirely of symmetric matrices;
(b) C is a maximal commutative subalgebra of Mn+1(IR) which consists

entirely of symmetric matrices;
(c) there exists a regular symmetric matrix A ∈ Mn+1(IR) such that C is

the subalgebra generated by A and the identity matrix.
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Let us agree to use the phrase symmetric Cartan algebra to describe
any subalgebra C of Mn+1(IR), which satisfies the foregoing equivalent con-
ditions (a) - (c). Furthermore, we shall say that C is a cyclic symmetric
Cartan subalgebra if it is the case that v0 is a cyclic vector for C.

Proposition 6 There exists a 1-1 correspondence between the following col-
lections:

(a) the collection of all cyclic symmetric Cartan subalgebras of Mn+1(IR);
(b) the collection of all Hermitian signed fusion algebras.

Proof: Given a cyclic Cartan subalgebra C, the map C ∋ L 7→ Lv0 is
a linear map of C onto IRn+1, and consequently an isomorphism of vector
spaces (since these two spaces have the same dimension). Hence, we can
find unique matrices Li ∈ C such that Liv0 = vi, 0 ≤ i ≤ n. It follows that
{L0, L1, · · · , Ln} is a basis for C and that L0 is the identity matrix. Note now
that, for fixed 0 ≤ i, j ≤ n, we have

LiLj =
n

∑

k=0

Li(k, j)Lk . (1.3)

(This is because

LiLjv0 = Livj

=
n

∑

k=0

Li(k, j)vk

= (
n

∑

k=0

Li(k, j)Lk)v0 . )

On the other hand, the requirement Liv0 = vi translates into Li(j, 0) =
δij; since Li is symmetric, we deduce that Li(0, j) = δij. In other words, the
Li’s form a basis of the algebra C, so that the structure constants are given
by Nk

ij = Li(k, j) (by equation 1.3); and the first sentence of this paragraph
says that N0

ij = δij. It follows at once - see Lemma 3 - that the Li’s equip
C with the structure of a Hermitian fusion algebra.

Conversely, if A is a Hermitian signed fusion algebra with distinguished
basis {vi : 0 ≤ i ≤ n}, and if Li denotes the matrix of left-multiplication by
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xi (with respect to the basis {xj}), then the Li’s clearly span a symmetric
Cartan algebra with v0 as a cyclic vector. Finally, it should be clear that
the two associations we defined (from cyclic symmetric Cartan algebras to
Hermitian signed fusion algebras, and vice versa) are inverse to one another.

2

Proof of Theorem 5:

(a) It is seen from the proof of Proposition 6 that condition (i) is equiv-
alent to the following condition: (i)′ there exists a cyclic symmetric Cartan
subalgebra C ⊂ Mn+1(IR) such that A ∈ C.

If A satisfies (i)′, the commutativity of C implies that C ⊂ {A}′, and
consequently v0 is necessarily a cyclic vector for {A}′; thus (i)′ ⇒ (ii).

Conversely, suppose (ii) is satisfied. Suppose {α1, · · · , αm} is an enumer-
ation of the distinct eigenvalules of A and Vi = ker (A−αi). The condition
(ii) is seen to be equivalent to the requirement that v0 /∈ V ⊥

i ∀i. We may
consequently find, for each i = 1, · · · ,m, an orthonormal basis {e(i)

p : 1 ≤
p ≤ dim Vi} for Vi such that 〈v0, e

(i)
p 〉 6= 0 ∀p, i. Let {ek : 0 ≤ k ≤ n}

be the orthonormal basis for IR(n+1) obtained by putting together all these
bases for the Vi’s. Thus, 〈v0, ei〉 6= 0 ∀i. It follows that if Pi is defined to be
the projection onto IRei, then the linear span of {P0, · · ·Pn} is a symmetric
Cartan algebra C such that v0 is a cyclic vector for C, and such that A ∈ C;
thus A satisfies condition (i)′; and the proof of (a) is complete.

In view of Lemma 6 and the already proved (a) of this theorem, it is easy
to see that in order to prove (b), it suffices to show that the regularity of
A is equivalent to the existence of a unique symmetric Cartan subalgebra
containing A; this latter statement clearly follows from the definitions, and
the proof is complete. 2

We now wish to reap some consequences of Theorem 5(b). So, assume
A ∈ Mn+1(IR) is a symmetric matrix with the form displayed in equation 1.2.
A moment’s thought shows that A will satisfy the condition (ii) of Theorem
5(b) if and only if {v0, Av0, A

2v0, · · · , Anv0} is a spanning set of vectors for
IRn+1; since this is a set of n+ 1 vectors in an (n+ 1)-dimensional space, the
spanning condition is equivalent to the requirement that these vectors are
linearly independent.
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Hence, we form an auxiliary matrix B whose j-th column is the vector
Ajv0, for 0 ≤ j ≤ n; thus, we define

bij = 〈Ajv0, vi〉 ; (1.4)

and the conclusion of the preceding paragraph is that A will satisfy the
equivalent conditions of Theorem 5(b) if and only if the matrix B is invertible;
thus we just have to verify the non-vanishing of the determinant of B in order
to conclude that there exists a unique signed fusion algebra ’containing’ A
(in the sense of Theorem 5(b).

More information about the fusion algebra can be milked from the matrix
B; indeed, suppose B is indeed invertible; let C = B−1. Then, notice that,
for 0 ≤ i, k ≤ n, we have:

〈vk, vi〉 = δki

= (BC)ik

=
k

∑

j=0

bijcjk

=
k

∑

j=0

cjk 〈Ajv0, vi〉

= 〈(
k

∑

j=0

cjkA
j) v0, vi〉 ;

we conclude that the matrices Li of the associated unique signed fusion al-
gebra are given by the simple formula:

Lk =
n

∑

j=0

cjkA
j . (1.5)

We summarise the preceding discussion thus:

Proposition 7 Let A ∈ Mn+1(IR) be a real symmetric matrix, with the form
displayed in equation 1.2. Define the matrix B ∈ Mn+1(IR) by equation 1.4.
Suppose B is invertible. Let C = B−1. For 0 ≤ k ≤ n, define Lk ∈ Mn+1(IR)
by equation 1.5. Then, there exists a unique signed fusion algebra such that
A = Lx1

; the structure constants for this fusion algebra are given by

nk
ij = Li(k, j) .

9



We say nothing more about the proof. Although this proposition is an
immediate consequence of Theorem 5(b), we have chosen to single it out
as a separate proposition, because of its usefulness as a device to construct
numerous (signed) fusion algebras. In fact, it is easy to write a simple com-
puter programme, which, upon being fed the data of an arbitrary A as in the
proposition, will proceed as follows: (i) construct the matrix B; (ii) check if
B is non-singular; (iii) if B is non-singular, compute the inverse matrix, call
it C; (iv) compute the matrices Lk as defined by 1.5.

It is interesting to see what some of these matrices mean when A is the
adjacency matrix of a graph G. Let us denote by * (or ∗G, if it is necessary
to emphasise the role of G) the vertex which corresponds to the 0-th column
of A. Then the matrix B has the following combinatorial interpretation: bij

is the number of paths of length j from * to the vertex corresponding to the
i-th row of A.

The case of An+1 : In case G = An+1, then the matrix C is also a familiar
object; indeed, the entries of the j-th column of C are the coefficients of the
j-th Chebyshev polynomial of the second kind (appropriately normalised);
more explicitly, if we define

Pj(t) =
n

∑

i=0

cij ti =
j

∑

i=0

cij ti ,

then P0(t) = 1, P1(t) = t and Pj+1(t) = tPj(t) − Pj−1(t) for 0 ≤ j < n.
Thus, in this case, it follows from the invertibility of B that there is a unique
Hermitian signed fusion algebra with A = Lx1

. In fact, it turns out that
the matrices Li are all (entry-wise) non-negative and consequently, we have
a bona fide (meaning positive, and not just signed) fusion algebra. In gen-
eral, establishing that a given signed fusion algebra (constructed as in the
above proposition) does exhibit such positivity, is a difficult and combinato-
rial problem. Later in this paper, we shall give one such combinatorial proof
of positivity in the case of the An+1 signed fusion algebra.

Notice that in the above analysis, we took the vertex * to be an end-
vertex of the graph. For a general connected graph, it is a consequence of the
Perron-Frobenius theorem that if the associated matrix B is invertible, then
a necessary condition for the resulting signed fusion algebra to be a (positive)
fusion algebra is that the vertex * should satisfy the following requirement:
the Perror-Frobenius eigenvector must assume its minimum value at *.
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The case of En, n ≥ 6 : By En, of course, we mean the grpah with n
vertices obtained by lengthening the long arm of E6. Since we hope to get
genuine fusion algebras, we place the vertex * at the end of the long arm.
(This is because of the last comment in the previous paragraph). It turns
out that the associated matrix B is invertible and so Proposition 7 applies;
and we find that we do have positivity of the resulting fusion algebra except
for the cases n = 7, 10. (A proof of this positivity assertion may be found in
[8], for instance.)

The case of Dn : If we choose the vertex * to be at the end of the long arm
(as the Perron-Frobenius eigenvector requirement would demand), we find
that the corresponding matrix B is singular, so the above Proposition would
not seem to apply. However, in case n is an odd integer, if we choose * to be
one of the end-vertices adjacent to the triple point, we find that the corre-
sponding matrix B is non-singular; the consequence is: there exists a unique
signed fusion algebra ‘containing the adjacency matrix’ of Dn; this signed
fusion algebra necessarily contains negative structure constants because the
Perron-Frobenius requirement was violated. Thus, we conclude that there is
no fusion algebra containing the adjacency matrix of D2n+1.

We raise the natural next question:

Question : Suppose A is the adjacency matrix of graph and B is defined
as above. What is a combinatorial interpretation of:

(a) the requirement that B is invertible? and
(b) the matrix C (in case B happens to be invertible)?

Some new examples of fusion algebras: Let us use the notation T (p, q, r)
to denote the ‘3-star’ in Figure 1.

Figure 1 : T (p, q, r)

u u u u u u u

u

u

u

· · · · · ·

...

vp+qv0
v1 vp−1 vp vp+1 vp+q−1

vp+q+r

vp+q+r−1

vp+q+1
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We have the following proposition:

Proposition 8 Assume (without loss of generality) that p ≥ q ≥ r, and
let A denote the adjacency matrix of T (p, q, r), with vertices numbered as
indicated in the above diagram. Then A has v0 as cyclic vector if and only
if:

(i) r is even and (q + 1) is not divisible by (r + 1); or
(ii) r is odd, and q is even.

Proof: Let W = {p(A)v0 : p a polynomial}.
Then, it should be clear that vi ∈ W ∀ 0 ≤ i ≤ p (since v0 ∈ W ,

v1 = Av0 ∈ W , and for 1 < i ≤ p, we have vi = Avi−1−vi−2); similarly, we
also see that vp+i + vp+q+i ∈ W for 1 ≤ i ≤ r (since vp+1 + vp+q+1 = Avp −
vp−1 ∈ W , vp+2 + vp+q+2 = A(vp+1 + vp+q+1) − vp ∈ W , etc.).

Rather than give a detailed proof of the general assertion, we shall content
ourselves with an outline of the argument for some specific values of the
parameters.

(ia) Suppose p = 3, q = r = 2. The above analysis shows that {v0, v1, v2, v3, (v4+
v7), (v5 + v8)} ⊂ W . Notice now that A(v5 + v8) = v4 + v7 + v6, and con-
clude that v6 ∈ W ; deduce from Av6 = v5 that v5 ∈ W and hence also
v8 = (v5 + v8)− v5 ∈ W ; similar reasoning shows that also v4, v7 ∈ W ; thus
W = IR9 and v0 is cyclic for A, as desired.

(ib) Suppose p = q = 3 and r = 3. We see as above that S = {v0, v1, v2, v3, (v4+
v7), (v5 + v8), (v6 + v9)} ⊂ W . In fact, since A(v6 + v9) = (v5 + v8), we find
that the linear span of the above set S is a proper subspace of IR9 which is
invariant under A. Since v0 ∈ S, we conclude that v0 is not cyclic for A.

The proof of (ii) is similar, and we omit it. 2

In particular, there is hope that the the procedure outlined by Proposition
7 is applicable to the matrix A of Proposition 8. Our interest is in situations
where the signed fusion algebra resulting from such an A by this method is
actually a positive fusion algebra. As a result of using the simple computer
programe discussed earlier, we are able to observe the following facts.

The above procedure yields a bona fide fusion algebra, if we apply the
above procedure to T (p, q, r), in the following cases:

(i) q = 2, r = 1, p ∈ {2, 4, 5, 7, 8, 9, · · ·};
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(ii) q = 4, r = 1, p ∈ {4, 6, 7, 10, 12, 14, 15, 16, 17, 18, 19, 20};
(ii) q = 4, r = 3, p ∈ {4, 8, 9, 13, 14, 15, 16, 17}.
Further, it is known - see [8] - that the graph T (p, 2, 1), p ≥ 2, which

might be called Ep+4, yields a bona fide fusion algebra if and only if p 6= 3, 6.
On the basis of the above empirical evidence, albeit meager, we make the

following slightly vague conjecture:

Conjecture: Let T be any tree. Then, if G is the tree obtained by ‘attaching
an An to T , and if n is large enough, then there exists a bona fide fusion
algebra containing the adjacency matrix of the graph G.

We now turn our attention to more general (not necessarily symmetric)
Cartan subalgebras of Mn+1(IR) - i.e., (necessarily maximal) commutative
n + 1-dimensional *-subalgebras of Mn+1(IR).

Given a general fusion algebra A with basis {x0, x1, · · · , xn}, we write
C = {Lx : x ∈ A}, where, of course, Lx ∈ Mn+1(IR) is defined by Lx(i, j) =
the coefficient of xj in xxi.

In the remainder of this section, we assume that A is a commutative
fusion algebra. Then C is a Cartan subalgebra of Mn+1(IR).

We list some facts concerning Cartan subalgebras as a lemma, primarily
to fix notation for subsequent use. (We omit the simple linear algebraic
proof.)

Lemma 9 Let C be a Cartan subalgebra of Mn+1(IR), associated with a fusion
algebra A, as above. Then there exist (i) a uniquely determined pair of non-
negative integers p, q, (ii) projections P0, P1, · · · , Pp of rank 1 in C, and (iii)
projections Q0, Q1, · · · , Qq of rank 2 in C, such that {P0, · · · , Pp, Q1, · · · , Qq}
is precisely the set of minimal projections of C.

In particular,
∑p

i=0 Pp +
∑q

j=1 Qq = I (= the identity matrix of size
n + 1), and p + 2q = 1.

Remark 10 (1) Since every fusion algebra admits a unique ‘dimension func-
tion’, it is seen that C always contains a rank 1 projection; this is why our
numbering is such that there are p+1 projections of rank 1 and q projections
of rank 2. It should be noted that the above lemma is valid even if the Cartan
subalgebra does not arise from a fusion algebra, provided that we index the
rank one projections as P1, · · · , Pp (so that the possibility of there being no
rank one projections in C is also covered.)
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(2) Any pair of non-negative integers p, q for which p + 2q = 1 will so
arise for some Cartan subalgebra; viz., simply take

C = {



































λ0 0 · · · 0 0 0 · · · 0
0 λ1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · λp 0 0 · · · 0
0 0 · · · 0 a1Rθ1

0 · · · 0
0 0 · · · 0 0 a2Rθ2

· · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · aqRθq



































: λi, ai ∈ IR, θi ∈ [0, 2π]} ,

where we write

Rθ =

[

cos θ −sin θ
sin θ cos θ

]

.

We now wish to determine precisely which Cartan subalgebras of Mn+1(IR)
arise in this fashion from (signed) fusion algebras. Suppose we have a Car-
tan algebra C, with associated Pi, Qj as in Lemma 9. Then it is not hard
to see that there exists an orthogonal matrix U ∈ O(n + 1, IR) such that
UCU−1 is the algebra described in Remark 10(2); hence, it follows that q
is precisely the dimension of the skew-symmetric matrices in C. (Note that
Rθ is skew-symmetric precisely when θ = ±π

2
.) It also follows that: (a) for

each 1 ≤ j ≤ q, there exists a skew-symmetric matrix Sj ∈ C of (operator)
norm 1 such that Sj = QjSjQj; (b) if Tj is any skew-symmetric matrix in
C with operator norm 1, such that Tj = QjTjQj, then Tj = ± Sj; and
(c) {Sj : 1 ≤ j ≤ q} is a basis for the real vector space of skew-symmetric
matrices in C.

On the other hand, if A is a fusion algebra with basis {xi : 0 ≤ i ≤ n},
define I = {i : i = i∗}; then there exists a subset J ⊂ {1, · · · , n} such that
|I| + 2|J | = n + 1, and j ∈ J ⇒ j∗ /∈ J ; it follows that {L(xj−xj∗) : j ∈ J} is
a linearly independent set of |J | skew-symmetric elements in the associated
Cartan algebra C, while {Lxi

: i ∈ I} ∪ {L(xj+xj∗) : j ∈ J} is a linearly
independent set of |I| + |J | symmetric elements of C.

In other words, if A is an (n + 1)-dimensional fusion algebra whose basis
contains precisely p self-adjoint elements and 2q non-self-adjoint elements,
then it is this pair p, q which corresponds to C as in Lemma 9.
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In the sequel, we write v0, · · · , vn for the standard basis of IRn+1. (Thus,
vi has the (i + 1)-th co-ordinate equal to 1 and all other co-ordinates equal
to 0.)

Lemma 11 Suppose C is a Cartan subalgebra of Mn+1(IR) associated with a
commutative fusion algebra A as above. Let Csym (resp., Css) denote the set
of symmetric (resp., skew-symmetric) elements of C. Then,

(i) v0 is a cyclic vector for C, so that the equation φ(T ) = Tv0 defines a
linear isomorphism of C onto IRn+1;

(ii) if we use the isomorphism φ to ‘transport structures’ from its domain
to range and conversely, we may (and do) regard both C and IRn+1 as com-
mutative *-algebras with an inner-product (with respect to which {φ−1(vi)}
(resp., {vi}) is an orthonormal basis;

(iii) with respect to the inner-product defined in (ii), Csym is precisely the
orthogonal complement of Css.

Proof: (i) is an immediate consequence of the fact that x0 is an identity
for A, while there is nothing to prove in (ii).

As for (iii), suppose S ∈ Csym and A ∈ Css; then, since C is commutative
and since the inner product on IRn+1 is a symmetric bilinear form, we see
that

〈SAv0, v0〉 = 〈Av0, Sv0〉
= 〈v0,−ASv0〉
= 〈−ASv0, v0〉
= − 〈SAv0, v0〉 ,

and hence, indeed 〈A, S〉 = 0. 2

Proposition 12 (a) Suppose C is a Cartan subalgebra of Mn+1(IR) associ-
ated with a commutative fusion algebra A as above; let the symbols Sj, p, q, I, J
be as in the discussion preceding Lemma 11, and let P0, · · ·Pp, Q1, · · · , Qq be
the minimal projections in C, as in Lemma 9. Then,

(i) v0 is a cyclic vector for C; and
(ii) {Sjv0 : 1 ≤ j ≤ q} and {vj − vj∗ : j ∈ J} are both orthogonal bases of

the same subspace of IRn+1.
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(b) Conversely, suppose C is a Cartan subalgebra of Mn+1(IR), with minimal
projections P0, · · ·Pp, Q1, · · · , Qq as in Lemma 9. Suppose there exists a 2q
element set J ∪ {j∗ : j ∈ J} ⊂ {1, 2, · · · , n} such that conditions (i) and (ii)
of (a) are satisfied. Then there exists a signed fusion algebra A with precisely
p self-adjoint basis elements such that C is the Cartan subalgebra associated
with A.

(c) Suppose C is as in (b) above; let {Aj : 0 ≤ j ≤ n} be any basis for C. (For
instance, we may take the basis as P0, P1, · · · , Pp, Q1, S1, Q2, S2, · · · , Qq, Sq.)
Define the matrix B ∈ Mn+1(IR) by bij = 〈Ajv0, vi〉 . (Thus, the j-th
column of the matrix B is just Ajv0.) Then B is a non-singular matrix. Let
C = B−1. Define

Lk =
n

∑

j=0

cjkAk .

Then these are preisely the matrices Lvk
obtained from the fusion algebra

corresponding to C as in (b) above.

Proof: We continue to use the notations and conventions of Lemma 11.
(a) The validity of assertion (i) has already been noted in Lemma 11; as

for (ii), observe, to start with, that {Sjv0 : 1 ≤ j ≤ q} is a basis for the real
subspace φ(Css) of IRn+1, since {Sj : 1 ≤ j ≤ q} is an orthogonal basis for
Css (as has already been noticed before). On the other hand, { 1√

2
(vj − vj∗) :

j ∈ J} is clearly an orthonormal set of q skew-adjoint elements of IRn+1, and
the desired assertion follows.

(b) Suppose C, Pi, Qj, J are as in (b) of the proposition. Since v0 is as-
sumed to be a cyclic vector for C, we use the linear isomorphism φ : C → IRn+1

(defined by φ(T ) = Tv0) to equip IRn+1 with the structure of a com-
mutative *-algebra; further, it is seen, as in the proof of Lemma 11 that
φ(Csym) = φ(Css)

⊥.
By hypothesis, we see that { 1√

2
(vj − vj∗) : j ∈ J} is an orthonormal basis

for φ(Css). It follows that {vi : i /∈ J ∪{j∗ : j ∈ J}} ∪ { 1√
2
(vj + vj∗) : j ∈ J}

is an orthonormal basis for φ(Css)
⊥ = φ(Csym). In particular, if we write

I = {0, 1, · · · , n} \ (J ∪ {j∗ : j ∈ J}), we see that vi = v∗
i and that for each

j ∈ J ,

v∗
j =

1

2
[(vj + vj∗) + (vj − vj∗)]

∗
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=
1

2
[(vj + vj∗) − (vj − vj∗)]

= vj∗ .

In other words, if we define

k∗ =











i if k = i ∈ I
j∗ if k = j ∈ J
j if k = j∗, j ∈ J

,

then we find that k 7→ k∗ is an involution of {0, 1, · · · , n} such that v∗
k =

vk∗ ∀k.
Further, we find that, for arbitrary 0 ≤ i, j ≤ n,

〈viv
∗
j , v0〉 = 〈φ(φ−1(vi)φ

−1(v∗
j )), v0〉

= 〈(φ−1(vi)φ
−1(v∗

j ))v0, v0〉
= 〈(φ−1(v∗

j )φ
−1(vi))v0, v0〉

= 〈(φ−1(vi))v0, (φ
−1(vj))v0

= 〈vi, vj〉
= δij .

Finally, note that Iv0 = v0 ⇒ φ−1(v0) = I, and consequently v0 is the
identity element of IRn+1. It follows that IRn+1 is a signed fusion algebra. It
is trivially verified that the Cartan algebra associated with this fusion algebra
is precisely C, and the proof of the proposition is complete.

(c) Since v0 is a cyclic vector for C and {A0, · · · , An} is a basis for C, it
follows that the matrix B is indeed non-singular. Computing exactly as in
the verification of Proposition 7, we find that for 0 ≤ i, k ≤ n,

〈vk, vi〉 = δki

= (BC)ik

=
k

∑

j=0

bijcjk

=
k

∑

j=0

cjk 〈Ajv0, vi〉

= 〈(
k

∑

j=0

cjkAj) v0, vi〉

= 〈Lkv0, vi〉 ,

17



and the desired conclusion is seen to follow at once. 2

2 The quadrilateral lemma and su(2)n

The simplest and most intensively studied class of fusion rule algebras which
arise in conformal field theory are the su(2)n algebras associated to the WZW
minimal model for su(2) at level n. These have the form K = {C0, . . . , Cn}
with structure equations

CiCj =
n

∑

k=0

Nk
ijCk

where

Nk
ij =











1 if |i − j| ≤ k ≤ min(i + j, 2n − (i + j))
and k ≡ i + j (mod 2)

0 otherwise.

If we denote by Li the matrix of multiplication of Ci with respect to the basis
{C0, . . . , Cn} then L0 is the identity and L1 is the adjacency matrix of the
Dynkin diagram An+1.

It is not clear that the multiplication in K is associative. We now give
an alternate interpretation of the structure constants which will explain as-
sociativity directly and will generalise to other Dynkin diagrams, and in fact
more general trees and graphs.

A set {i, j, k} of non-negative real numbers is called a triangle set if there
exists a triangle ABC in the plane with these as side lengths. Define s =
(i + j + k)/2, the half perimeter. We will say that the triangle set {i, j, k} is
integral if each of i, j, k and s is an integer.

Lemma 13 Let {i, j, k} be a set of non-negative real numbers. Then the
following are equivalent. (a) {i, j, k} is a triangle set (b) {i, j, k} satisfies the
inequalities i + j ≥ k, j + k ≥ i, k + i ≥ j (c) s ≥ max(i, j, k).

2

A set {i, j, k, l} of non-negative real numbers is called a quadrilateral set
if there exists a quadrilateral ABCD in the plane, not necessarily convex,
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with these as side lengths. We say that the quadrilateral set {i, j, k, l} is
integral if each of i, j, k, l and s is an integer.

Lemma 14 Let {i, j, k, l} be a set of non-negative real numbers. Then the
following are equivalent. (a) {i, j, k, l} is a quadrilateral set (b) {i, j, k, l}
satisfies the inequalities i+ j +k ≥ l, j +k + l ≥ i, k + l + i ≥ j, l + i+ j ≥ k
(c) s ≥ max(i, j, k, l).

2

Note that if {i, j, k} and {k, l,m} are triangle sets, then {i, j, l,m} is a
quadrilateral set (just glue the triangles at their common edge). Conversely
if {i, j, l,m} is a quadrilateral set, then there exists k ≥ 0 such that {i, j, k}
and {k, l,m} are triangle sets – just consider an actual quadrilateral with
sides i, j, l,m in that order and consider the appropriate diagonal. The order
i, j, l,m can be obtained since we may always switch adjacent sides. In fact
since quadrilaterals are not rigid, there exist a set of such possible k.

Lemma 15 (The Quadrilateral Lemma) Let S = {i, j, l,m} be a set of non-
negative real numbers and choose some ordering {i1, i2, i3, i4} of S. Consider
all quadrilaterals ABCD in the plane, not necessarily convex, whose sides
AB,BC,CD,DA have lengths i1, i2, i3, i4 respectively. Let I denote the set of
all possible lengths of the diagonals AC (as we vary over all such quadrilat-
erals). Then |I| depends only on the set S and not on the ordering.

Proof: Let s = (i + j + l + m)/2, M1 = min(i, j, l,m) and M2 =
max(i, j, l,m). We will show that for any choice of ordering,

|I| = 2 min(M1, s − M2).

Suppose without loss of generality that the ordering is i, j, l,m. The triangle
ABC has fixed side lengths i and j so that its third side length AC may lie
in [ |i − j|, i + j]. Similarly triangle CDA has fixed side lengths l and m so
that its third side length lies in [ |l−m|, l + m]. The allowed range of values
of AC is thus the intersection I of these two intervals, whose length is

min(i + j − |i − j|, l + m − |i − j|, i + j − |l − m|, l + m − |l − m|)
= min(2 min(i, j), 2s − max(i, j), 2s − max(l,m), 2 min(l,m))

= 2 min(M1, s − M2)
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where we have adopted the convention that a negative length denotes an
empty interval and used the fact that for any real numbers a, b

2 min(a, b) = a + b − |a − b|

and
2 max(a, b) = a + b + |a − b|.

Corollary 16 Suppose that {i, j, l,m} is an integral quadrilateral set. Let
{i1, i2, i3, i4} be an ordering of S and consider the set of all possible quadrilat-
erals ABCD in the plane with side lengths {i1, i2, i3, i4} in that order. Then
the number of possible values of AC such that both ABC and CDA are in-
tegral triangles is min(M1, s − M2) + 1 and so is independent of the given
ordering of S.

Proof: We know that the range of values of AC is an interval with integer
endpoints with length 2d = 2 min(M1, s − M2) This interval thus contains
2d + 1 integer points of which d + 1 result in integral triangle sets for the
lengths of ABC and CDA. 2

Now for i, j, k ∈ IN, define

Nijk =

{

1 if {i, j, k} is an integral triangle set
0 otherwise

and introduce a multiplication on K = {C0, C1, · · ·} by

CiCj =
∑

k

Nk
ijCk

for all i, j ∈ IN.

Proposition 17 The above multiplication makes K into an (associative)
Hermitian positive generalised hypergroup.

Proof: It is clear that C0 acts as an identity and that the structure is
commutative. Associativity amounts to showing that

∑

k

NijkNklm
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is unchanged under permutations of i, j, l,m. But this is just the content of
the above Corollary. That we get a Hermitian positive generalised hyper-
group is clear. 2

It is worth pointing out that the fusion rule algebra K above is nothing
but the dual of the group SU(2) and that the Nijk are just the usual Clebsch
- Gordon coefficients in this situation.

We will also need a ‘level n’ version of the above.

Lemma 18 (The Quadrilateral Lemma – level n) Let S = {i, j, l,m} be a
set of non-negative real numbers and choose some ordering {i1, i2, i3, i4} of
S. Consider all quadrilaterals ABCD in the plane, not necessarily convex,
such that the sides AB,BC,CD,DA have lengths i1, i2, i3, i4 respectively and
such that the triangles ABC and CDA both have perimeter less than n. Let
I denote the set of all possible lengths of the diagonal AC (as we vary over
all such quadrilaterals). Then |I| depends only on the set S and not on the
ordering.

Proof: We will show that, with the notation of the previous proof, |I| =
2 min(M1, n − s + M1, s − M2, n − M2) which depends only on the set S.

The triangle ABC has fixed side lengths i and j and its perimeter is
constrained to be less than or equal to n. Thus the third side AC has length
in the interval [ |i − j|, min(i + j, 2n − (i + j))]. By considering the triangle
CDA we similarly find that AC must lie in [ |l−m|, min(l+m, 2n−(l+m))].
The intersection of these intervals has size

min{x − y, 2n − x − y : x ∈ {i + j, l + m}, y ∈ {|i − j|, |l − m|} }
= min((2min(i, j), 2s − max(i, j), 2s − max(l,m), 2min(l,m),

2n − 2max(i, j), 2n − 2s − 2min(l,m), 2n − 2s − 2min(i, j), 2n − 2max(l,m))

= 2min(min(i, j, l,m), 2s − max(i, j, l,m), n − max(i, j, l,m), n − s − min(i, j, l,m))

= 2min(M1, n − s + M1, s − M2, n − M2)

2
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We introduce a relative version of K above by setting Kn = {C0, · · · , Cn}
with multiplication given by the following structure constants.

N
(n)
ijk =

{

1 if {i, j, k} is an integral triangle set and s ≤ n
0 otherwise

Proposition 19 The above multiplication makes Kn into an (associative)
Hermitian positive generalised hypergroup.

Proof: The proof follows from the previous result in the same way that
17 followed from the quadrilateral lemma. 2

In the literature the fusion rule algebra Kn is given the name su(2)n.

3 The procrastination algebra of a graph

We now generalise the discussion to an arbitrary simple graph X with dis-
tinguished vertex 0 which we assume to have degree 1. To such a pointed
graph we will associate an algebra P(X) with basis indexed by the vertices
and whose structure constants count numbers of special closed walks from 0
to 0 called procrastinations. It must be emphasised that these algebras are
by construction not necessarily associative. However it turns out that, for
reasons as yet unknown to us, these ‘procrastination algebras’ are in fact of-
ten associative and furthermore often coincide with the fusion algebras K(X)
when the latter are defined.

Let us begin by establishing some terminology. A walk in X is an alter-
nating sequence w = x0, e1, x1, · · · , xk−1, ek, xk of vertices xi, not necessarily
distinct, and edges ei such that ek joins xk−1 and xk. Such a walk has length
k. It is a geodesic if it has minimal length amongst all walks from x0 to xk.
For a vertex x let |x| denote the length of a geodesic from 0 to x. The walk
w is called a path if the edges e1, · · · , ek are distinct.

We will denote by w the walk from xk to x0 obtained by reversing the
sequence of w. If u is a walk from x to y and v a walk from y to z then w = u∗v
will be the combined (or concatenated) walk from x to z. Its length is thus
the sum of the lengths of u and v. We will also say that u can be extended to
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w. A path w from x to y will be called returning if it can be extended to a
geodesic from x to 0 and non returning otherwise. A closed walk w from 0 to
0 will be called a procrastination if it is of the form w = w1∗w2∗· · ·∗wk−1∗wk

where w1 and wk are geodesics (necessarily from and to 0 respectively) and
where ws is a non returning path for s = 2, · · · , k − 1.

As an example, let X be the graph An+1 with vertices labelled 0 to n.
This is a tree with base point 0; thus for any vertex i there is a unique
geodesic wi from 0 to i. The procrastinations are exactly those walks of the
form wi ∗ wi for some i.

Returning to the general case, suppose that the graph X has vertices
labelled {0, 1, · · · , n} and that 1 is the unique neighbour of 0. For an ordered
triple of vertices [i, j, k] in X consider all procrastinations w which have the
form

w = wi ∗ h ∗ wk

where wi and wk are geodesics from 0 to i and k respectively and where h
is a walk of length |j| from i to k. Note that h need not be a path. We see
that such a walk w has length |i| + |j| + |k|. Let 〈i, j, k〉 denote the number
of all such walks w. Now define

Mijk = min{〈σ(i), σ(j), σ(k)〉 : σ ∈ S3}

the minimum over all permutations σ in the symmetric group S3. Let us
define a (possibly non-associative) algebra structure on the space spanned
by {C0, · · · , Cn} via

CiCj =
∑

k

MijkCk

We will call this (in general non associative structure) the procrastination
algebra of X and denote it by P(X). Note that the structure is however
commutative and that C0 is an identity. Furthermore Mij0 = Mi0j is non
zero if and only if i = j in which case Mij0 = 1. Thus P(X) is, apart from
associativity, a Hermitian fusion rule algebra.

Lemma 20 Let L1 denote the matrix of multiplication by C1 in the algebra
P(X) with respect to the basis {C0, · · · , Cn}. Then L1 = A, the adjacency
matrix of the graph X.

Proof: This follows from the fact that Mij1 = Mi1j is non zero exactly
when i and j are neighbours, in which case Mij1 = 1. 2
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This suggests that if P(X) is associative, it will likely coincide with the
fusion rule algebra K(X) of the graph X defined earlier using only the adja-
cency matrix and the cyclical condition. It is somewhat remarkable that this
is indeed exactly what happens for a large class of cyclical pointed graphs.
We begin with the following result for trees of Dynkin type.

Theorem 21 Let (X, 0) be a pointed tree and let P(X, 0) be the procras-
tination algebra based at 0. Then P(X, 0) is isomorphic to K(X, 0) in the
cases when X is one of the following: Ak, D2k, E6, E8. In particular, P(X)
is a Hermitian fusion rule algebra in these cases.

Proof: This follows by explicit calculations and a direct verification that
the two structures coincide. In the case of D2k one must establish the gen-
eral structure constants by induction but this is not difficult. The explicit
structures of the algebras in the cases E6 and E8 are given in the next section.

2

4 Examples of Fusion Rule algebras of graphs

and Procrastination algebras of graphs

We now list the concrete fusion rule algebras K(X) and the procrastination
algebras P(X) for the cases when X is one of An, Dn, E6, or E8. We in-
clude also the generalised fusion algebra K(E7), first of all to show that this
is ‘almost’ a fusion rule algebra with the all except one Nijk non-negative
(a phenomenon that appears in fact to be not so unusual), and second to
compare it with P(E7) which is not associative in this case. Throughout we
adopt the convention that vertices are labelled by their distances to 0 with
primes used to distinguish vertices of the same distance. This simplifies the
presentation of the structure constants.

Some further experimentation with the computer programs that allow us
to calculate the generalised fusion algebras of graphs reveal that in many
other cases besides the above do the two notions of P(X, 0) and K(X, 0)
coincide. At this point the reason and extent of this phenomenon is a mystery
to us. In fact we suspect that our definition of a procrastination may not be
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precisely what is needed in the general case, in other words that is there is
possibly another notion which coincides in the cases we have looked at with
ours but allows the mysterious equality between P(X, 0) and K(X, 0) to be
extended yet further.

For this reason we suggest that the notion of a procrastination be con-
sidered as temporary. In any case we end by showing some other more
complicated trees which are not of Dynkin type but for which the fusion rule
algebras and procrastination algebras coincide and include also an example
where the same phenomenon occurs for a graph which is not a tree – an
example we call the ‘Witches Hat’.

Type A6: K(X, 0) = P(X, 0)

A6 u u u u u u

0 1 2 3 4 5

11̧ = 0 + 2 22̧ = 0 + 2 + 4 33̧ = 0 + 2 + 4 44̧ = 0 + 2
12̧ = 1 + 3 23̧ = 1 + 3 + 5 34̧ = 1 + 3 45̧ = 1
13̧ = 2 + 4 24̧ = 2 + 4 35̧ = 2 55̧ = 0
14̧ = 3 + 5 25̧ = 3
15̧ = 4

Type D6: K(X, 0) = P(X, 0)

D6 u u u u

u

u

���

HHH0 1 2 3

4

4′
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11̧ = 0 + 2 22̧ = 0 + 2 + 4 + 4′ 33̧ = 0 + 2 + 4 + 4′ 44̧ = 0 + 4
12̧ = 1 + 3 23̧ = 1 + 2(3) 34̧ = 1 + 3 44̧′ = 2
13̧ = 2 + 4 + 4′ 24̧ = 2 + 4′ 34̧′ = 1 + 3 4′4̧′ = 0 + 4′

14̧ = 3 24̧′ = 2 + 4
14̧′ = 3

Type E6: K(X, 0) = P(X, 0)

E6 u u u u u

u

0 1 2 3 4

3′

11̧ = 0 + 2 22̧ = 0 + 2(2) 33̧ = 0 + 2(2) 44̧ = 0
12̧ = 1 + 3 + 3′ 23̧ = 1 + 3 + 3′ 34̧ = 1 43̧′ = 3′

13̧ = 2 + 4 24̧ = 2 33̧′ = 2 3′3̧′ = 0 + 2 + 4
14̧ = 3 23̧′ = 1 + 3
13̧′ = 2

Type E7: K(X, 0) 6= P(X, 0)

E7 u u u u u u

u

0 1 2 3 4 5

4′
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K(E7)

11̧ = 0 + 2 22̧ = 0 + 2 + 4 + 4′ 33̧ = 0 + 2(2) + 2(4) + 4′ 44̧ = 0 + 2 + 4
12̧ = 1 + 3 23̧ = 1 + 2(3) + 5 34̧ = 1 + 2(3) 45̧ = 1 + 5
13̧ = 2 + 4 + 4′ 24̧ = 2 + 4 + 4′ 35̧ = 2 + 4′ 44̧′ = 2 + 4′

14̧ = 3 + 5 25̧ = 3 34̧′ = 1 + 3 + 5 55̧ = 0 + 4 − 4′

15̧ = 4 24̧′ = 2 + 4 54̧′ = 3 − 5 4′4̧′ = 0 + 4
14̧′ = 3

P(E7): Not associative

11̧ = 0 + 2 22̧ = 0 + 2 + 4 + 4′ 33̧ = 0 + 2(2) + 2(4) + 4′ 44̧ = 0 + 2 + 4 + 4′

12̧ = 1 + 3 23̧ = 1 + 2(3) + 5 34̧ = 1 + 2(3) 45̧ = 1
13̧ = 2 + 4 + 4′ 24̧ = 2 + 4 + 4′ 35̧ = 2 + 4′ 44̧′ = 2 + 4 + 4′

14̧ = 3 + 5 25̧ = 3 34̧′ = 1 + 3 + 5 55̧ = 0
15̧ = 4 24̧′ = 2 + 4 54̧′ = 3 4′4̧′ = 0 + 4
14̧′ = 3

Type E8: K(X, 0) = P(X, 0)

E8 u u u u u u u

u

0 1 2 3 4 5 6

5′

11̧ = 0 + 2 22̧ = 0 + 2 + 4 33̧ = 0 + 2 + 2(4) + 6 44̧ = 0 + 2(2) + 3(4) + 6
12̧ = 1 + 3 23̧ = 1 + 3 + 5 + 5′ 34̧ = 1 + 2(3) + 2(5) + 5′ 45̧ = 1 + 2(3) + 5 + 5′

13̧ = 2 + 4 24̧ = 2 + 2(4) + 6 35̧ = 2 + 2(4) 46̧ = 2 + 4
14̧ = 3 + 5 + 5′ 25̧ = 3 + 5 + 5′ 36̧ = 3 + 5′ 45̧′ = 1 + 3 + 5 + 5
15̧ = 4 + 6 26̧ = 4 35̧′ = 2 + 4 + 6 55̧ = 0 + 2 + 4 + 6
16̧ = 5 25̧′ = 3 + 5 56̧ = 1 + 5 55̧′ = 2 + 4
15̧′ = 4 66̧ = 0 + 6 65̧′ = 3 5′5̧′ = 0 + 4

27



Another tree for which K(X, 0) = P(X, 0)

u u u

u

u u u

u

0 1 2 3 4 5

3′ 4′

11̧ = 0 + 2 22̧ = 0 + 2(2) + 4 + 4′ 33̧ = 0 + 2(2) + 4 + 4′ 44̧ = 0 + 2
12̧ = 1 + 3 + 3′ 23̧ = 1 + 2(3) + 5 + 3′ 34̧ = 1 + 3 + 3′ 45̧ = 1
13̧ = 2 + 4 + 4′ 24̧ = 2 + 4 + 4′ 35̧ = 2 43̧′ = 3
14̧ = 3 + 5 25̧ = 3 33̧′ = 2 + 4 44̧′ = 2
15̧ = 4 23̧′ = 1 + 3 34̧′ = 1 + 3 55̧ = 0
13̧′ = 2 24̧′ = 2 + 4 53̧′ = 4′ 3′3̧′ = 0 + 4′

14̧′ = 3 54̧′ = 3′ 3′4̧′ = 5 + 3′ 4′4̧′ = 0 + 4′

The Witches Hat: K(X, 0) = P(X, 0)

u u u u

u

�
�
�

A
A

A

0 1 2 3

2′

11̧ = 0 + 2 + 2′ 22̧ = 0 + 2 + 2′ 33̧ = 0 2′2̧′ = 0 + 3 + 2′

12̧ = 1 + 3 + 2′ 23̧ = 1 32̧′ = 2′

13̧ = 2 22̧′ = 1 + 2
12̧′ = 1 + 2
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