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Planar Algebras are algebras over the

coloured operad of planar tangles.

- Vaughan Jones
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Example of planar tangle (first approximation):
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Ingredients of a planar tangle T are:

• an external disc D0

• an ordered collection {Di : 1 ≤ i ≤ b} (pos-

sibly empty; thus b ≥ 0) of internal discs

• ki special marked points on ∂Di, ∀ 0 ≤

i ≤ b - ki = Col(Di), k0 = Col(T ), Col =

{0,1,2, · · ·}

• some strings, with the set of all end-points

(if any) of all strings equal to the set of

marked points

• one distinguished point * among marked

points on ∂Di whenever ki 6= 0
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The coloured operad T of planar tangles is

equipped with the following operation of com-

position:

The composition T ◦i S is defined - provided

k0(S) = ki(T ) - by ‘sticking S into the i-th

internal disc of T after aligning ∗’s and mak-

ing sure the curves patch up right at ∂Di(T ) -

which circle is then removed, so

b(T ◦i S) = b(T ) + b(S) − 1 .

(Two tangles are identified if they are related

by a structure-preserving - i.e. marked points

and *-points - ambient isotopy.)
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For instance, if we insert the lips given by

*

*
L   = 1

0

into the mouth of the following face,
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we get:
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after smoothing the moustache.
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Defn. (of a PA) (1st approximation):

A Planar Algebra is

• a collection P = {Pk : k ∈ Col } of finite-

dimensional Hilbert spaces

• equipped with an action of T , thus: to

each T ∈ T is associated a linear map

Z(T ) : ⊗
b(T )
i=1 Pki(T ) → Pk0(T )

which is compatible with composition, and

also satisfies a few other ‘reasonable re-

quirements’.
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Compatibility with composition:

If tangles S and T have colour attributes as

below,

S T T o
2

S
c

d

e

f

a

b

a

b

d

e

fc

then

Z(S) : Pa ⊗ Pb → Pc,

Z(T ) : Pd ⊗ Pc ⊗ Pe → Pf ,

Z(T ◦2 S) : Pd ⊗ Pa ⊗ Pb ⊗ Pe → Pf .

and it is required that

Z(T ◦2 S) = Z(T ) ◦ (idPd
⊗ Z(S) ⊗ idPe

)
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Now, unlike our ‘first approximation’, here’s

what an example of Jones’ planar tangles really

looks like:
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Note the following new features:

• a disc with colour k has 2k marked points

• the tangle comes equipped with a checker-

board shading

• the ∗ point can occupy only half the avail-

able slots: as you go clockwise through ∗,

you must go from white to black!
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Some useful Jones tangles

The multiplication tangles:

M 2

D1

2D

D0

*

*
*

D

D

D0

1

2

M0+

(Note: For Mk to make sense, we need an even

number of marked points on the boundary!)

Each Pk is a unital associative algebra, with

P0± even commutative; we now describe the

identity elements.
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The identity tangles:

1
2

1
0
+

1
0−

*

If a k-tangle T has no internal boxes (such as

the 1l’s above), then ZT : C → Pk. It is a fact

that 1k = Z1k(1) - where the ‘1’ in parenthe-

ses denotes the 1 of C - is the multiplicative

identity of Pk.
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Strictly speaking, in order for 1k to be the iden-

tity of Pk, we need to asume a ‘non-degeneracy’

condition which effectively demands that the

ranges of ZT ’s as above span Pk, or equiva-

lently that

idPk
= Z

Ik
k

,

where Ik
k is the identity tangle given by

0
+

0
+I

D
1

D
0

D
1
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−

−
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The inclusion tangles:

D
0

D
1

D
0

D
0

D
1

D
1

I
0+

1 I
0−

1

*

*

* *

I
2

3

(We always place the ‘*’ points in white re-

gions.)

The ‘inclusions’ are homomorphisms (of unital

algebras) which are injective under mild hy-

potheses.
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Connectedness ‘Good’ planar algebras satisfy

the following requirement:

Connectedness: P0± is 1-dimensional, or equiv-

alently P0± = C (since a 1-dimensional algebra

over C is canonically isomorphic to C).

We shall assume that all our planar algebras

are connected!

Remark: So, if T is a 0± tangle, then we may

view ZT as a linear functional on ⊗b
i=1Pki(T ).
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The trace tangles: It is not hard to see that,

in the sense of the previous remark, both Z
tr

(r)
k

and Z
tr

(l)
k

define traces on Pk, where tr
(r)
k and

tr
(l)
k are the ‘right- and left- trace tangles’ (with

internal disc of colour k) given by:

tr

. . .

. . .
. . .

*
. . .

. . .
. . .

*

tr tr(l)(r)
k k

k k

kk
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The conditional expectation tangles

*

* * *

E
k

k+1
E E

1 1

0 0+ −

induce maps Z
Ek

k+1
: Pk+1 → Pk satisfying

tr
(r)
k ◦ Z

Ek
k+1

= tr
(r)
k+1.



Two final requirements of a ‘good’ planar al-

gebra:

Modulus: A (connected) planar algebra is said

to have modulus δ if Z
T

0−
0+

= Z
T

0−
0+

= idC, where

these ‘toggling tangles’ are given by

D

0

1

D

D

0

1

D

D

0

1

D

0
+

− +

0−
0

T
0

T

Finally in a connected planar algebra with non-

zero modulus δ, the inclusion tangles induce

injective maps, since

Z
Ek

k+1
◦ Z

Ik+1
k

= δ idPk
,
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Local finite-dimensionality: A planar algebra

has this property if

dim Pk < ∞ ∀k .

Theorem:(Jones) There is a bijective corre-

spondence between

(i) extremal finite-index subfactors

and

(ii) locally finite-dimensional connected planar

algebras with positive modulus, which are ‘spher-

ical’ in the sense that

Z
tr

(l)
k

= Z
tr

(r)
k

∀k ,

and further has an involutive structure (which

Jones calls a C∗-planar algebra).
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(Unitary) (1+1)-dimensional TQFTs

are functors on ‘cobordism categories’∗

Closed 1-manifolds 7→ fin. dim. Hilbert spaces

σ 7→ V (σ)

satisfying

V (σ̄) = V (σ)∗

V (σ1

∐
σ2) = V (σ1) ⊗ V (σ2)

(Commutative
∐

↔ unordered tensor products)

And

Σ ∈ Cob(σ1, σ2)

⇒ ∂Σ = σ̄1

∐
σ2

⇒ V (∂Σ) = V (σ̄1) ⊗ V (σ2)

= V (σ1)
∗ ⊗ V (σ2)

= Hom(V (σ1), V (σ2))

∗objects are compact, oriented, often decorated mani-
folds, and morphisms are (decorated) cobordisms
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Thus, to any cobordism Σ : σ1 → σ2, a TQFT

associates an operator ZΣ ∈ Hom(V (σ1), V (σ2))

as also a vector ζΣ ∈ V (∂Σ) which are related

by the natural identifications.

If the boundary of a 2-manifold M has n com-

ponents, then M may be regarded as a cobor-

dism in 2n ways.

M

a

b

c

For instance, if ∂M = a
∐

b
∐

c, (as above),

then M yields cobordisms Σ : ā → b
∐

c as well

as Σ1 : ā
∐

c̄ → b and we would want ζΣ and ζΣ1

to correspond under the natural identification.
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In particular, if Σ : σ1 → σ2 is a cobordism,

then ∂Σ = σ̄1
∐

σ2, so ∂Σ̄ = σ̄2
∐

σ1 and we

may view Σ̄ as a cobordism from σ2 to σ1; and

the unitarity requirement on the TQFT is:

ZΣ̄ = Z∗
Σ .
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TQFTs from PAs - still first approximation

Imagine a category where the simple objects

are in bijection with Col = {0,1,2, · · ·}, and

general objects are ‘disjoint unions’ of finitely

many simple objects; and suppose k is thought

of as the equivalence class of a circle∗ with k

marked points - where equivalence means exis-

tence of a diffeomorphism which preserves the

structure (orientation, set of marked points,

the ∗-points, etc.):

3

*

∗all planar 1-manifolds are thought of as being oriented
anti-clockwise.
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Given a planar algebra P , define

V (
b∐

i=1

ki) = ⊗b
i=1Pki

,

and note that a planar tangle T ∈ T yields an

operator

Z(T ) : V (
b∐

i=1

ki) = ⊗b
i=1Pki

→ Pk0
= V (k0) .

(1)

One of the ‘reasonable requirements’ in the

definition of a PA, which is related to the ‘op-

eradic structure’ of T , ensures a natural ‘per-

mutation invariance’ in the association

T 7→ Z(T ) ,

and hence eq. (1) would be consistent with the

requirement of ‘unordered tensor products’ in

a TQFT.
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Note that we cannot expect k and k̄ to be the

same, since, in general, Pk 6= P ∗
k . So we need

to modify our simple objects.

Relax parity requirement on ∗

This leads to the correct interpretation of k̄:

* *

33
_

(Recall: all planar 1-manifolds are oriented anti-

clockwise.)
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Among the most important of Jones’ tangles

are the rotation tangles (one for each k):
0 0

1 1R
3

= =* * *

*

Z(R3) : P3 → P3 , or ζR3
∈ P ∗

3 ⊗ P3

(Note that ∗ is ‘shifted by two’.)
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Now, ‘rotation by 1’ is possible unlike Jones’

case:

*

*

0

1T
3

=

This ‘half-rotation’ (or ‘rotation by 1’) is also

very important (although not quite a ‘Jones’

tangle’). In fact it turns out that the operator

ZT3
: P3 → P3̄ ≡ P ∗

3

corresponds to the element

ζT3
∈ P ∗

3 ⊗ P ∗
3

given by

〈x ⊗ y, ζT3
〉 = tr(xy)

dvipdf
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The idea is to define a ‘cobordism category’

D - on which our TQFT will be defined -

where our ‘quasi-tangles’ (where the constraint

on * has been relaxed) are ‘building blocks’

and general morphisms are obtained by ‘glue-

ing finitely many of our quasi-tangles - and can

be quite general 2-manifolds carrying a ‘dec-

oration’ featuring ‘strings, ∗’s and ‘checker-

board shadings’.

But there is a problem - owing to the non-

triviality of the mapping class group of surfaces

of higher genera.
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For instance, let T and B be the ‘quasi-tangles’

1

0

*

*

1

0

*

*

BT

denoting the top and bottom halves of a torus

‘painted half-black’.
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On the other hand, if At and Ab are the ‘dec-

orated annuli’ indicated below,

1

0

*

*

1

0

*

*

A
t

A
b

then the result Ab◦At of glueing them together

is diffeomorphic to the result B ◦ T , but the

number ‘obtained’ for the former turns out to

be different from that of the latter.

The reason for the discrepancy is that we have

to keep track of how the surface is sliced into

its ‘planar building blocks’.
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We now define our category D

Objects: simple objects are of the form k or

k̄, as in the earlier illustration for k = 3, where

k ∈ Col = {0B,0W ,1,2, · · ·}.∗

General objects are appropriate equivalence classes

of triples (σ, P, ∗, sh) where

• σ is a closed (possibly empty) 1-manifold

• P is a set of ‘marked points’ on it

• ∗ is a choice of distinguished marked point

from every component meeting P , and

• sh is a ‘checkerboard shading’ on σ

∗Due to the shading introduced, it bcomes necessary to
allow two variations 0B and 0W of the basic 0 in Col;
counting their ‘bars’ there are 4 variants altogether!
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Morphisms have to be defined as ‘equivalence

classes of premorphisms’ - a premorphism be-

ing defined to be a tuple (Σ, `, ∗, sh,Π) where

• Σ is a surface

• ` is a 1-submanifold of Σ - the strings

• ∗ is a choice of distinguished marked point

on the boundary of each component of ∂Σ

which meets `

• sh is a checkerboard shading; and

• Π is a planar decomposition of Σ - i.e., a

system of closed curves which (i) meet `

transversally, if at all, and (ii) ‘carve’ Σ up

into finitely many ‘planar pieces’
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Two pre-morphisms are equivalent if it is pos-

sible to pass from one to the other by a finite

sequence of moves of one of 3 types:

• structure preserving diffeomorphism

• replacing (Σ, `, ∗, sh,Π) by (Σ, `, ∗, sh,Π1) if

Π is carried to Π1 by an ambient isotopy of

Σ

• replacing (Σ, `, ∗, sh,Π) by (Σ, `, ∗, sh,Π1) if

either Π ⊂ Π1 or Π1 ⊂ Π
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Here is an example of a premorphism, with

‘planar decomposition’ afforded by the family

{γ1, γ2} of curves:

= B*

1
γ

2
γ

*

*

This is viewed most naturally as a morphism

from 2̄
∐

0W to 1.
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The following result should be compared with

the well-known equivalence between 1+1-dim.

TQFTs (on 2Cob) and Frobenius algebras.

Theorem:

• There is a unique (1+1)-dim.) ‘cobor-

dism category’ D where objects and mor-

phisms are defined as in the last few slides

- with naturally defined composition, dis-

joint unions, conjugates (or adjoints).

• Each ‘subfactor planar algebra’ gives rise

uniquely to a unitary TQFT defined on D.

• Every unitary TQFT defined on D arises

as above from a subfactor planar algebra.
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Our result leads to an alternative description of
Kuperberg’s ‘quantum invariant’ of 3-manifolds
associated to semisimple, cosemisimple Hopf
algebras.

Recall that a Heegaard diagram is a tuple
consisting of an oriented smooth surface Σ,
say, of genus g, and two systems of smoothly
embedded circles on Σ, which we will denote
by U1, ..., Ug and L1, ..., Lg (referred to by Ku-
perberg as upper and lower circles), such that
each is a non-intersecting system of curves
that does not disconnect Σ. An example, with
g = 1 is given by

L

U
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A well-known prescription leads from Heegaard

diagrams to closed oriented 3-manifolds. The

previous example leads to the lens space L(3,1).

A Heegaard diagram also leads to a (pre-morphism

and hence a) ‘morphism’ in our category. To

see this, thicken the U-curves to a black band,

and consider the surface Σ with this ‘deco-

ration’, and with planar decomposition given

by the L-curves; thus the Lens space example

yields:
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As in the above example, the morphism has

both domain and range given by the ‘empty

object’ ∅ and thus, each planar algebra leads

from a Heegaard diagram via our prescription

to a scalar.

The fact is that if we start with the planar alge-

bra associated to a (semisimple and cosemisim-

ple) Hopf algebra, the result of the prescrip-

tion above coincides with Kuperberg’s invari-

ant, and is hence seen to depend only on the

3-manifold.

For example, we find that the invariant thus as-

sociated to L(3,1) is given by Tr(ZR3
). (More

generally, the invariant associated to L(p, q) is

the trace of the the q-th power of the rotation

R3 on P3.)
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