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Braids
What are braids?
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n-strand braids
The previous example was of a 3-strand
braid.
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n-strand braids
The previous example was of a 3-strand
braid.

Your grandmother was probably familiar with
5-strand braids!
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Multiplying braids

We equip the collection Bn of all n-strand braids
with a product structure thus:

ab a =b
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The Braid Group

Bn turns out to be a group with this multiplication
- provided we agree that two braids are the same
if one may be continuously deformed into the
other. (This is needed even for associativity.)
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Braid inversion
The inverse of a braid is obtained by reflecting
in a horizontal mirror placed at the level of the
lower frame of the braid: for example,
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The generators

Since braids can be built up ‘one crossing at a
time’ it is clear that Bn is generated , as a group,
by the braids b1, b2, · · · , bn−1 shown below -
together with their inverses:
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The braid relations
The bj ’s satisfy the following relations:

bibj = bjbi if |i − j| ≥ 2

b b1 3
b b
3 1
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The braid relations
The bj ’s satisfy the following relations:

bibj = bjbi if |i − j| ≥ 2

b b1 3
b b
3 1

=

bibi+1bi = bi+1bibi+1 for all i < n − 1

b
2

b
1b

1
b
2

b
1

b
2

=

– p. 8



Free groups

G = 〈g1, · · · , gn〉 is said to be the free group with
generators {g1, · · · , gn} if for any set
{h1, · · · , hn} of elements in any group H,
there exists a unique homomorphism
φ : G → H with the property that φ(gk) = hk

for each k = 1, · · · , n. Such a group is unique
up to isomorphism.
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Free groups

G = 〈g1, · · · , gn〉 is said to be the free group with
generators {g1, · · · , gn} if for any set
{h1, · · · , hn} of elements in any group H,
there exists a unique homomorphism
φ : G → H with the property that φ(gk) = hk

for each k = 1, · · · , n. Such a group is unique
up to isomorphism.

For example, Z = 〈1〉 is the free group on one
generator.
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Presentations of
groups

A group G is said to have presentation
G = 〈g1, · · · , gn|r1, · · · , rm〉 if:

(i) it is generated by the set {g1, · · · , gn}
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Presentations of
groups

A group G is said to have presentation
G = 〈g1, · · · , gn|r1, · · · , rm〉 if:

(i) it is generated by the set {g1, · · · , gn}

(ii) the gi’s satisfy each relation rj for
j = 1, · · · , m; and

(iii) for any set {h1, · · · , hn} of elements in any
group H, which ‘satisfy each of the relations
r1, · · · , rm’, there exists a unique
homomorphism φ : G → H with the property
that φ(gk) = hk for each k = 1, · · · , n.
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Examples of
presentations

A group G with a given presentation is unique up
to isomorphism.

(i) Cn = 〈g|gn = 1〉 is the cyclic group of order
n.
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Examples of
presentations

A group G with a given presentation is unique up
to isomorphism.

(i) Cn = 〈g|gn = 1〉 is the cyclic group of order
n.

(ii) Dn = 〈g, t|gn = 1, tgt−1 = t−1〉 is the
dihedral group of symmetries of an n-gon.
(Dn has 2n elements.)

g = rotation by 120

t = reflection about an altitude

– p. 11



Artin’s theorem
The Braid group is often referred to as Artin’s
Braid Group, partly because of the following
theorem he proved:

Theorem: (Artin) Bn has the presentation

Bn = 〈b1, · · · , bn−1|r1, r2〉 ,

where
(r1)bibj = bjbi if |i − j| ≥ 2

(r2)bibi+1bi = bi+1bibi+1 for all i < n − 1
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The symmetric group

In the symmetric group Σn, consider the
transpositions defined by

ti = (i, i + 1) , for i = 1, · · · , n − 1 .

We have the following facts:

Σn has the presentation

Σn = 〈t1, · · · , tn−1|r1, r2, r3〉 ,

where r1, r2 are the braid relations
encountered earlier, and

(r3) t2i = 1 for all i < n .
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The quotient map
Bn 7→ Σn

Hence there exists a unique homomorphism
φ : Bn → Σn such that φ(bi) = ti for each i.
(Since the ti’s generate Σn, we see that φ is
onto and hence Σn is a quotient of Bn.)
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The quotient map
Bn 7→ Σn

Hence there exists a unique homomorphism
φ : Bn → Σn such that φ(bi) = ti for each i.
(Since the ti’s generate Σn, we see that φ is
onto and hence Σn is a quotient of Bn.)

If φ(b) = β, it is not hard to see that

1 2 3 4

b

β(  ) β(  )3 2
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Remarks
The generators bi are all pairwise conjugate
in Bn; in fact, if b = b1b2 · · · bn, then
bbib

−1 = bi+1 ∀i < n − 1. (For example:

b1b2b3 · b1 = b1b2b1b3 = b2 · b1b2b3

and

b1b2b3 · b2 = b1b2b3b2 = b1b3b2b3 = b3 · b1b2b3
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Remarks
The generators bi are all pairwise conjugate
in Bn; in fact, if b = b1b2 · · · bn, then
bbib

−1 = bi+1 ∀i < n − 1. (For example:

b1b2b3 · b1 = b1b2b1b3 = b2 · b1b2b3

and

b1b2b3 · b2 = b1b2b3b2 = b1b3b2b3 = b3 · b1b2b3

There exist 1-1 homomorphisms Bn ↪→ Bn+1

given by b
(n)
k 7→ b

(n+1)
k for each k < n.
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Braids to knots
The closure of a braid b ∈ Bn is obtained by
sticking together the strings connected to the
j-th pegs at the top and bottom. The result is
a many component knot b̂.
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Braids to knots
The closure of a braid b ∈ Bn is obtained by
sticking together the strings connected to the
j-th pegs at the top and bottom. The result is
a many component knot b̂.
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Two theorems
What makes this ‘closure operation’ useful are:

Theorem (Alexander):
Every tame link is the closure of some braid
(on some number of strands).

and
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Two theorems
What makes this ‘closure operation’ useful are:

Theorem (Alexander):
Every tame link is the closure of some braid
(on some number of strands).

and

Theorem(Markov):
Two braids have equivalent closures iff you
can pass from one to the other by a finite
sequence of moves of one of two types.
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The Markov move of
type I

Type I Markov move:

c(n)b(n)(c(n))−1 ∼ b(n)
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The Markov move of
type I

Type I Markov move:

c(n)b(n)(c(n))−1 ∼ b(n)
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The Markov move of
type II

Type II Markov move:

b(n) ∼ b(n+1)(b(n+1)
n )−1
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The Markov move of
type II

Type II Markov move:

b(n) ∼ b(n+1)(b(n+1)
n )−1

b b
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