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Abstract

This paper is devoted to a study of the subfactors arising from
vertex models constructed out of ‘biunitary’ matrices which happen
to be permutation matrices. After a discussion on the computation
of the higher relative commutants of the associated subfactor (in the
members of the tower of Jones’ basic construction), we discuss the
principal graphs of these subfactors for small sizes (N = k ≤ 3) of the
vertex model. Of the 18 possibly inequivalent such biunitary matrices
when N = 3, we compute the principal graphs completely in 15 cases,
all of which turn out to be finite. In the last section, we prove that
two of the three remaining cases lead to subfactors of infinite depth
and discuss their principal graphs.
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1 Introduction:

The importance of the notion of a commuting square of finite-dimensional
C∗-algebras and its connection with subfactors has been amply demonstrated
- for instance, see [GHJ],[P] and [P2]. While there is a well-understood
prescription for constructing a subfactor of the hyperfinite II1 factor from
such a commuting square, what still seem a mystery is the relation between
the initial commuting square and the so-called principal (or standard) graph
invariant of the subfactor (in the absence of what Ocneanu terms ‘flatness
of the connection’). In this paper, we examine a seemingly simple class of
such commuting squares, namely the ones arising from ‘vertex models given
by biunitary matrices which also happen to be permutation matrices’, and
discuss the principal graphs of the associated subfactor. We give below a
brief section-wise description of the contents of this paper.

§2: Notation and Preliminaries: We recall here the definition of the spe-
cific family of commuting squares which have been referred to as vertex mod-
els, as also the prescription for constructing a subfactor of the hyperfinite
II1 factor from a vertex model (or more generally, from a commuting square
which is symmetric (in the terminology of [HS]) or non-degenerate (in the
terminology of [P2])).

§3: Biunitary permutation matrices: Here, we re-cast - in a form that we
shall work with in the rest of the paper - what it means to have a vertex
model given by a biunitary matrix which also happens to be a permutation
matrix; we also define some mappings associated with such matrices, which
play a central role in the subsequent analysis.

§4: Computation of the higher relative commutants: In this section, we
describe a compact prescription (due to Jones) for computing the higher
relative commutants (at least in principle), and we identify what this abstract
prescription amounts to in our case.

§5: Some simple special cases: Here we discuss some particularly simple
special cases, and describe the resulting principal graphs, most of which may
be described as Cayley graphs for a group or a group-dual with respect to a
suitable set of generators.

§6: The case k = N ≤ 3 : We begin by discussing a natural equivalence
relation in the set of biunitary permutation matrices. After quickly disposing
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of the case N = 2, we go on to show that when N = 3 there are precisely
18 distinct equivalence classes of such matrices; we explicitly list a matrix
from each class, and note that nine of these cases are already covered by the
discussion in §5, and give the principal graph of the associated subfactor.

§7: The finite principal graphs (for N = 3) : In this section, we compute
the principal graphs of six of the remaining cases, which all turn out to be
finite.

§8: Two infinite depth subfactors: In this section, we prove that two
of the remaining cases lead to infinite principal graphs, and give a partial
description of what those graphs look like.

§9: Concluding Remarks: Here we observe : (a) that all subfactors arising
from vertex models given by 9× 9 biunitary permutation matrices are self-
dual; (b) the peculiar fact that all the 15 finite principal graphs obtained
when N = 3 turn out to be Cayley graphs of groups or group-duals; and
(c) a relation - in the cases computed - between the principal graphs of the
subfactors obtained from a biunitary permutation matrix and its adjoint,
and raise a natural question.

2 Notation and preliminaries:

We shall use the expression ‘vertex model’, throughout this paper, to mean
a commuting square - see [HS],[K],[O],[OK],[P] - of the form

u(1 ⊗Mk(C))u∗ ⊆ MN(C) ⊗Mk(C)
∪ ∪ (†)
C ⊆ MN(C) ⊗ 1

where u = ((uαaβb )) is a unitary element of MN(C) ⊗Mk(C). (We shall find
it convenient to use the convention, at least in §§2 - 4, of denoting elements
of ΩN by Greek alphabets and elements of Ωk by Roman letters; where we
write, here and in the sequel, the symbol Ωl for the set {1, 2, · · · , l}. (From
§5 onwards, we consider, for the sake of simplicity, the case k = N, and
dispense with this Greek vs. Roman convention.) It is well-known that
(†) is a commuting square precisely when the unitary matrix u satisfies the
following biunitarity condition: if we define the element ũ = ((ũαaβb )) of
MN(C) ⊗Mk(C) by
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ũαaβb = uβaαb (1)

then also ũ is unitary. (Thus ũ may be thought of as the ‘block-transpose’ of
u in the sense that if we write u in block-form as u = ((uαβ)), then ũαβ = uβα.)

In the rest of this paper, we shall reserve the term biunitary matrix for
a unitary matrix u ∈ MN(C) ⊗Mk(C) which satisfies the above biunitarity
condition.

If we rewrite the commuting square (†) as

B0 ⊆ B1

∪ ∪
A0 ⊆ A1

there is a well-known prescription - see [GHJ] - for constructing a subfactor
Ru of the hyperfinite factor R with [R : Ru] = k2. (Namely, let B0 ⊂
B1 ⊂ B2 ⊂ B3 ⊂ · · · denote the tower obtained by repeated applications of
Jones’ basic construction - see [J],[GHJ] ; if en denotes the projection in Bn+1

which implements the conditional expectation of Bn onto Bn−1, for n ≥ 1,
let An+1 be the subalgebra of Bn+1 generated by An ∪ {en}; then R and Ru

are, respectively, the von Neumann algebra completions, with respect to the
unique tracial state on these algebras, of ∪Bn and ∪An.)

For later reference, we remark - see [O] for the general case, also [KSV]
where this special case is explicitly worked out - that there is a natural
equivalence relation on the set of biunitary matrices in MN ⊗Mk, such that
the subfactors arising from equivalent biunitary matrices are conjugate. The
relation is given by u1 ∼ u2 if and only if there exist unitary matrices a, c ∈
MN(C), b, d ∈Mk(C) such that u1 = (a⊗ b)u2(c⊗ d).

3 Permutation biunitary matrices:

In the rest of this paper, we shall be interested in biunitary matrices which
are permutation matrices (as elements of MNk(C) = MN(C) ⊗ Mk(C)).
We shall find it convenient to work with an alternative description of such
matrices, which we single out in the next lemma.

Lemma 1 Let u ∈ MN(C) ⊗ (Mk(C). Then the following conditions on u
are equivalent:
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(i) u is biunitary, and is further a permutation matrix (i.e., is a 0,1
matrix);

(ii) there exist permutations {ρa : a ∈ Ωk} ⊂ S(ΩN), {λα : α ∈ ΩN} ⊂
S(Ωk), (where we write S(X) for the group of permutations of the set X)
such that:

(a) the equation
π(β, b) = (ρb(β), λβ(b))

defines a permutation π ∈ S(ΩN × Ωk); and
(b)

uαaβb = δ(α,a),π(β,b) = δα,ρb(β)δa,λβ(b).

Proof: (i) ⇒ (ii); If u is a biunitary 0, 1− valued matrix, then let π ∈
S(ΩN × Ωk) be defined by uαaβb = δ(α,a),π(β,b).

Assertion: For any β ∈ ΩN , a ∈ Ωk (resp., α ∈ ΩN , b ∈ Ωk), π({β}×Ωk) ∩
(ΩN×{a}) ( resp., π(ΩN×{b}) ∩ ({α}×Ωk)) is a singleton. Furthermore,

π({β} × Ωk) ∩ (ΩN × {a}) = {(φa(β), a)}
π(ΩN × {b}) ∩ ({α} × Ωk) = {(α, ψα(b))}

where
φa(β) = ρλ−1

β
(a)(β) and ψα(b) = λρ−1

b
(α)(b).

The first (as well as the parenthetically included) statement of the as-
sertion is an immediate consequence of two facts: (i) the hypothesis on u
implies that the block-transpose matrix ũ is also a permutation matrix; and
(ii) π(β, b) = (α, a) ⇔ ũβaαb = 1.

The second assertion follows from the definitions.

The assertion clearly proves the implication (i) ⇒ (ii), while the impli-
cation (ii) ⇒ (i) is immediate. 2

We shall find the following notation convenient.
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Definition 2 Define

PN,k = {π ∈ S(ΩN × Ωk) : there exists λ : ΩN → S(Ωk), ρ : Ωk → S(ΩN)

such that π(β, b) = (ρb(β), λβ(b)) for all β ∈ ΩN , b ∈ Ωk}

where we write λβ (resp.,ρb) for the image of β (resp.,b) under the map λ
(resp.,ρ). If π, λ, ρ are related as above, we shall simply write π ↔ (ρ, λ) ∈
PN,k. (Later, when we consider the case N = k, we shall simply write PN for
PN,N .)

Thus, Lemma 1 states that there is a bijection between biunitary permutation
matrices of sizeNk and elements π ↔ (ρ, λ) ∈ PN,k, given by uαaβb = δα,ρb(β)δa,λβ(b).

The following proposition, which is an immediate consequence of the def-
initions, lists some useful properties of the various ingredients of a biunitary
permutation.

Proposition 3 Let π ↔ (ρ, λ), φa, ψα be as above. Then, for arbitrary a ∈
Ωk, α ∈ ΩN , we have:

(i) φa ∈ S(ΩN), ψα ∈ S(Ωk);
(ii) π−1 ↔ (φ−1, ψ−1) ∈ PN,k (meaning, of course, that π−1(α, a) =

(φ−1
a (α), ψ−1

α (a)) );
(iii) φ−1

a (α) = ρ−1
ψ−1

α (a)
(α), ψ−1

α (a) = λ−1
φ−1

a (α)
(a).

2

4 Computation of higher relative commutants

Suppose u ∈ MN(C) ⊗Mk(C) is biunitary; let Ru be the subfactor of the
hyperfinite factor R constructed as outlined in §2. Let

R−1 = Ru ⊆ R0 = R ⊆ R1 ⊆ R2 ⊆ · · ·

be the tower obtained by repeated appications of Jones’ basic construction
to the inclusion Ru ⊆ R. Let us write Cn = R′

u ∩ Rn−1, n = 0, 1, 2, · · · . (
Thus, C0 = C, C1 = R′

u ∩R, etc.)
We shall find it convenient to work with a diagrammatic description of

the tower {Cn : n ≥ 0} of relative commutants. We pause to briefly recall
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the conventions for this approach (which is due to Jones ([J1],[BHJ]); also
see [JS] for details).

Once and for all, we fix a biunitary matrix u ∈MN(C)⊗Mk(C). When u
is a permutation matrix, the symbols π, ρ, λ, φ and ψ will have the meanings
as in the last section.

An element, say F, of ⊗nMk(C) will be represented by a ‘black box’ with
two sets of n vertical strands, thus:

· · ·

· · ·

F

A state (for such a simple diagram) is a labelling of each vertical segment
of string with a Roman letter, and the box F is considered as a scalar function
on the set of possible states:

b1

a1

b2

a2

bn

an

· · ·

· · ·

F =

b

a

· · ·

· · ·

F

In addition to such boxes, our diagrams will usually contain two kinds
of strands - vertical as well as horizontal. We adopt the convention that a
state labels segments of horizontal (resp., vertical) strands with Greek (resp.,
Roman) letters.

Matrix multiplication corresponds to ‘concatenation of boxes’ in an ob-
vious sense. To be able to stick to this correspondence, we define a state
on a (possibly complicated) diagram as a labelling of all ‘unbounded’ seg-
ments of strands according to the convention of the preceding paragraph, and
when evaluating the value of a state on a diagram, we sum, over all possible

7



(admissible) labellings of bounded segments, the products of all the ‘local
contributions’ (coming from ‘black boxes’ as well as from crossings).

Furthermore, all the strands in our diagrams will usually be oriented, so
we will encounter two kinds of crossings:

α - β

a

b

6

Positive Crossing Negative Crossing

α - β

b
?

a

(All the diagrams that we shall encounter will have the property that at
any crossing, the horizontal strand will always be the ‘over-string’.)

Given a diagram all segments of all of whose strands have been labelled
appropriately, we assign ‘Boltzmann weights’ to crossings (depending upon
the parity of the crossing) by the following prescription:

Positive Crossing

Negative Crossing α

α

β

β

b

b

a

a

7→

7→

-

-
6

?

uαbβa

uβaαb

We are finally ready to state Jones’ prescription for computing the tower
{Cn : n ≥ 0} of relative commutants:
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Proposition 4 (Jones) If u ∈ MN(C) ⊗Mk(C) is biunitary, and if Cn is
(the (n − 1)-th higher relative commutant ) as above, then Cn ⊆ ⊗nMk(C);
in fact, Cn consists of precisely those F ∈ ⊗nMk(C) for which there exists
a G ∈ ⊗nMk(C) such that the following equation holds:

6 6
? ?· · · · · ·

· · · · · ·

· · ·

· · ·F

G
-

-

=

(2)

where the vertical strings (on each side of the equality) are alternatively ori-
ented upwards and downwards (starting with the one at the extreme left).

2

For the rest of this section, we fix a π ↔ (ρ, λ) ∈ PN,k and let λ, ρ, φ, ψ
be as in §3. Thus, if u is the biunitary permutation matrix that corresponds
to (ρ, λ) as in §3, then

uαaβb = δα,ρb(β)δa,λβ(b) (3)

The point of the next lemma is to point out that if uαaβb = 1, then
any pair consisting of one Greek letter from {α, β} and one Roman letter
from {a, b} determines the complementary pair. We shall find some of these
formulae convenient in subsequent computations.

Lemma 5 If α, β ∈ ΩN , a, b ∈ Ωk, then the following conditions are equiv-
alent:

(i) uαbβa = 1;
(ii) α = ρa(β) and b = λβ(a);
(iii) β = φ−1

b (α) and a = ψ−1
α (b);

(iv) β = ρ−1
a (α) and b = ψα(a);

(v) α = φb(β) and a = λ−1
β (b).
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Proof: (i) ⇔ (ii) by definition.
(ii) ⇔ (iii) by Proposition 3 (ii).
(ii) ⇔ (iv) by the formula for φ−1 given in Proposition 3 (iii).
(iii) ⇔ (v) by the formula for ψ−1 given in Proposition 3 (iii). 2

It follows immediately from the preceding lemma that the Boltzmann
weights associated with the two kinds of crossings (when we work with a
biunitary permutation matrix) are as follows:

Positive Crossing

Negative Crossing α

α

β

β

b

b

a

a

7→

7→

-

-
6

?

δβ,ρ−1
a (α)δb,ψα(a) = δα,φb(β)δa,λ−1

β
(b)

δβ,ρb(α)δa,λα(b) = δα,φ−1
a (β)δb,ψ−1

β
(a)

(4)

Notation: Given a biunitary permutation u and corresponding maps
λ, ρ, φ, ψ as above, then for arbitrary n ≥ 1 and a ∈ Ωn

k , we define the
alternating products

ρa = ρa1ρ
−1
a2
ρa3 · · · ρ

±
an

and
φa = φa1φ

−1
a2
φa3 · · ·φ

±
an

We are now ready to introduce certain mappings that will play a central
role in the computation of the higher relative commutants.
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Proposition 6 (i) For all n ≥ 1, there exists a mapping ΩN ∋ α 7→ L(n)
α ∈

S(Ωn
k) such that

α β-

· · ·

· · ·6
?

a

b

= δ
a,L

(n)
α (b)

δβ,ρ−1
a (α)

(5)

where the L(n)
α ’s are defined as in (ii) below.

(ii) L(1)
α = ψ−1

α ; and if n > 1 and if L(n)
α (b) = a , then

an−1] = L(n−1)
α (bn−1])

(where we have used the obvious notation an−1] to mean (a1, · · · , an−1) if
a = (a1, · · · , an)); and

an =





λ−1
φ−1
bn−1]

(α)
(bn) if n is even

ψ−1
φ−1
bn−1]

(α)
(bn) if n is odd

;

(iii) ρ−1

L
(n)
α (b)

(α) = φ−1
b

(α) .

Proof: The proof is a direct consequence of the prescription, given in
equation 4, for the Boltzmann weights associated to positive and negative
crossings. (For (iii), the two prescriptions given for each kind of crossing
must be used in conjunction.) 2
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Remark 7 If it so happens that λα = ψα, ρa = φa for all α, a ( which is
actually the case more often than one might expect - see §6), then it is seen
from Proposition 6(ii) that

L(n+1)
α (a, a) = (L(n)

α (a), λ−1
ρ−1
a (α)

(a))

for all a ∈ Ωn
k , a ∈ Ωk, α ∈ ΩN , n = 1, 2, · · · .

In the following, we fix a biunitary u, with associated λ, ρ, φ, ψ as above,
and let {Cn} denote the sequence of higher relative commutants for this Ru.

Lemma 8 With the identification ⊗nMk(C) = MatΩn
k
(C), we have :

Cn = {F = ((F a

b
)) ∈MatΩn

k
(C) : F a

b
= δρ

L
(n)
α (a)

,ρ
L

(n)
α (b)

F
L

(n)
β

−1
L

(n)
α (a)

L
(n)
β

−1
L

(n)
α (b)

for all α, β ∈ ΩN , a,b ∈ Ωn
k}

Proof: In the notation of Proposition 4, we see, from Proposition 6, that on
the one hand,

6
?· · ·

· · ·

· · ·

F

-α β

a

b

= δβ,ρ−1
a (α) F

b

(L
(n)
α )

−1
(a)

;

on the other hand, we also find that
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6
?· · ·

· · ·

· · ·

G

-α β

a

b

= δβ,ρ−1

L
(n)
α (b)

(α) G
L

(n)
α (b)

a

,

which, in view of Proposition 6(iii), is seen to be equal to δβ,φ−1
b

(α) G
L

(n)
α (b)

a
.

Thus, we find that Cn consists of those F ∈ ⊗nMk(C) for which there
exists a G ∈ ⊗nMk(C) such that

δβ,ρ−1
a (α) F

b

(L
(n)
α )

−1
(a)

= δβ,φ−1
b

(α) G
L

(n)
α (b)

a
.

Using the substitution c = (L(n)
α )−1(a), the last equation may be re-

written - again using Proposition 6(iii) - in a more symmetric form as

δβ,φ−1
c (α) F

b

c
= δβ,φ−1

b
(α) G

L
(n)
α (b)

L
(n)
α (c)

. (6)

This is easily seen to imply that

Fb

c
= δφ−1

b
, φ−1

c
G
L

(n)
α (b)

L
(n)
α (c)

(7)

for arbitrary α ∈ ΩN ,b, c ∈ Ωn
k , and also (as a result of Proposition 6(iii))

that

Gb̃

c̃
= δρ−1

b̃
, ρ−1

c̃

F
(L

(n)
β

)−1(b̃)

(L
(n)
β

)−1(c̃)
(8)

for arbitrary β ∈ ΩN , b̃, c̃ ∈ Ωn
k . The proof of the lemma is completed by

putting together equations 7 and 8 (and using the fact - which is a conse-
quence of Proposition 6(iii) - that δφ−1

b
, φ−1

c
δρ−1

L
(n)
α (b)

, ρ−1

L
(n)
α (c)

= δρ−1

L
(n)
α (b)

, ρ−1

L
(n)
α (c)

.

2
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The next lemma is the final ingredient necessary for the identification -
in an abstract sense - of the higher relative commutants.

Lemma 9 Let Ω be a finite set. Suppose we are given an equivalence rela-
tion ∼0 on Ω and a subset L ⊆ S(Ω) such that L = L−1 = {σ−1 : σ ∈ L}.

Let A = {x = ((xij)) ∈MatΩ(C) : xij = δ[i]0,[j]0 x
σ(i)
σ(j) for all i, j ∈ Ω, σ ∈

L}, where [i]0 = {j ∈ Ω : i ∼0 j}.
Define the equivalence relation ∼ on Ω by requiring that i ∼ j ⇔ σ(i) ∼0

σ(j) for all σ ∈ G, where G is the subgroup of S(Ω) generated by L. Then G
acts on the set of ∼-equivalence classes ( by σ · [i] = [σ(i)], where of course
[i] = {j ∈ Ω : i ∼ j}). Suppose the set of ∼-equivalence classes breaks up
as a disjoint union of l orbits under this action of G.

For 1 ≤ p ≤ l, fix one equivalence class [ip] from the p-th orbit, let
Hp = {σ ∈ G : σ · [ip] = [ip]} be the isotropy group of that equivalence
class, and let πp denote the natural permutation representation of Hp on [ip].
Then,

A ∼=
l⊕

p = 1

πp(Hp)
′.

Proof: To begin with, if σ1, σ2 ∈ L, note that, for any x in A, we have
xij = δ[i]0,[j]0x

σ2(i)
σ2(j) = δ[i]0,[j]0δ[σ2(i)]0,[σ2(j)]0x

σ1σ2(i)
σ1σ2(j). Since L = L−1, clearly

G = {σ1σ2 · · · , σr : r ≥ 0, σ1, · · · , σr ∈ L}, and it easily follows now that

A = {x = ((xij)) ∈MatΩ(C) : xij = δ[i],[j]x
σ(i)
σ(j) ∀ i, j ∈ Ω, σ ∈ G}.

Suppose now that {[j
(p)
1 ], · · · [j

(p)
tp ]} is the p-th orbit in the set of ∼-

equivalence classes under the G-action, and suppose j
(p)
1 = ip. For 1 ≤

s ≤ tp, fix σ(p)
s ∈ G such that σ(p)

s · [ip] = [j(p)
s ]. Assume that the elements

of Ω have been so ordered that σ(p)
s , as a map of [j

(p)
1 ] onto [j(p)

s ], is order-
preserving. It is then fairly easy to see that x ∈ A if and only if x has the

block-diagonal form x =
l⊕

p = 1

tp⊕

s = 1

x(p)
s with respect to the decomposition

Ω =
l∐

p = 1

tp∐

s = 1

[j(p)
s ], where x

(p)
1 = · · · = x

(p)
tp ∈ πp(Hp)

′.

2
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Putting the previous two lemmas together - by considering the specialisa-
tion of Lemma 9 to the case where Ω = Ωn

k , a ∼0 b ⇔ ρ−1

L
(n)
α (a)

= ρ−1

L
(n)
α (b)

∀ α ∈

ΩN , and L = {(L
(n)
β )−1(L(n)

α ) : α, β ∈ ΩN} - we can summarize the
contents of this section as follows:

Proposition 10 Let u ∈MN(C)⊗Mk(C) be a biunitary permutation matrix
and let λ, ρ, φ, ψ have their usual meaning. Let Ru ⊆ R be the hyperfinite
(subfactor, factor)- pair corresponding to u, and let Cn = R′

u∩Rn−1, n ≥ 0,
where Ru = R−1 ⊆ R = R0 ⊆ R1 ⊆ R2 ⊆ · · · is the tower of the basic
construction. Then, for n = 1, 2, · · · , the algebra Cn has the following
description:

Let L(n)
α be defined as in Proposition 6; let Gn be the subgroup of S(Ωn

k)

generated by {L
(n)
β

−1
L(n)
α : α, β ∈ ΩN}; and let ∼n be the equivalence relation

defined on Ωn
k by

a ∼n b ⇔ ρ
L

(n)
α (σ(a))

= ρ
L

(n)
α (σ(b))

∀ σ ∈ Gn, α ∈ ΩN .

Suppose the set of equivalence classes in Ωn
k breaks up into ln orbits under

the Gn -action; fix an equivalence class [αp] in the p-th orbit of equivalence
classes, and let Hp = {σ ∈ Gn : σ(αp) ∼n αp}. If πp is the natural
permutation representation of Hp on [αp], then

Cn ≃
ln⊕

p = 1

πp(Hp)
′.

2

5 Some simple special cases

From now on, we assume, for the sake of simplicity, that N = k - although
it should be clear how every statement can be naturally modified in the
general case. In particular, we shall drop the convention in the preceding
sections concerning Greek and Roman letters. Instead, in the interest of
typographical convenience, we shall typically use Greek letters for elements
of Ωn

N , n > 1 and reserve Roman letters to denote elements of ΩN . Also, we
shall freeze the symbol N to denote what was so far denoted by N or k,
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and we shall use the symbol k as a ‘free variable’ ranging over the positive
integers.

In this section, we consider four special cases, in which the subfactor
is necessarily of finite depth, and the prinicipal graph describing the tower
{R′

u ∩Rk : k ≥ −1} admits a complete and satisfactory description.

Case (0): λ ≡ id , ρ ≡ id.
In this most trivial example, λi = ρj = idΩn

for all i, j ∈ ΩN . Then,

π(i, j) = (i, j) and the associated subfactor Ru of R =
∞⊗

k = 1

MN(C) may

be identified with 1 ⊗
∞⊗

k = 2

MN(C), and the principal graph consists of two

vertices with N bonds between them.

Case(1): λ ≡ id, ρ arbitrary .
Let ρ : ΩN → S(ΩN) be an arbitrary map, and let λi = idΩN

for all
i in ΩN . Thus π(i, j) = (ρj(i), j), which clearly defines a permutation of
ΩN × ΩN ; i.e., π ↔ (ρ, λ) ∈ PN . Then observe that

φi(j) = ρλ−1
j

(i)(j) = ρi(j), ψi(j) = λρ−1
j

(i)(j) = j = λi(j)

and thus φ = ρ, ψ = λ. Hence - cf. Remark 7- we see that, for all k ≥ 1,

L(k+1)
x (α, a) = (L(k)

x (α), λ−1
ρ−1

α (x)
(a)) = (L(k)

x (α), a),

for all x, a ∈ ΩN , α ∈ Ωk
N , k ≥ 1; hence, inductively, we find that L(k)

x = idΩk
N

for all k ≥ 1 and for all x ∈ ΩN . In this case, the equivalence classes of Ωk
N

are the sets Eσ = {α ∈ Ωk
N : ρα = σ}, as σ ranges over the group G0

generated by {ρi : i ∈ ΩN}
In fact, it follows from Theorem 11 of [KSV] that in this case, the principal

graph G (describing the tower {Ck : k ≥ 0} of relative commutants ) has the
following description: let G̃ be the bipartite graph with the sets G̃(0) and G̃(1)

of even and odd vertices given by G̃(j) = G0 × {j}, and suppose (g0, 0)
is connected to (g1, 1) by Λ(g0, g1) bonds, where Λ(g0, g1) = #{i ∈ ΩN :
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g1 = ωg0ρi, ω ∈ C, |ω| = 1}; then G is the connected component in G̃
containing the vertex (1, 0), where 1 denotes the identity element of G0.

It should be remarked that these are precisely the ‘diagonal subfactors’
of Popa (see [P2]) for appropriate finite groups.

Case(2): ρ ≡ id, λ arbitrary.
Let λ : Ωn → S(ΩN) be an arbitrary map and let ρj = idΩN

for all j;
thus, π(i, j) = (i, λi(j)), which is again clearly a permutation of ΩN , whence
π ↔ (ρ, λ) ∈ PN . We assume, for simplicity, that λ1 = id. Observe again
that φi(j) = ρλ−1

j
(i)(j) = j = ρi(j) and that ψi(j) = λρ−1

j
(i)(j) = λi(j),

so that φ = ρ, ψ = λ. Again, by Remark 7, we have

L(k+1)
x (α, a) = (L(k)

x (α), λ−1
ρ−1

α (x)
(a)) = (L(k)

x (α), λ−1
x (a))

and hence, inductively, we see that

L(k)
x = λ−1

x × λ−1
x × · · · × λ−1

x .

If G1 denotes the subgroup of S(ΩN) generated by {λi : i ∈ ΩN}, we see that,
in the notation of Proposition 10, Gk = {σ×σ×· · ·×σ : σ ∈ G1}, that the
equivalence relation on Ωk

N is the trivial one (α ∼ β for all α, β) - as a result
of the triviality of the ρi’s - and if π denotes the natural representation of
G1 on CN , then Ck ∼= (π ⊗ π ⊗ · · · ⊗ π)(G1)

′.
Here, too, it follows from Theorem 10 of [KSV] that the principal graph G

has the following description: let G̃ be the bipartite graph with the set of even
(resp.,odd) vertices being given by G̃(0) = Ĝ1×{0} (resp., G̃(1) = Ĝ1×{1}),
where Ĝ denotes the collection of equivalence classes of irreducible represen-
tations of G, and with the number of bonds joining (π0, 0) and (π1, 1) being
given by Λ(π0, π1) = < π0 ⊗ π, π1 > where π is the given representation of
G1 on CN . Then G is the connected component of G̃ containing (1, 0), where
1 denotes the trivial representation of G1.

Case(3) : This may be thought of as the tensor product of cases (1)
and (2). Suppose λ(1) : Ω1 → S(Ω1) and ρ(2) : Ω2 → S(Ω2) are arbitrary
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maps, where Ω1 = {1, · · ·N1},Ω2 = {1, · · · , N2}. Again, we assume, for

simplicity, that λ
(0)
1 = id. Define Ω = Ω1 × Ω2 and λ, ρ : Ω → S(Ω) by

λ(i1,i2)(j1, j2) = (λ
(1)
i1

(j1), j2)

ρ(j1,j2)(i1, i2) = (i1, ρ
(2)
j2

(i2))

so π((i1, i2), (j1, j2)) = ((i1, ρ
(2)
j2

(i2)), (λ
(1)
i1

(j1), j2), ); it is easy to verify
that π is a permutation of Ω1 × Ω2. The equations defining λ and ρ show
that λρ(i1,i2)(j1,j2)(k1, k2) = λ(j1,j2)(k1, k2) = λρ−1

(i1,i2)
(j1,j2)(k1, k2) and that

ρλ(i1,i2)(j1,j2)(k1, k2) = ρλ−1
(i1,i2)

(j1,j2)(k1, k2) = ρ(j1,j2)(k1, k2) for all (i1, i2), (j1, j2), (k1, k2).

It follows easily that φ = ρ, λ = ψ, and hence from Remark 7 that

L
(k)
(i1,i2) = λ−1

(i1,i2) × λ−1
(i1,i2) × · · ·λ−1

(i1,i2), for all i1, i2, k.

Similarly,

ρ
L

(k)

(i1,i2)
(α)

= ρα for all (i1, i2) ∈ Ω1 × Ω2, k ≥ 1 and α ∈ (Ω1 × Ω2)
k.

Hence, the ∼k- equivalence classes of (Ω1×Ω2)
k - as described in Proposition

10 - may be identified with the sets Eσ = Ωk
1 × {α ∈ Ωk

2 : ρ(2)
α = σ} for σ

in the subgroup G(2) of S(Ω1) generated by {ρ
(2)
j : j ∈ Ω2}. ( In the above,

we make the natural identification (Ω1 × Ω2)
k ≃ Ωk

1 × Ωk
2, and use the fact

that ρ(α1,α2) = ρ(2)
α2

.)

Similarly if we let G(1) be the subgroup of S(Ω1) generated by {λ
(1)
i :

i ∈ Ω1} and if we let π denote the natural representation of G(1) on CN1 ,
we see that the group Gk of Proposition 10 may be identified with ⊗k(π ⊗
id

C
N2 )(G

(1)).
From the preceding two paragraphs and the discussion in cases (1) and

(2), we see that in this case, the principal graph G has the following descrip-
tion : let G̃1 (resp G̃2) denote the bipartite graph with the sets of even and odd

vertices given by G̃
(ǫ)
1 = Ĝ(1) ×{ǫ} (resp. G̃

(ǫ)
2 = G(2) ×{ǫ}), for ǫ = 0, 1,

and with adjacency matrix given by Λ(1)((π0, 0), (π1, 1)) = < π0 ⊗ π, π1 >

(resp., Λ(2)((g0, 0), (g1, 1)) = #{j ∈ Ω2 : g0ρ
(2)
j = ωg1, ω ∈ C, |ω| = 1});

let G̃ be the bipartite graph with the sets of even and odd vertices given
by G̃(ǫ) = G̃

(ǫ)
1 × G̃

(ǫ)
2 , for ǫ = 0, 1, and with adjacency matrix given by

Λ = Λ(1) ⊗ Λ(2) : i.e.,
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Λ(((π0, 0), (g0, 0)), ((π1, 1), (g1, 1))) = Λ(1)((π0, 0), (π1, 1))Λ(2)((g0, 0), (g1, 1)).
Finally G is the connected component in G̃ containing ((11, 0), (12, 0)), where
11 denotes the trivial representation of G(1) and 12 denotes the identity ele-
ment of G(2). 2

6 The case N ≤ 3

Recall - cf. the last paragraph of §2 - that biunitary matrices u, ũ ∈MN(C)⊗
MN(C) are considered equivalent if there exist unitary matrices a, b, c, d ∈
U(N) such that ũ = (a ⊗ b)u(c ⊗ d). It makes sense, therefore, to call
biunitary permutation matrices u and ũ equivalent if there exist permutation
matrices a, b, c, d in MN(C) such that ũ = (a⊗ b)u(c⊗ d). In terms of the
corresponding elements π ↔ (ρ, λ), π̃ ↔ (ρ̃, λ̃) ∈ PN , it is not hard to see
that the above relation takes the following form.

Definition 11 If (ρ, λ), (ρ̃, λ̃) ∈ PN , say that (ρ, λ) ∼ (ρ̃, λ̃) if and only if
there exist permutations µ1, µ2, ν1, ν2 ∈ S(ΩN) such that λ̃i = µ1 ◦λν1(i) ◦ν2

and ρ̃j = µ2 ◦ ρν2(j) ◦ ν1 for all i, j in ΩN .

By the way in which this equivalence was arrived at, it is clear that
equivalent elements of PN yield conjugate subfactors . In order to understand
the partition of PN into the equivalence classes given by the above definition,
we proceed as follows :

Suppose (ρ, λ) ∈ PN . Suppose there are l (resp., r) distinct permutations
in the set {λ1, · · ·λN} (resp.,{ρ1, · · · ρN} ); call these permutations ξ1, · · · , ξl
(resp.,η1, · · · , ηr), say. Let Dj = {i ∈ ΩN : λi = ξj} for 1 ≤ j ≤ l, and

Ej = {i ∈ ΩN : ρi = ηj} for 1 ≤ j ≤ r. We shall write λ =
l∑

j = 1

1Dj
(·)ξj

and ρ =
r∑

j = 1

1Ej
(·)ηj and call (#D1, · · · ,#Dl) and (#E1, · · ·#Er) the

partitions of N induced by λ and ρ respectively.

Lemma 12 Let (ρ, λ) ∈ PN and let λ =
l∑

j = 1

1Dj
(·)ξj and

ρ =
r∑

j = 1

1Ej
(·)ηj as above . Then,
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(i) if (ρ̃, λ̃) ∈ PN and (ρ, λ)) ∼ (ρ̃, λ̃) and if λ̃ =
l̃∑

j = 1

1D̃j
(·)ξ̃j and

ρ̃ =
r̃∑

j = 1

1Ẽj
(·)η̃j are the corresponding decompositions of λ̃ and ρ̃ then

l̃ = l, r̃ = r and (#D̃1, · · ·#D̃l) (resp. (#Ẽ1, · · ·#Ẽr)) is a permutation
of (#D̃1, · · ·#D̃l) (resp. (#Ẽ1, · · ·#Ẽr)); and

(ii) if ΩN =
l∐

j = 1

D̃j =
r∐

j = 1

Ẽj are any two partitions of ΩN such

that #D̃j = #Dj and #Ẽj = #Ej , then there exists (ρ̃, λ̃) ∈ PN such

that (ρ, λ) ∼ (ρ̃, λ̃), λ̃ =
l∑

j = 1

1D̃j
(·)ξ̃j and ρ̃ =

r∑

j = 1

1Ẽj
(·)η̃j , where

{ξ̃1, · · · , ξ̃l} and {η̃1, · · · η̃r} are some two sets of distinct elements such that
ξ̃1 = η̃1 = idΩN

.

Proof: (i) If µ1, µ2, ν1, ν2 are as in Definition 11, then -after a possible
re-labelling- D̃j = ν−1

1 (Dj), ξ̃j = µ1 ◦ ξj ◦ ν2, Ẽj = ν−1
2 (Ej), and

η̃j = µ2 ◦ ηj ◦ ν1.
(ii) Pick permutations ν1, ν2 ∈ S(ΩN) such that ν1(D̃j) = Dj and

ν2(Ẽj) = Ej. Put µ1 = ν−1
2 ◦ ξ−1

1 and µ2 = ν−1
1 ◦ η−1

1 . Now define
λ̃i = µ1 ◦ λν1(i) ◦ ν2, ρ̃ = µ2 ◦ ρν2(j) ◦ ν1, and note that this (ρ̃, λ̃) does the
job. 2

Corollary 13 If P 0
N = {(ρ, λ) ∈ PN : λ1 = ρ1 = idΩN

}, then ,
(i) if (ρ, λ) ∈ PN , there exists (ρ̃, λ̃) ∈ P 0

N such that (ρ, λ) ∼ (ρ̃, λ̃); in fact,
we may choose (ρ̃, λ̃) so that #{i : λ̃i = idΩN

} ≥ #{i : λ̃i = σ} and
#{i : ρ̃i = idΩN

} ≥ #{i : ρ̃i = σ} for all σ ∈ S(ΩN);
(ii) if (ρ, λ), (ρ̃, λ̃) ∈ P 0

N , then (ρ, λ) ∼ (ρ̃, λ̃) if and only if there exist
permutations ν1, ν2 ∈ S(ΩN) such that λ̃i = ν−1

2 ◦ λ−1
ν1(1) ◦ λν1(i) ◦ ν2 and

ρ̃j = ν−1
1 ◦ ρ−1

ν2(1) ◦ ρν2(j) ◦ ν1 for all i, j in ΩN .

Proof: (i) is an immediate consequence of Lemma 12(ii)
As for (ii), if µ1, µ2, ν1, ν2 ∈ S(ΩN) are as in Definition 11, the assumptions

λ1 = λ̃1 = ρ1 = ρ̃1 = id imply that id = µ1◦λν1(1)◦ν2 = µ2◦ρν2(1)◦ν1

and hence µ1 = ν−1
2 ◦ λ−1

ν1(1) and µ2 = ν−1
1 ◦ ρ−1

ν2(1)
. 2
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In view of the corollary, we shall henceforth restrict ourselves to P 0
N rather

than PN and think of the equations in Corollary 13(ii) as the definition of
the equivalence.

In the sequel, if (ρ, λ) ∈ PN we shall use the notation λ = (λ1, λ2 · · · , λN),
ρ = (ρ1, ρ2, · · · , ρN). It is easy to see that P 0

2 consists of precisely three
elements, which, in the above notation, may be written as :
(a) λ = (id, id) = ρ;
(b) λ = (id, (12)), ρ = (id, id);
(c) λ = (id, id), ρ = (id, (12)).

All these three examples are covered by cases (1) and (2) of §5, and so,
we find that the only principal graphs arising from permutation biunitary
matrices in M2(C) ⊗M2(C) are given by Figure A.

u

u

u

u

u

u
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�
�
�
�
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@
@
@

(a) (b) and (c)

Figure (A)

In fact, Lemma 12 shows that the three elements of P 0
2 listed above are

pairwise inequivalent, although the subfactors for examples (b) and (c) yield
the same principal graph.

Remark 14 Suppose (ρ, λ) ∈ P 0
N , suppose ν ∈ S(ΩN) and λ̃i = ν−1◦λi◦ν

for all i in ΩN . Then, ∃ ρ̃j ∈ S(ΩN), j ∈ ΩN such that (ρ, λ) ∼ (ρ̃, λ̃) ∈ P 0
N .

( Reason: in the notation of Corollary 13(ii) , let ν2 = ν, ν1 = id, and
ρ̃j = ρ−1

ν(1) ◦ ρν(j).)

We assume, in the rest of this section, that N = 3.

Lemma 15 Let (ρ, λ) ∈ P3. Then ∃ (ρ̃, λ̃) ∈ P 0
3 such that (ρ, λ) ∼ (ρ̃, λ̃)

and λ̃ is one of the following:
(i) λ̃ = (id, id, id);
(ii) λ̃ = (id, id, (12));
(iii) λ̃ = (id, id, (123));
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(iv) λ̃ = (id, (12), (13));
(v) λ̃ = (id, (123), (132)).
Further the five possibilities above are mutually exclusive.

Proof: Let γ be the partition of 3 induced by λ ( in the sense described in
the lines preceding Lemma 12 ). We consider the three possibilities, γ = (3),
γ = (2, 1), γ = (1, 1, 1).

Case(i): γ = (3).
In this case, if λ̃ = (id, id, id), it follows from Corollary 13(i) that there

exists ρ̃ such that (ρ, λ) ∼ (ρ̃, λ̃) and (ρ̃, λ̃) ∈ P 0
3 .

Case(ii): γ = (2, 1).
Again, it follows from Corollary 13 (i) that there exists (ρ′, λ′) ∈ P 0

3

such that (ρ, λ) ∼ (ρ′, λ′) , where λ′ = (id, id, σ) for some σ ∈ S3/ {id} .
Appeal now to Remark 14 to deduce that there exists (ρ̃, λ̃) ∈ P 0

3 such that
(ρ̃, λ̃) ∼ (ρ′, λ′) and λ̃ = (id, id, (12)) or (id, id, (123)) according as σ is an
odd or even permutation in S3 \ {id}.

Case(iii): γ = (1, 1, 1).
As before, we may assume that λ = (id, λ1, λ2) with λ1 6= λ2 and

λi 6= id for i = 1, 2. Now consider three sub-cases depending upon the
number k = #{i ∈ {1, 2} : λi is an odd permutation }. If k = 0,
then {λ1, λ2} = {(123), (132)} and an application of Remark 14 shows
that possibility (v) of the lemma occurs. If k = 2, one application of
Remark 14 shows that there exists (ρ′, λ′) ∈ P 0

3 such that (ρ, λ) ∼ (ρ′, λ′)
and λ′ = (id, (12), τ) where τ = (13) or (23). Since (12)(23)(12) = (13),
we may ( by another application, if necessary, of Remark 14 ) assume without
loss of generality that τ = (13); i.e., the possibility (iv) of the lemma occurs.
If k = 1, a similar argument to the one used in the case k = 2 - but
now using the fact that (12)(123)(12) = (132) - shows that there exists
(ρ′, λ′) ∈ P 0

3 such that (ρ, λ) ∼ (ρ′, λ′) and λ′ = (id, (12), (123)). Now set
ν1 = ν2 = (12) and define λ̃i = ν−1

2 ◦ (λ′ν1(1))
−1 ◦ λ′ν1(i) ◦ ν2, ρ̃j = ν−1

1 ◦

(ρ′ν2(1))
−1 ◦ρ′ν2(j) ◦ν1. Then (ρ, λ) ∼ (ρ′, λ′) ∼ (ρ̃, λ̃), (ρ̃, λ̃) ∈ P 0

3 and it is seen

that λ̃ = (id, (12), (13)); thus the case k = 1 also leads to the possibility
(iv) of the lemma.

Thus we have shown that the five possibilities are exhaustive; to prove
that they are mutually exclusive, we need to show that if (ρ, λ), (ρ̃, λ̃) ∈ P 0

3 , if
λ 6= λ̃ and if λ, λ̃ ∈ {(id, id, id), (id, id, (12), (id, id, (123)), (id, (12), (13)), (id, (123), (132))},
then (ρ, λ) is not equivalent to (ρ̃, λ̃). In view of Lemma 12 (i), we only need
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to consider two possibilities :
(a)λ = (id, id, (12)), λ̃ = (id, id, (123));
(b)λ = (id, (12), (13)), λ̃ = (id, (123), (132)).

The desideratum is a consequence of the observation that, in general, if (ρ, λ),
(ρ̃, λ̃) ∈ P 0

3 , if (ρ, λ) ∼ (ρ̃, λ̃), and if all the λi’s are even permutations, the
same must be true of all the λ̃i’s. 2

We are finally ready to describe the equivalence classes in P 0
3 .

Proposition 16 Any element of P3 is equivalent to one and only one from
among the following list of 18 elements of P 0

3 :

(1) λ = (id, id, id), ρ ∈ {(id, id, id), (id, id, (12)), (id, id, (123)),
(id, (12), (13)), (id, (123), (132))};

(2) λ = (id, id, (12)), ρ ∈ {(id, id, id), (id, id, (12)), (id, id, (13)),
(id, id, (123)), (id, (12), id), (id, (12), (13))};

(3) λ = (id, id, (123)), ρ ∈ {(id, id, id), id, id, (12)};
(4) λ = (id, (12), (13)), ρ ∈ {(id, id, id), (id, id, (12)), (id, (13), (12))};
(5) λ = (id, (123), (132)), ρ ∈ {(id, id, id), (id, (132), (123))}.

Proof: In view of Lemma 15, it suffices to prove that if (ρ, λ) ∈ P 0
3 , and

if λ belongs to the set {(id, id, id), (id, id, (12)), (id, id, (123)), (id, (12), (13)),
(id, (123), (132))}, then there exists a unique ρ̃ such that:
(a) (ρ, λ) ∼ (ρ̃, λ) and (b) (ρ̃, λ) satisfies one of the conditions (1)−(5) above.

(1) If λ = (id, id, id), the proof of the assertion is exactly like the proof
of Lemma 15 - with ρ in place of λ of that proof. One only needs to observe,
further, that if (ρ, λ) ∼ (ρ̃, λ̃), (ρ, λ), (ρ̃, λ̃) ∈ P 0

3 and λ = (id, id, id), then
necessarily λ̃ = λ (because of Lemma 12).

(2) Suppose λ = (id, id, (12)). In this proof, and in the sequel, we shall
sometimes denote an element π ∈ P 0

N by an N×N matrix with (i, j)-th entry
π(i, j). (Note that in order for a permutation π ∈ S(Ω2

N to be biunitary,
it is necessary and sufficient that its matrix representation has the following
features: along the ith row (resp., jth column), the second (resp., first)
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coordinates yield a permutation of ΩN -namely λi) (resp., ρj).) Thus, if
π ↔ (ρ, λ) ∈ P 0

3 , with λ = (id, id, (12)) we see that π has the form

π =




11 ∗2 ∗3
21 ∗2 ∗3
32 ∗1 ∗3


 .

Since π ∈ S(Ω3 ×Ω3), we see that the (3, 2)- entry of the above matrix must
be 31; thus ρ2 ∈ {id, (12)} and ρ3 can be any element of S3.

Suppose now that (ρ, λ) ∼ (ρ̃, λ). Then there exist ν1, ν2 as in Corollary
13 (ii), with λ̃ = λ. Then, we find that λi = ν−1

2 ◦ λ−1
ν1(1) ◦ λν1(i) ◦ ν2

and ρ̃i = ν−1
1 ◦ ρ−1

ν2(1)
◦ ρν2(i) ◦ ν1, for i = 1, 2, 3. Since {1, 2} and {3}

are the ‘sets of constancy’of λ, we find from Lemma 12(i) that necessarily
ν1({1, 2}) = {1, 2} and ν1(3) = 3, whence ν1 = id or (12); in particular,
(12) = λ3 = ν−1

2 ◦ λ−1
ν1(1) ◦ λν1(3) ◦ ν2 = ν−1

2 (12)ν2, and so ν2 fixes 3,

i.e.,also ν2 ∈ {id, (12)}. Thus, (ρ̃, λ) ∼ (ρ, λ) and (ρ̃, λ) ∈ P 0
3 if and only if

ρ̃i = ν−1
1 ◦ ρ−1

ν2(1) ◦ ρν2(i) ◦ ν1 where ν1, ν2 ∈ {id, (12)}.

This says that for λ = (id, id, (12)), (ρ, λ) ∼ (ρ̃, λ) ∈ P 0
3 if and only if

ρ̃ ∈ {ρ = (id, ρ2, ρ3), (id, ρ
−1
2 , ρ−1

2 ρ3), (id, (12)ρ2(12), (12)ρ3(12)),
(id, (12)ρ−1

2 (12), (12)ρ−1
2 ρ3(12))}. Recall that (ρ, λ) ∈ P 0

3 if and only if
ρ2 ∈ {id, (12)} and ρ3 is arbitrary. Deduce finally that :

(a) ((id, id, ρ3), λ) ∼ (ρ̃, λ) ∈ P 0
3

⇔ ρ̃ = (id, id, π) where π ∈ {ρ3, (12)ρ3(12)}; and
(b) ((id, (12), ρ3), λ) ∼ (ρ̃, λ) ∈ P 0

3

⇔ ρ̃ = (id, (12), σ),whereσ ∈ {ρ3, (12)ρ3, ρ3(12), (12)ρ3(12)}

This finishes the proof of Case (2).
(3) Suppose λ = (id, id, (123)). If π ↔ (ρ, λ) ∈ P 0

3 , then the matrix
representation of π has the form

π =




11 ∗2 ∗3
21 ∗2 ∗3
32 ∗3 ∗1


 .

Since π ∈ S(Ω3 × Ω3), argue first that the (3, 3) - entry must be 31; since
ρ3 ∈ S(Ω3), this implies that ρ3 ∈ {id, (12)}; since π ∈ S(Ω3 × Ω3), this
implies that the (3, 2)-entry of π must be 33, whence also ρ2 ∈ {id, (12)}.

24



Next, (ρ, λ) ∼ (ρ̃, λ) ∈ P 0
3 if and only if there exist ν1, ν2 ∈ S(Ω3) as in

Lemma 13(ii), with λ̃ = λ. Argue as in Case (2) above, that this forces ν1 ∈
{id, (12)} and ν2 ∈ {id, (123), (132)} (since no odd permutation commutes
with (123)).Thus (ρ, λ) ∼ (ρ̃, λ) ∈ P 0

3 if and only if ρ̃i = ν−1
1 ◦ρ−1

ν2(1)◦ρν2(i)◦ν1,
where ν1 ∈ {id, (12)} and ν2 ∈ {id, (123), (132)}.

It is not hard to deduce from this that ((id, id, (12)), λ) ∼ ((id, (12), (id)), λ) ∼
((id, (12), (12)), λ). This finishes the proof of Case (3).

(4) Suppose λ = (id, (12), (13)). We then find, arguing as in Case
(3) above, that (ρ, λ) ∈ P 0

3 if and only if ρ1 = id, ρ2 ∈ {id, (13)} and ρ3 ∈
{id, (12)}; i.e., there are only four possibilities: ρ ∈ {(id, id, id), (id, (13), id), (id, id, (12)),
(id, (13), (12))}. Of these, we find, by Lemma 12, that the first, third
and fourth possibilities are mutually exclusive; on the other hand, the sec-
ond and third possibilities are equivalent, since if ρ = (id, (13), id) and
ρ̃ = (id, id, (12)), and if we put ν1 = ν2 = (23), we see that λi = ν−1

2 ◦
λ−1
ν1(1) ◦ λν1(i) ◦ ν2 and ρ̃i = ν−1

1 ◦ ρ−1
ν2(1)

◦ ρν2(i) ◦ ν1 for all i.
(5) λ = (id, (123), (132)).
In this case we find that (ρ, λ) ∈ P 0

3 ⇔ ρ ∈ {(id, id, id), (id, (132), (123))}
and the two possibilities are inequivalent by Lemma 12(i). 2

For the sake of convenience of reference, we list the 18 inequivalent cases
below; in each case, we write the matrix representations of π and π−1; the
description of the matrix for π−1 immediately yields the φ and ψ in each
case - and we observe the striking fact that in the first 17 of the 18 cases, we
have λ = ψ, φ = ρ ! Further, in those cases where λi = idΩ3 for all i or
ρj = idΩ3 for all j, we also display the principal graph ( as per the analysis
of §5).

(1)

π = π−1 =




11 12 13
21 22 23
31 32 33




λ = (id, id, id) = ψ, ρ = (id, id, id) = φ.
Principal graph:
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x

x

Figure 1

(2)

π =




11 12 23
21 22 13
31 32 33


 = π−1;

λ = (id, id, id), ρ = (id, id, (12));φ−1 = (id, id, (12)), ψ−1 = (id, id, id).
Principal graph:

u

u

u

u

�
�
�
�
�
�

@
@

@
@

@
@

Figure 2

(3)

π =




11 12 23
21 22 33
31 32 13


 ; π−1 =




11 12 33
21 22 13
31 32 23




λ = (id, id, id), ρ = (id, id, (123));φ−1 = (id, id, (132)), ψ−1 = (id, id, id).
Principal graph:

u

u

u

u

u

u
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@
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@
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@
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@
@
@

Figure 3
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(4)

π =




11 22 33
21 12 23
31 32 13


 = π−1;

λ = (id, id, id), ρ = (id, (12), (13));φ−1 = (id, (12), (13)), ψ−1 = (id, id, id).
Principal graph:

u

u

u

u

u

u

u

u

u

u

u
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Figure 4

(5)

π =




11 22 33
21 32 13
31 12 23


 ; π−1 =




11 32 23
21 12 33
31 22 13




λ = (id, id, id), ρ = (id, (123), (132));φ−1 = (id, (132), (123)), ψ−1 = (id, id, id).
Principal graph:

u

u
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Figure 5

(6)

π =




11 12 13
21 22 23
32 31 33


 = π−1;

λ = (id, id, (12)), ρ = (id, id, id);φ−1 = (id, id, id), ψ−1 = (id, id, (12)).
Principal graph: sama as Case (2)
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(7)

π = π−1 =




11 12 23
21 22 13
32 31 33




λ = ρ = φ−1 = ψ−1 = (id, id, (12)).

(8)

π =




11 12 33
21 22 23
32 31 13


 = π−1;

λ = (id, id, (12)), ρ = (id, id, (13));φ−1 = (id, id, (13)), ψ−1 = (id, id, (12)).

(9)

π =




11 12 23
21 22 33
32 31 13


 ; π−1 =




11 12 33
21 22 13
32 31 23




λ = (id, id, (12)), ρ = (id, id, (123));φ−1 = (id, id, (132)), ψ−1 = (id, id, (12)).

(10)

π =




11 22 13
21 12 23
32 31 33


 = π−1;

λ = (id, id, (12)), ρ = (id, (12), id);φ−1 = (id, (12), id), ψ−1 = (id, id, (12)).

(11)

π =




11 22 33
21 12 23
32 31 13


 = π−1;

λ = (id, id, (12)), ρ = (id, (12), (13));φ−1 = (id, (12), (13)), ψ−1 = (id, id, (12)).

(12)

π =




11 12 13
21 22 23
32 33 31


 ; π−1 =




11 12 13
21 22 23
33 31 32



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λ = (id, id, (123)), ρ = (id, id, id);φ−1 = (id, id, id), ψ−1 = (id, id, (132)).
Principal graph: same as Case (3)

(13)

π =




11 12 23
21 22 13
32 33 31


 ; π−1 =




11 12 23
21 22 13
33 31 32




λ = (id, id, (123)), ρ = (id, id, (12));φ−1 = (id, id, (12)), ψ−1 = (id, id, (132)).

(14)

π =




11 12 13
22 21 23
33 32 31


 = π−1;

λ = (id, (12), (13)), ρ = (id, id, id);φ−1 = (id, id, id), ψ−1 = (id, (12), (13)).
Principal graph:

u

u

u

u

u

u
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Figure 14

(15)

π =




11 12 23
22 21 13
33 32 31


 = π−1;

λ = (id, (12), (13)), ρ = (id, id, (12));φ−1 = (id, id, (12)), ψ−1 = (id, (12), (13)).

(16)

π =




11 32 23
22 21 13
33 12 31


 = π−1;

λ = (id, (12), (13)), ρ = (id, (13), (12));φ−1 = (id, (13), (12)), ψ−1 = (id, (12), (13)).
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(17)

π =




11 12 13
22 23 21
33 31 32


 ; π−1 =




11 12 13
23 21 22
32 33 31




λ = (id, (123), (132)), ρ = (id, id, id);φ−1 = (id, id, id), ψ−1 = (id, (132), (123)).
Principal graph: same as Case (5)

(18)

π =




11 32 23
22 13 31
33 21 12


 ; π−1 =




11 33 22
32 21 13
23 12 31




λ = (id, (123), (132)), ρ = (id, (132), (123));
φ−1 = ((23), (13), (12)), ψ−1 = ((23), (12), (13)).

We conclude this section with some useful facts about a special class
of biunitary permutation matrices. (Some of these facts are true for more
general permutation biunitary matrices, but we will not need that here.)

Proposition 17 Assume (ρ, λ) ∈ PN satisfies : λi = λ−1
i = ψi, ρi = ρ−1

i = φi
for all i ∈ ΩN . Then the following hold :

(a) L(k)
x (α) = (λx(α1), λρα1 (x)(α2), λρα2ρα1 (x)(α3), · · · , λραk−1

···ρα1 (x)(αk))

for all x ∈ ΩN , k ∈ IN and α ∈ Ωk
N ; in particular, if (α, γ) ∈ Ωk+l

N where
α ∈ Ωk

N and γ ∈ Ωl
N , then, for all x ∈ ΩN ,

L(k+l)
x (α, γ) = (L(k)

x (α), L
(l)

ρ−1
α (x)

(γ));

(b) L(k)
x

2
= idΩk

N
for all x ∈ Ωk

N ;

(c) If α, β ∈ Ωk
N and ∼k is the equivalence relation considered in Proposition

10 then

α ∼k β ⇔ ρ
L

(k)
x1
L

(k)
x2

···L
(k)
xn (α)

= ρ
L

(k)
x1
L

(k)
x2

···L
(k)
xn (β)

for all n ∈ IN, x1, x2, · · · , xn ∈ ΩN .

(d) If α ∈ Ωk
N , then (α, a, a) ∼k+2 (α, b, b) for all a, b ∈ ΩN .

(e) if α, β ∈ Ωk
N and γ ∈ Ωl

N , then

α ∼k β ⇔ (α, γ) ∼k+l (β, γ) ⇔ (γ, α) ∼l+k (γ, β).
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Proof: (a) Begin by recalling-cf. Remark 7- that the hypothesis implies
that, for k ∈ IN, α ∈ Ωk

N , a, x ∈ ΩN , we have

L(k+1)
x (α, a) = (L(k)

x (α), λρ−1
α (x)(a)); (9)

it follows easily by induction that

L(k)
x (α) = (λx(α1), λρα1 (x)(α2), · · · , λραk−1

ραk−2
···ρα1 (x)(αk));

this equation is easily seen to imply that if α ∈ Ωk
N , γ ∈ Ωl

N and x ∈ ΩN ,
then

L(k+l)
x (α, γ) = (L(k)

x (α), L
(l)

ρ−1
α (x)

(γ)).

(b) Since L(1)
x = λ−1

x = λx, it is clear that L(1)
x

2
= idΩN

∀x ∈ ΩN .

Suppose we have shown that L(k)
x

2
= idΩk

N
. Then, it follows from equation

9 that, for α ∈ Ωk
N and a, x ∈ ΩN , we have

L(k+1)
x

2
(α, a) = L(k+1)

x (L(k)
x (α), λρ−1

α (x)(a)) = (L(k)
x

2
(α), λρ−1

L
(k)
x (α)

(x)λρ−1
α (x)(a));

appeal now to Proposition 6(iii), - which says that ρ−1

L
(k)
x (α)

(x) = φ−1
α (x) = ρ−1

α (x)

- the induction hypothesis and the assumption that λi
2 = idΩN

for all i ∈ ΩN

to deduce that, indeed, L(k+1)
x

2
= idΩk+1

N
.

(c) By definition of the equivalence relation ∼k (and (b) above), we have,
for α, β ∈ Ωk

N ,

α ∼k β ⇔ ρ
L

(k)
x1
L

(k)
x2

···L
(k)
x2n+1

(α)
= ρ

L
(k)
x1
L

(k)
x2

···L
(k)
x2n+1

(β)
∀ n ∈ IN, x1, · · · , x2n+1 ∈ ΩN

On the other hand, we noticed earlier - in the proof of Lemma 8 - that
α ∼k β ⇒ φα = φβ. Also if x1, x2, · · · x2n ∈ ΩN , the definition of ∼k

and (b) above show that α ∼k β ⇒ L(k)
x1

· · ·L(k)
x2n

(α) ∼ L(k)
x1

· · ·L(k)
x2n

(β); hence
α ∼k β ⇒ φ

L
(k)
x1

···L
(k)
x2n

(α)
= φ

L
(k)
x1

···L
(k)
x2n

(β)
∀x1, x2 · · · , x2n ∈ ΩN . Since φ = ρ,

this finishes the proof of (c).
(d) Two applications of equation 9 show that, for all α ∈ Ωk

N , a, x ∈ ΩN ,

L(k+2)
x (α, a, a) = (L(k)

x (α), λρ−1
α (x)(a), λρaρ

−1
α (x)(a));

but since λ = ψ and ρ = φ, it follows from Proposition 3(iii) that

λρaρ
−1
α (x)(a) = λ−1

φ−1
a (ρ−1

α (x))
(a) = ψ−1

ρ−1
α (x)

(a) = λρ−1
α (x)(a);
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hence
L(k+2)
x (α, a, a) = (L(k)

x (α), λρ−1
α (x)(a), λρ−1

α (x)(a)).

Thus, if α ∈ Ωk
N and a ∈ ΩN , we find that, for all x ∈ ΩN , L

(k+2)
x (α, a, a)

has the form (L(k)
x (α), a′, a′) for some a′ in ΩN - which implies, in particular,

that ρ
L

(k+2)
x (α,a,a)

= ρ
L

(k)
x (α)

. Repeated application of the above fact shows

that ρ
L

(k+2)
x1

L
(k+2)
x2

···L
(k+2)
xn (α,a,a)

= ρ
L

(k)
x1
L

(k)
x2

···L
(k)
xn (α)

for arbitrary x1, · · · , xn ∈ ΩN

and n ∈ IN . This proves (d), since ρ
L

(k+2)
x1

···L
(k+2)
xn (α,a,a)

is independent of a.

(e) Suppose first that α ∼k β. Then, by (a),

we have L(k+l)
x (α, γ) = (L(k)

x (α), L
(l)

ρ−1
α (x)

(γ)) so that ρ
L

(k+l)
x (α,γ)

= ρ
L

(k)
x (α)

ρ
L

(l)

ρ
−1
α (x)

(γ)
;

but α ∼k β ⇒ ρα = φα = φβ = ρβ; thus, α ∼k β ⇒ L(k+1)
x (α, γ) = (L(k)

x (α), γ′)
and L(k+l)

x (β, γ) = (L(k)
x (β), γ′) for some γ′, and ρ

L
(k+l)
x (α,γ)

= ρ
L

(k+l)
x (β,γ)

. It

follows that if n ∈ IN and x1, · · · xn ∈ ΩN , then L(k+l)
x1

· · ·L(k+l)
xn

(α, γ) = (L(k)
x1

· · ·L(k)
xn

(α), γ̃),
and L(k+l)

x1
· · ·L(k+l)

xn
(β, γ) = (L(k)

x1
· · ·L(k)

xn
(β), γ̃), for some γ̃, and hence that

(α, γ) ∼k+l (β, γ). In a similar manner, we have, for any x ∈ ΩN ,

L(k+l)
x (γ, α) = (L(l)

x (γ), L
(k)

ρ−1
γ (x)

(α)), and we may deduce that (γ, α) ∼l+k

(γ, β).
Now for the more important cancellation assertion of the reverse implica-

tion. To start with, if (α, γ) ∼k+l (β, γ), then ραργ = ρ(α,γ) = ρ(β,γ) = ρβργ ,
whence ρα = ρβ; hence, for x in ΩN , we see that if γ′ = Lρ−1

α (x)(γ) = Lρ−1
β

(x)(γ),

then L(k+l)
x (α, γ) = (L(k)

x (α), γ′) and L(k+l)
x (β, γ) = (L(k)

x (β), γ′); the assum-
pion (α, γ) ∼k+l (β, γ) implies that ρ

L
(k+l)
x (α,γ)

= ρ
L

(k+l)
x (β,γ)

and hence, as be-

fore, that ρ
L

(k)
x (α)

= ρ
L

(k)
x (β)

. It follows easily that ρ
L

(k)
x1

···L
(k)
xn (α)

= ρ
L

(k)
x1

···L
(k)
xn (β)

for all x1, · · · xn ∈ ΩN , i.e., that α ∼k β. The proof of left-cancellation -
i.e.,(γ, α) ∼l+k (γ, β) ⇒ α ∼k β - is similar. 2

Corollary 18 Suppose (ρ, λ) ∈ PN satisfies the conditions of Proposition
17. Then,
(i) if ∆ = {(a, a) : a ∈ ΩN}, then, L(2)

x (∆) ⊆ ∆ for all x in ΩN ;
(ii) if Xk = {α ∈ Ωk

N : αi 6= αi+1 for 1 ≤ i < k}, k ≥ 2, then L(k)
x (Xk) ⊆ Xk

for all x in ΩN .

Proof: (i)

L(2)
x (a, a) = (λx(a), λρa(x)(a))
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= (λx(a), ψx(a))

= (λx(a), λx(a))

(ii) Write α = (β, γ, δ) where β = (α1, · · · , αi−1), γ = (αi, αi+1) and
δ = (αi+2, · · ·αk). Then α ∈ Xk ⇒ γ 6∈ ∆ ⇒ L(2)

y (γ) 6∈ ∆ for all y ∈ ΩN

(by (i) above); but L(k)
x (α) = (L(i−1)

x (β), L
(2)

ρ−1
β

(x)
(γ), L

(k−i−1)

ρ−1
γ ρ−1

β
(x)

(δ)); hence

L(k)
x (α) has distinct coordinates at places i and i + 1. Since i was arbitrary,

this shows that L(k)
x (Xk) ⊆ Xk. 2

7 The finite principal graphs, when N = 3

In the last section, we had obtained 18 special permutation biunitary ma-
trices, when N = 3, such that every permutation biunitary matrix, when
N = 3, is equivalent to one from among these 18. Also, the principal graphs
of the cases numbered 1 − 6, 12, 14 and 17 have already been described. In
this section, we compute the principal graphs of the cases numbered 7−10, 13
and 18 and show that the graphs are finite. ( We also observe, at the end of
this section,a sufficient condition - for general N - for the principal graph to
be finite.) In the next and final section, we show that two of the remaining
cases-namely, cases 11 and 15 - correspond to infinite depth subfactors, and
give some idea of what the principal graphs look like. About the last re-
maining case - numbered 16 in our list - we say nothing as we know nothing
beyond the first two relative commutants in that case.

As is to be expected, all the computations are based on Proposition
10, and we shall use the following notation in the rest of the paper: for
k = 1, 2, · · · , we write G̃k (resp. Gk) for the subgroup of S(Ωk

N) generated

by {L(k)
x : x ∈ ΩN} (resp. {L(k)

x

−1
L(k)
y : x, y ∈ ΩN}); for α, β in Ωk

N , we
write α ∼k β if and only if ρ

L
(k)
x (σ(α))

= ρ
L

(k)
x (σ(β))

for all x in ΩN and σ in

Gk; finally, for α in Ωk
N , we write H[α] = {σ ∈ Gk : σ([α]) = [α]} where

[α] = {β ∈ Ωk
N : β ∼k α}.

Case 8 : λ = (id, id, (12)) = ψ, ρ = (id, id, (13)) = φ.
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This case is covered by Proposition 17. Note first that ρx(2) = 2 for all x ∈
Ω3, hence also ρα(2) = 2 for all α ∈ Ωk

3, k ≥ 1; since λ2 = id, this implies

- cf. Proposition 17(a)- that L
(k)
2 = idΩk

3
, and hence G̃k = Gk.

Note next that λx(3) = 3 for all x; it follows that if α ∈ Ωk
3 and

α = (w1, 3, w2, 3, · · ·) where w1, w2, · · · are (possibly empty) words in 1 and
2, then - since clearly ργ = (13)l3(γ) for all γ ∈ Ωm

N , where l3(γ) = #{i : 1 ≤

i ≤ m, γi = 3}− it follows that L
(k)
1 (α) = (w1, 3, w̃2, 3, w3, 3, w̃4, 3, · · ·) and

L
(k)
3 (α) = (w̃1, 3, w2, 3, w̃3, 3, w4, 3, · · ·), where w̃i is obtained by changing

each 1 (resp. 2) in wi to 2 (resp. 1). It follows that L
(k)
1 , L

(k)
3 and L

(k)
1 L

(k)
3 are

all elements of order 2, and hence that Gk = {idΩk
3
, L

(k)
1 , L

(k)
3 , L

(k)
1 L

(k)
3 } ∼=

Z2 × Z2 for all k ≥ 2 (and G1
∼= Z2).

The above description of the L(k)
x ’s shows that l3(L

(k)
x (α)) = l3(α) for all x,

whence ρα = ρ
L

(k)
x (α)

= ρσ(α)∀σ ∈ Gk; it follows that α ∼k β ⇔

l3(α) ≡ l3(β) (mod 2), and hence Ωk
3 splits into two equivalence classes

Ek and Ok, where Ek(resp. Ok) is the set of those α’s in Ωk
3 with an

even (resp. odd) number of 3’s appearing in it. It should be clear that
Ek+1 = (Ek×{1, 2})∐ (Ok×{3}) and Ok+1 = (Ok×{1, 2})∐ (Ek×{3}).

Further, the above description of L(k)
x , x = 1, 3, shows that

L
(k+1)
1 |Ek+1

= L
(k)
1 × id, L

(k+1)
3 |Ek×{1,2}

= L
(k)
3 ×(12), L

(k+1)
3 |Ok×{3}

= L
(k)
3 ×

id, L
(k+1)
1 |Ok×{1,2}

= L
(k)
1 ×(12), L

(k+1)
1 |Ek×{3}

= L
(k)
1 ×id and L

(k+1)
3 |Ok+1

= L
(k)
3 ×

id. (In particular, each of the equivalence classes Ek and Ok is invariant under
Gk and so H[α] = Gk for all α ∈ Ωk

3.)
Note now that if π is a representation of Gk on an inner product space

V , if we write Vǫ1,ǫ3 = {v ∈ V : π(L
(k)
1 )v = ǫ1v, π(L

(k)
3 )v = ǫ3v} for

ǫ1, ǫ3 ∈ {1,−1} and if we let pǫ1,ǫ3 denote the orthogonal projection onto
Vǫ1,ǫ3 , then
{pǫ1,ǫ3 : ǫ1, ǫ3 ∈ {1,−1}} is a set of minimal central projections in π(Gk)

′.
The foregoing remarks, together with Proposition 10, are seen fairly easily

to imply that the Bratteli diagram for the inclusion of Ck in Ck+1 (where Ck
embeds in Ck+1 via x 7→ x⊗ 1) is given, when k ≥ 2, by the following:
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Figure 8

We may now conclude that the above graph is the principal graph for the
subfactor, since: (a) it has norm 3, and (b) it should be a subgraph of the
principal graph.

Case 7: λ = ρ = ψ = φ = (id, id, (12))
This case is also covered by Proposition 17. Note first that ρx(3) = 3 for all x

in Ω3; hence also ρα(3) = 3 and ρα{1, 2} = {1, 2} for all α ∈ Ωk
3 k ≥ 1 ;

since λ1 = λ2 = id and λ3 = (12), it follows that L
(k)
1 = L

(k)
2 = id and

L
(k)
3 = (12)× (12)×· · ·× (12)(k terms). Hence Gk = G̃k = {1, L

(k)
3 } ∼= Z2

for all k.
Also, ρα = (12)l3(α) for α ∈ Ωk

3 , where l3(α) is as before; it follows from
the above description of Gk that also ρα = ρσ(α) for all σ in Gk. Hence
α ∼k β ⇔ l3(α) ≡ l3(β) (mod 2).

As in Case 8, we see that there are precisely two equivalence classes Ek
and Ok in Ωk

3- these sets having the same description as before. Further, each
of Ek and Ok is stable under Gk; Ek+1 = (Ek × {1, 2}) ∐ (Ok × {3}) and

Ok+1 = (Ek × {3}) ∐ (Ok × {1, 2}); and L
(k+1)
3 = L

(k)
3 × (12).

Since any unitary representation π of Gk on V has two isotypical sub-
representations corresponding to the subspaces given by V± = {v ∈ V :

π(L
(k)
3 )v = ± v}, we may deduce, as in case 7, that the principal graph is

given, in this case, by Figure 7.
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Figure 7

Case 10: λ = (id, id, (12)) = ψ, ρ = (id, (12), id) = φ
This case is also covered by Proposition 17. Begin by noting that ρx(3) = 3

for all x , hence ρα(3) = 3 for all α, and so L
(k)
3 = (12) × (12) × · · · (12)

(k terms ). Also ρα{1, 2} = {1, 2} for all α and λ1 = λ2 = id, which

implies that L
(k)
1 = L

(k)
2 = id. Hence, again, Gk = G̃k = {id, L

(k)
3 }. Also

ρα = (12)l2(α), where, as before, we set lx(α) = #{i : αi = x}; on the other
hand, ρ

L
(k)
3 (α)

= (12)l1(α); we conclude that α ∼k β ⇔ l1(α) ≡ l1(β) (mod

2) and l2(α) ≡ l2(β) ( mod 2). Hence, Ωk
3 splits into four equivalence classes

E
(k)
ij , i, j ∈ {0, 1} where E

(k)
ij = {α ∈ Ωk

3 : l1(α) ≡ i (mod 2), l2(α) ≡ j (mod

2)}. Notice that E
(k)
00 and E

(k)
11 are stable under Gk whereas Gk maps E

(k)
01 to

E
(k)
10 and vice versa. It follows that

H[α] =

{
Gk, if α ∈ E

(k)
00 ∪ E

(k)
11

(1), if α ∈ E
(k)
10 ∪ E

(k)
01

Notice next that E
(k+1)
ij = (E

(k)

i+̇1,j
×{1})∐ (E

(k)

i,j+̇1
×{2})∐ (E

(k)
ij ×{3}),

where +̇ denotes addition modulo 2. Since L
(k+1)
3 = L

(k)
3 × (12), and since

the groups in question are Z2 and (1), we may deduce, as in the earlier cases,
that the principal graph is given thus:
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11

Figure 1336



Case 18: λ = ρ−1 = (id, (123), (132)), φ = ((23), (13), (12)),
ψ = ((23), (12), (13)).

First consider the case k = 1. Since ρx 6= ρy for x 6= y, we see that
x ∼1 y ⇔ x = y for x, y ∈ Ω3. Further, since L(1)

x = ψ−1
x , we find -from the

above description of ψ - that G1 = A3, G̃1 = S3. Since G1 acts transitively
on Ω1, it follows that in this case, C1 = C.

Next, letting k = 2, use the definitions and find, after a small computa-
tion, that, in terms of their decompositions into disjoint cycles, the permu-
tations L(2)

x of Ω2
3 are given by

L
(2)
1 = ((2, 1)(3, 2)) ((2, 2)(3, 3)) ((2, 3)(3, 1)),

L
(2)
2 = ((1, 1)(2, 2)) ((1, 2)(2, 3)) ((1, 3)(2, 1)) and

L
(2)
3 = ((1, 1)(3, 3)) ((1, 2)(3, 1)) ((1, 3)(3, 2)).

If we set ∆0 = {(1, 1), (2, 2), (3, 3)},∆1 = {(1, 2), (2, 3), (3, 1)} and
∆2 = {(1, 3), (2, 1), (3, 2)}, we find that :
(a) ρα = (123)j if α ∈ ∆j for j = 0, 1, 2; and
(b) L(2)

x (∆j) = ∆j for all x ∈ Ω3 and j = 0, 1, 2.
It follows easily that ∆0,∆1,∆2 are the distinct equivalence classes in Ω2

3.

Note that G2 is the subgroup generated by {L
(2)
1 L

(2)
2 , L

(2)
2 L

(2)
3 }. From the

above formulae for the L(2)
x ’s, we find that L

(2)
1 L

(2)
2 and L

(2)
2 L

(2)
3 have cycle

decompositions given by

L
(2)
1 L

(2)
2 = L

(2)
2 L

(2)
3 = ((1, 1)(3, 3)(2, 2)) ((1, 2)(3, 1)(2, 3)) ((1, 3)(3, 2)(2, 1)).

It follows now from Proposition 10 that C2 ≃ (C ⊕ C ⊕ C) ⊕ (C ⊕ C ⊕ C) ⊕
(C ⊕ C ⊕ C). Hence the Bratteli diagram for C1 ⊆ C2 is given by :
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Figure 18

Since this graph has norm 3, we see as before that this agrees with the
principal graph ( except that the vertices at the lower level are now the even
vertices).
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Case 9 : λ = ψ = (id, id, (12)), ρ = φ = (id, id, (123))
Since λ = ψ and ρ = φ, it follows from Remark 7 that L(k+1)

x (α, a) =
(L(k)

x (α), λ−1
ρ−1

α (x)
(a)) for all k ≥ 1, α ∈ Ωk

3 and a, x ∈ Ω3. Since λy(3) = 3 for

all y, it follows from the previous equation that if α ∈ Ωk
3, l ≤ k and αl = 3,

then (L(k)
x (α))l = 3. Since ρα = (123)l3(α) with lx(α) = #{i : αi = x}

as before, it follows that ρ
L

(k)
x (α)

= ρα for all α in Ωk
3 and x ∈ Ω3; hence

ρα = ρσ(α) for all σ ∈ Gk. It follows that α ∼k β if and only if l3(α) ≡ l3(β)

(mod 3). Hence, Ωk
3 splits into three equivalence classes {E

(k)
j : j = 0, 1, 2},

where E
(k)
j = {α ∈ Ωk

3 : l3(α) ≡ j (mod 3) }; then, if α ∈ E
(k)
j , it follows that

ρα = (123)j; in particular, we also see that E
(k)
j = {α ∈ Ωk

3 : ρα = (123)j}.
Notice next that if x, y ∈ Ω3, than, since ρσ(α) = ρα for all σ in Gk, we

have, for k ≥ 1, α ∈ Ωk
3 and a ∈ Ω3,

L(k+1)
y L(k+1)

x (α, a) = L(k+1)
y (L(k)

x (α), λ−1
ρ−1

α (x)
(a))

= (L(k)
y L(k)

x (α), λ−1
ρ−1

L
(k)
x (α)

(y)
λ−1
ρ−1

α (x)
(a))

= (L(k)
y L(k)

x (α), λ−1
ρ−1

α (y)
λ−1
ρ−1

α (x)
(a));

since λiλj = λjλi for all i, j , it follows - by induction on k - that L(k)
x

and L(k)
y commute. Also, since λ2

i = idΩ3 for all i, the above equations

show , in addition, that L(k)
x

2
= idΩk

3
for all k, and for all x. It follows, in

particular, that, for all k, Gk = {idΩk
3
, L

(k)
1 L

(k)
2 , L

(k)
2 L

(k)
3 , L

(k)
3 L

(k)
1 } is a group

of involutions; it can be seen that when k = 2, the four elements above are
distinct, and hence we see that Gk ≃ Z2 × Z2 for k ≥ 2.

Notice next that for any k ≥ 1 and j = 0, 1, 2, we have :

E
(2k+1)
j = (E

(2k)
j × {1, 2}) ∐ (E

(2k)

j+̇2
× {3})

where +̇ denotes addition modulo three. Notice too that
L(2k+1)
x |

E
(2k)
j

×{1,2}

= L(2k)
x × λ(123)−j(x) and that L(2k+1)

x |
E

(2k)
j

×{3}

= L(2k)
x × id.

If we now use the fact that any representation of Z2 × Z2 breaks up
naturally into four isotypical subrepresentations we may deduce that the
Bratteli diagram for the inclusion of C2k into C2k+1 ( via x 7→ x⊗ 1) is given
thus:
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E

(0)
++

˜
E

(0)
+−
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˜
E

(1)
++

˜
E

(1)
+−
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Figure 9

(We use the convention here that if V is a representation space for Gk,

then Vǫ1,ǫ2 = {v ∈ V : π(L
(k)
1 L

(k)
2 )v = ǫ1v and π(L

(k)
2 L

(k)
3 )v = ǫ2v} for

ǫ1, ǫ2 ∈ {±1}.)

Case 13: λ = (id, id, (123)) = ψ, ρ = (id, id, (12)) = φ.
As before, since λ = ψ and ρ = φ, we have the inductive formula

L(k+1)
x (α, a) = (L(k)

x (α), λ−1
ρ−1

α (x)
(a)).

Notice now that ρα(3) = 3 and ρα{1, 2} = {1, 2}, whence λ−1
ρ−1

α (3)
= (132)

and λ−1
ρ−1

α (x)
= id for x ∈ {1, 2} and for all α; it follows that, for all k,

L
(k)
1 = L

(k)
2 = idΩk

3
and L

(k)
3 = (132) × (132) × · · · × (132)(k terms),

and so G̃k = Gk = {idΩk
3
, L

(k)
3 , L

(k)
3

2
}. + Note next that ρα = (12)l3(α)

for α in Ωk
3, k ≥ 1, where, as before, lx(α) = #{i : αi = x}. Clearly

l3(L
(k)
3 (α)) = l1(α) and l3(L

(k)
3

2
(α)) = l2(α), and so we find that α ∼k β if

and only if lx(α) ≡ lx(β) (mod 2) for x = 1, 2, 3. Since l1(α)+l2(α)+l3(α) ≡
k, we see that α ∼k β ⇔ l1(α) ≡ l1(β) (mod 2) and l2(α) ≡ l2(β) (mod 2).

Thus, we see that Ωk
3 splits into four equivalence classes E

(k)
ij , 0 ≤ i, j ≤ 1,

where E
(k)
ij = {α ∈ Ωk

3 : l1(α) ≡ i (mod 2), l2(α) ≡ j (mod 2)}.
Since for α ∈ Ωk

3, l3(α) ≡ l1(α) + l2(α) + k (mod 2) it follows that

L
(k)
3 (E

(k)
i,j ) = E

(k)

j,i+̇j+̇k
( where +̇ denotes addition modulo 2). It follows

that if k is even, then E
(k)
00 is stable under Gk while L

(k)
3 (E

(k)
01 ) = E

(k)
11 and

L
(k)
3 (E

(k)
11 ) = E

(k)
10 ; thus, when k is even, we find that H[α] is Gk or {1}
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according as to whether α ∈ E
(k)
00 or α ∈ E

(k)
01 ∪ E

(k)
11 ∪E

(k)
10 . Similarly, if k is

odd then E
(k)
11 is stable under Gk, L

(k)
3 (E

(k)
01 ) = E

(k)
10 and L

(k)
3 (E

(k)
10 ) = E

(k)
00 ,

whence H[α] is Gk or {1} according as to whether α ∈ E
(k)
11 or α ∈ E

(k)
01 ∪

E
(k)
10 ∪ E(k)

00 .
Notice the obvious identity

E
(2k+1)
ij = (E

(2k)
ij × {3}) ∐ (E

(2k)

i+̇1,j
× {1}) ∐ (E

(2k)

i,j+̇1
× {2})

where +̇ denotes addition modulo 2.
Since a typical representation of Z3 splits into three isotypical summands,

it is not too hard to see now - in view of the foregoing analysis and Proposition
10 - that the Bratteli diagram for the inclusion of C2k in C2k+1 (via x 7→ x⊗1)
is given, for k ≥ 1, by:
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˜E01,10,00

Figure 13

Remark 19 Suppose (λ, ρ) ∈ P 0
N , and Gk, G̃k are the subgroups of S(Ωk

N)
discussed earlier. By definition of the L(k)

x ’s we know that there is a unique
epimorphism of G̃k+1 into G̃k which maps L(k+1)

x to L(k)
x for all x in ΩN . Let

G̃ denote the inverse limit of the sequence {G̃k : k ≥ 1}. If it turns out that
G̃ is finite, it is not hard to deduce (from the definition of ∼k and Proposition
10) that the principal graph must be finite. (In fact, we suspect that the above
condition is also a necessary condition for the principal graph to be finite.)

8 Two infinite-depth subfactors

In this section, we discuss the cases numbered 11 and 15 in the list occurring
in §6. We show that in both cases, the principal graph is infinite, and give
a partial description of the graph in Case 11 and a complete description of
the graph in Case 15.
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Both these cases are covered by Proposition 17, and hence the conclusions
of that Proposition are valid in these cases.

We shall find it convenient to work with the limiting case k = ∞ in
the following sense : for x in Ω3, we consider the transformation Lx of the

sequence space ΩIN3 defined by the requirement that (Lxα)k] = L(k)
x αk],

where we use the symbol βk] to denote the truncation, to the first k co-
ordinates, of the infinite sequence β. Thus, by Proposition 17 (a), we have

Lxα = (λx(α1), λρα1 (x)(α2), · · · , λραk−1
···ρα1 (x)(αk), · · ·). (10)

It follows easily from the fact that each L(k)
x is an involution -see Propo-

sition 17 (b) - that L2
x = id

ΩIN3
for all x ∈ Ω3; in particular, Lx ∈

S(ΩIN3 ) for all x ∈ Ω3. As in the case of finite k, we define G̃ (resp.,G)

to be the subgroup of S(ΩIN3 ) generated by {Lx : x ∈ Ω3} (resp., {LxLy :
x, y ∈ Ω3} ).

Before proceeding to a discussion of the cases 11 and 15, we pause to
record a simple fact that will be of use in both cases.

Lemma 20 Let (λ, ρ) ∈ P 0
N satisfy the hypothesis of Proposition 17; then

for any k ≥ 1, α ∈ Ωk
N , a ∈ ΩN , it is the case that (α, a, a) ∼k+2 (a, a, α).

Proof : By induction ( and the easy half of the cancellation rule - see
Proposition 17 (e) ), it suffices to consider the case k = 1; but if b ∈ ΩN ,
then by Proposition 17 (d), we have (b, a, a) ∼3 (b, b, b) ∼3 (a, a, b). 2

Case 11 : λ = (id, id, (12)), ρ = (id, (12), (13)
We break the argument into a sequence of lemmas.

Lemma 21 If α ∈ ΩIN3 and l ∈ IN , then

αl = 3 ⇔ (Lxα)l = 3 for all x ∈ Ω3.

Proof: Since λx(3) = 3 for all x ∈ Ω3, this follows from equation 10. 2

Lemma 22 α ∈ Ωk
3, k ≥ 1 ⇒ (α, 1, 2) ∼k+2 (α, 2, 1).
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Proof: Let {a, b} = {1, 2}. Then, since λρa(y) = λy for all y ∈ Ω3, we
have, for any x ∈ Ω3,

Lk+2
x (α, a, b) = (L(k)

x α, λρ−1
α (x)(a), λρaρ

−1
α (x)(b))

= (L(k)
x α, λρ−1

α (x)(a), λρ−1
α (x)(b));

since λy{1, 2} = {1, 2} for all y ∈ Ω3, we see that L(k+2)
x (α, a, b) = (L(k)

x α, a′, b′)
for some a′, b′ such that {a′, b′} = {1, 2}. It follows that for any n ≥ 1 and
x1, · · · , xn ∈ Ω3, L

(k+2)
x1

L(k+2)
x2

· · ·L(k+2)
xn

(α, a, b) = (Lkx1
Lkx2

· · ·Lkxn
α, a′, b′),

where {a′, b′} = {a, b} = {1, 2}. Hence - as ρ1ρ2 = ρ2ρ1 = (12) - we see
that ρ

L
(k+2)
x1

L
(k+2)
x2

···L
(k+2)
xn (α,a,b)

= ρLk
x1
Lk

x2
···Lk

xn
(α) ·(12) and the lemma is proved.

2

Lemma 23 If α ∈ Ωk
3, k ≥ 1, there exists α′ ∈ Ωk

3 such that α ∼k α
′, and α′

has the form

α′ = (w1, 3, w2, 3, w3, 3, · · ·) (11)

where each wi is either non-existent or is one of the following ‘words’ involv-
ing only 1 and 2 : wi = (1) or wi = (2) or wi = (1, 2) or wi = (2, 1);
further, if some wi is the ‘empty word’, then so also is wj for 1 ≤ j ≤ i.

Proof: Begin by locating all the 3’s in α and writing α in the form given for
α′ in equation 11, with each wi being a word involving only 1 and 2. Then,
by Lemma 22, we may assume that if some wi is non-empty, then we may -
without going out of the ∼k-equivalence class of α - assume without loss of
generality that wi is a string of p ( say ) 1’s followed by a string of q (say) 2’s,
where p, q ≥ 0. Then, using Lemma 20, we may even assume that p, q ≤ 1. (
Reason : if p = 3 for instance, then we may move two 1’s all the way to the
front, and then those two 1’s may be replaced by 3’s in view of Proposition
17 (d).)

This shows that α ∼k α
′ where α′ is as in equation 11, where each wi

is either empty or (1), (2) or (1, 2). The final assertion- about being able to
move all the empty words all the way to the front - is an easy consequence
of Lemma 20. 2
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Definition 24 An element α̃ ∈ Ωk
3 will be said to be reduced if α̃ is as in

equation 11 where the ‘words’ wi satisfy the conditions described in Lemma
23.

Two reduced elements will be said to have the same configuration if
either of them can be obtained from the other by ‘flipping’ some of the words
to their ‘opposites’, where the words (1) and (2) are considered to be opposites
of one another, as also are the words (1, 2) and (2, 1).

For example, with k = 6, the element α = (1, 2, 1, 3, 2, 1) is not
reduced, but it is equivalent to the reduced word α̃ = (3, 3, 2, 3, 1, 2); the
set of reduced words with the same configuration as α̃ is {(3, 3)} × {1, 2} ×
{3} × {(1, 2), (2, 1)}.

Lemma 25 Let α ∈ Ωk
3 be reduced; suppose there are precisely l non-empty

‘words’ in α; then the set {{α}} of reduced words with the same configuration
as α, is a set with precisely 2l elements which is invariant under the action
of the group Gk.

Proof: Clearly the set {{α}} has cardinality 2l, and it is invariant under the
action of Gk in view of Lemma 21. 2

Lemma 26 . Let k = 2n + 1, and let α0 = (1, 3, 1, 3, · · · , 1, 3, 1) be the
unique reduced element of Ω2n+1

3 with (n + 1) co-ordinates equal to 1. Let
X2n+1 = {{α0}} be the set of reduced elements of Ω2n+1

3 with the same
configuration as α0. (Thus X2n+1 = {β ∈ Ω2n+1

3 : βl = 3 ⇔ l is even}.)
Then,
(a) the cyclic group generated by L

(k)
2 L

(k)
3 acts transitively on X2n+1;

(b) no two distinct elements of X2n+1 are equivalent ( with respect to ∼2n+1);
(c) α ∈ Ω2n+1

3 and α ∼2n+1 β ∈ X2n+1 ⇒ α = β.

Proof: (a) It follows from the definitions and equation 10 that if γ ∈ ΩIN3
and x ∈ Ω3, then

Lx(1, 3, γ) = (λx(1), 3, L(13)(x)(γ))

and

Lx(2, 3, γ) = (λx(2), 3, L(123)(x)(γ));
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we write out these equations explicitly in the following table, where the entry
in the i-th row and j-th column is Lj(i, 3, γ), for i = 1, 2, j = 1, 2, 3 :

L1 L2 L3

(1, 3, γ) (1, 3, L3γ) (1, 3, L2γ) (2, 3, L1γ)
(2, 3, γ) (2, 3, L2γ) (2, 3, L3γ) (1, 3, L1γ)

From this table, we deduce the following table which has a similar inter-
pretation:

L1L2 L2L1 L1L3 L3L1 L2L3 L3L2

(1, 3, γ) (1, 3, L3L2γ) (1, 3, L2L3γ) (2, 3, L2L1γ) (2, 3, L1L3γ) (2, 3, L3L1γ) (2, 3, L1L2γ)
(2, 3, γ) (2, 3, L2L3γ) (2, 3, L3L2γ) (1, 3, L3L1γ) (1, 3, L1L2γ) (1, 3, L2L1γ) (1, 3, L1L3γ)

In particular, it follows that if we write S = {LxLy : x, y ∈ Ω3, x 6= y}
and X2n = {α ∈ Ω2n

3 : αl = 3 ⇔ l is even}, then for any x, y ∈ Ω3 with x 6=
y, and for any α ∈ X2n, there exists σ in S such that LxLy(α, γ) = (L(2n)

x L(2n)
y (α), σ(γ))

for all γ in ΩIN3 . For σ in S, say σ = LpLq with p 6= q, we define
w(σ) = 1{p,q}(3)-i.e., w(σ) is 1 if 3 ∈ {p, q} and 0 if 3 6∈ {p, q}.

We shall prove (a) by establishing, by induction, the more complicated
statement below:

(a)′: Let α
(2n+1)
0 = (1, 3, 1, 3, · · · , 1, 3, 1) ∈ Ω2n+1

3 ; define

α
(2n+1)
j = (L

(2n+1)
2 L

(2n+1)
3 )jα

(2n+1)
0 , for 0 ≤ j ≤ 2n+1,and write α

(2n+2)
j = (α

(2n+1)
j , 3)

for 0 ≤ j ≤ 2n+1. For 0 ≤ j < 2n+1, define σ
(n)
j ∈ S by the requirement that

(L2L3)(α
(2n+2)
j , γ) = (α

(2n+2)
j+1 , σ

(n)
j (γ)) for all γ ∈ ΩIN3 . Then,

(i) α
(2n+1)
j 6= α

(2n+1)
l for 0 ≤ j < l < 2(n+1);

(ii) α
(2n+2)
2n+1 = α

(2n+2)
0 ; and

(iii)
∑

0≤j<2n+1

w(σ
(n)
j ) is an odd integer.

The proof of (a)′ is by induction on n. If n = 0, α
(1)
0 = (1), α

(1)
1 = (2)

and α
(1)
2 = (1) ( since L

(1)
3 = (12) ), and the second table above shows

that σ
(0)
0 = L3L1, σ

(0)
1 = L2L1, and so w(σ

(0)
0 ) + w(σ

(0)
1 ) = 1 + 0 = 1;

hence the statement (a)′ is valid for n = 0.
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Suppose we know that (a)′ is valid for n. Temporarily fix j, 0 ≤ j < 2n+1.

It is fairly clear that, for any γ in ΩIN3 ,

(L2L3)
2n+1

(α
(2n+2)
j , γ) = (α

(2n+2)
j , σ

(n)
j−1σ

(n)
j−2 · · ·σ

(n)
0 σ

(n)
2n+1−1σ

(n)
2n+1−2 · · ·σ

(n)
j (γ));

but, by Lemma 25, we must have α
(2n+3)
j = (α

(2n+2)
j , aj) for some aj ∈ {1, 2};

since L
(1)
1 = L

(1)
2 = idΩ3 and L

(1)
3 = (12), it follows from (iii) that

(L
(2n+3)
2 L

(2n+3)
3 )2n+1

(α
(2n+3)
j ) = (α

(2n+2)
j , ãj)

where ãj is the ‘flip’ of aj( = (12)(aj) ).

It follows that {α
(2n+3)
l = (L

(2n+3)
2 L

(2n+3)
3 )lα

(2n+3)
0 : 0 ≤ l < 2n+2} is a

set of 2n+2 distinct elements. Lemma 25 now implies that this set must be
all of X2n+3; thus the cyclic group generated by L

(2n+3)
2 L

(2n+3)
3 does indeed

act transitively on X2n+3 ; since the order of that cyclic group ( viewed as
permutations of X2n+3 ) must necessarily equal the cardinality of X2n+3, we
have proved (i) and (ii) of (a)′.

The above proof also shows that {α
(2n+4)
j , α

(2n+4)
j+2n+1} = {α

(2n+2)
j } ×

{(1, 3), (2, 3)} for 0 ≤ j < 2n+1. Let us write C(l)
x,y = #{j : 0 ≤ j <

2l+1, σ
(l)
j = LxLy} for x, y ∈ Ω3, x 6= y. The first statement of this para-

graph, the definition of the σ
(l)
j ’s, and the second of the tables occurring in

this proof, show that
C

(n+1)
1,3 = C

(n)
3,1 + C

(n)
3,2 , C

(n+1)
3,1 = C

(n)
1,3 + C

(n)
2,3 ,

C
(n+1)
2,3 = C

(n)
2,1 + C

(n)
1,2 , C

(n+1)
3,2 = C

(n)
1,2 + C

(n)
2,1 .

Hence,

2n+2−1∑

j = 0

w(σ
(n+1)
j ) = C

(n+1)
1,3 + C

(n+1)
3,1 + C

(n+1)
2,3 + C

(n+1)
3,2

= C
(n)
3,1 + C

(n)
3,2 + C

(n)
1,3 + C

(n)
2,3 + 2(C

(n)
1,2 + C

(n)
2,1 )

≡
2n+1−1∑

j = 0

w(σ
(n)
j ) (mod 2, )

thus establishing (iii) of (a)′.
This completes the inductive step and hence the proof of (a)′, and, in

particular, the proof of (a).
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(b) The proof is by induction on n. When n = 0, X1 = {1, 2}, and
1 6∼1 2 since φ1 = ρ1 = id 6= ρ2 = φ2. Assume that the statement (b) is
valid with n replaced by n− 1, and that n > 1.

Suppose X2n+1 contains two distinct elements which are equivalent (with
respect to ∼2n+1). Since G2n+1 acts transitively on X2n+1 and preserves

equivalence, we may assume that α
(2n+1)
0 ∼2n+1 α

(2n+1)
j for some j with 0 <

j < 2n+1; further, we may assume that j is the smallest positive integer
l for which α

(2n+1)
l ∼2n+1 α

(2n+1)
0 . Since L2L3 preserves equivalence, this

minimality assumption is seen to imply that j | 2n+1; thus j = 2m for some
m.

Thus α
(2n+1)
0 ∼2n+1 α

(2n+1)
2m , where 1 ≤ m < n. By (a)′ (ii) applied

with m in place of n, we see that there exists γ ∈ X2n+1−(2m+2) such that

α
(2n+1)
j = (α

(2m+2)
0 , γ). An appeal to the cancellation law - cf. Proposition

17(e) - and the induction hypothesis result in the desired contradiction, thus
completing the proof of (b).

(c) Suppose α ∈ Ω2n+1
3 and α ∼2n+1 β ∈ X2n+1. We shall prove that

α ∈ X2n+1 and appeal to (b). Let α̃ ∈ Ω2n+1
3 be a reduced element such

that α ∼2n+1 α̃ and α̃ is constructed from α as in the proof of Lemma 23.
Since G2n+1 preserves ∼2n+1, and since the G2n+1- orbit of β contains 2n+1

elements which are pairwise inequivalent, it follows that the G2n+1-orbit of
α̃ contains at least 2n+1 elements. It follows easily now from Lemma 25 that
α̃ ∈ X2n+1. The manner in which α̃ was constructed from α in the proof of
Lemma 23 shows that α must have been in X2n+1 to start with. 2

Corollary 27 Let α
(2n)
0 = (1, 3, 1, 3, · · · , 1, 3) and β

(2n)
0 = (3, 1, 3, 1, · · · 3, 1).

Let X2n (resp. Y2n) denote the set of reduced elements of the same config-

uration as α
(2n)
0 ( resp., β

(2n)
0 ). Then α ∼2n α̃ ∈ X2n ⇒ α = α̃ and

β ∼2n β̃ ∈ Y2n ⇒ β = β̃.

Proof: Suppose α ∼2n α̃ ∈ X2n. Then (α, 1) ∼2n+1 (α̃, 1) ∈ X2n+1, and so
Lemma 26 implies that (α, 1) ∈ X2n+1, whence α ∈ X2n and (α, 1) = (α̃, 1)
and hence α = α̃. The proof of the second assertion is similar - just append
a 1 at the beginning. 2
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We are now ready to state the main fact about this example.

Theorem 28 The principal graph, in this case, is infinite.

Proof: Suppose a subfactor N ⊂M has finite principal graph G ; let the set
of even (resp.,odd) vertices be denoted by G(0) (resp.,G(1)).

If N = M−1 ⊂ M = M0 ⊂ M1 ⊂ M2 ⊂ · · · is the tower of the
basic construction then there exist identifications - see [O], [P] - N ′ ∩M2k

∼=⊕
v∈G(1) Mn2k+1(v)(C), and N ′ ∩M2k−1

∼=
⊕

v∈G(0) Mn2k(v)(C), where nl(v) de-
notes the number of paths in G of length l which start at ∗ in G(0) and end
in v. In particular, for any v ∈ G(1), limk→∞ n2k+1(v) = ∞ ( and for any
v ∈ G(0), limk→∞ n2k+1(v) = ∞).

In particular if N ⊂ M is a subfactor, such that, for each k ≥ 1 there
exists a minimal central projection pk in N ′∩Mk such that (N ′∩Mk)pk ∼= C,
then N must be of infinite depth.

In view if Proposition 10, Lemma 26(c) and Corollary 27, the subfactor
we are concerned with in Case 11 satisfies the property of the preceding
paragraph, and the proof of the theorem is complete. 2

Without going through the computations, we just show what the sub-
graph of the principal graph induced by the set of vertices at distance at
most 4 from ∗ looks like. ( This amounts to computing the Bratteli diagrams
for the tower {N ′ ∩Mk}−1≤k≤3. )
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Figure 11

It is our belief that the infinite principal graph is a tree, and we have a
guess as to its description, but we shall say no more about this case.

Case 15: λ = (id, (12), (13)) = ψ, ρ = (id, id, (12)) = φ.
The analysis of this case will also be broken into a series of lemmas.

Lemma 29 (a) ρα(3) = 3 and ρα{1, 2} = {1, 2} for all a ∈ Ωk
3, k ≥ 1;

(b) L3 = (13) × (13) × (13) × · · ·.

Proof: (a) Clear.
(b) Since λρ−1

α (3) = λ3 = (13) for all α ∈ Ωk
3, k ≥ 1, and since

(L3α)k = λρ−1
(α1,···,αk−1)

(3)(αk), the conclusion follows. 2

48



Lemma 30 Let α ∈ ΩIN3 be written in the form α = (w1, 3, w2, 3, w3, 3, · · ·)
where each wi is a (possibly empty) sequence of 1’s and 2’s. Then

L1(α) = (w1, 3, w̃2, 3, w3, 3, w̃4, 3, · · ·) , L2(α) = (w̃1, 3, w2, 3, w̃3, 3, w4, 3, · · ·)

where w̃ denotes the word obtained by changing every 1 in w to 2 and chang-
ing every 2 in w to 1. In particular,

L1L2 = L2L1 = (12) × (12) × (12) × · · ·

Proof; Since ρα{1, 2} = {1, 2} for all α ∈ Ωk
3, k ≥ 1, and since λx(3) = 3

for x = 1, 2, it is clear that if x ∈ {1, 2} and αl = 3, then also (Lx(α))l = 3.
Since ρα = (12)l3(α), it follows that if {l : αl = 3} = {n1, n2, · · ·}

where n1 < n2 < · · · , then

ρ(α1,···,αl) =

{
(12), if n2p+1 ≤ l < n2p+2, p = 0, 1, 2, · · ·
idΩ3 , if n2p ≤ l < n2p+1, p = 0, 1, 2, · · ·

where we write n0 = 0.
The conclusion of the lemma follows from the foregoing fact and equation

10. 2

Corollary 31 There exists an embedding χ : S3 7→ G̃ such that χ((13)) = L3

and χ((12)) = L1L2. Further G̃ = G.

Proof: The first assertion is clear, in view of the preceding lemmas. For,
the second, note that, by definition G is the subgroup of G̃ consisting of
elements of G which are expressible as a product of an even number of Lx’s.
Notice, however, that L1L2L3 = χ((132)) is an element of order 3, and
hence (L1L2L3)

3 is a product of nine Lx’s which is equal to the identity.
Hence, for any x in Ω3, we have : Lx = Lx(L1L2L3)

3 ∈ G̃; hence G = G̃.
2

Before proceeding further, let us introduce the notation Xk = {α ∈ Ωk
3 :

αi 6= αi+1 for 1 ≤ i < k}. ( We shall not, while discussing Case 15, need

49



the set denoted by Xk used while discussing Case 11; so no confusion should
arise.)

Recall Corollary 18(b), which says that Xk is stable under Gk. We now
come to a crucial step in our analysis.

Lemma 32 Fix an integer k ≥ 1.
(a) #Xk = 3 · 2k−1

(b) Let γ
(k)
0 denote the restriction to Xk of L

(k)
1 L

(k)
3 , and let Γ

(k)
0 denote the

cyclic subgroup generated by γ
(k)
0 . Then,

(i) #Γ
(k)
0 = 2k;

(ii) Xk splits into two orbits, B
(k)
j , j = 1, 2, under the action of Γ

(k)
0 , where

B
(k)
1 = {α ∈ Xk : α1 ∈ {1, 3}} and B

(k)
2 = {α ∈ Xk : α1 = 2};

(c) Gk acts transitively on Xk;
(d) α, β ∈ Xk and α 6= β ⇒ α 6∼k β.

Proof: (a) Trivial.
(b) As in the proof of Lemma 26, we start with a table, which has the
same interpretation as the tables occurring in the proof of that Lemma; here

β ∈ ΩIN3 :

L1 L2 L3 L1L3 L2L3

(1, β) (1, L1β) (2, L2β) (3, L3β) (3, L2L3β) (3, L1L3β)
(2, β) (2, L1β) (1, L2β) (2, L3β) (2, L1L3β) (1, L2L3β)
(3, β) (3, L2β) (3, L1β) (1, L3β) (1, L1L3β) (2, L2L3β)

The last two columns of the above table show the following: if we write
S = {L1L3, L2L3}, and if σ ∈ S - say σ = LxLy, with (x, y) ∈ {(1, 3), (2, 3)}
- then for any k ≥ 1 and any α ∈ Ωk

3, there exists a uniquely defined σ′ ∈ S

such that σ(α, β) = (L(k)
x L(k)

y (α), σ′(β)) for all β ∈ ΩIN3 . Set w(L1L3) = 1
and w(L2L3) = 0.

We shall need the above observation in the statement (and proof) of the
following crucial assertion:

Assertion(∗): Fix a positive integer k. Then there exists α
(k)
0 inXk with first

coordinate equal to 1, with the following properties: define α
(k)
j = (γ

(k)
0 )j(α

(k)
0 )

for 1 ≤ j ≤ 2k, and let σ
(k)
j be the uniquely defined element of S such that
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(L1L3)(α
(k)
j , β) = (α

(k)
j+1, σ

(k)
j (β)) for all β ∈ ΩIN3 for 0 ≤ j < 2k. Then, the

following statements are valid:
(∗ i) α

(k)
j 6= α

(k)
l for 0 ≤ j < l < 2k;

(∗ ii) α
(k)

2k = α
(k)
0 ; and

(∗ iii)
2k−1∑

j = 0

w(σ
(k)
j ) is an odd integer.

We prove Assertion(∗ ) by induction on k. When k = 1, we have

X1 = {1, 2, 3}, γ
(1)
0 = (13); put α

(1)
0 = (1); then α

(1)
1 = (3) and

α
(1)
2 = (1); the preceding table shows that σ

(1)
0 = L2L3 and σ

(1)
1 = L1L3,

whence w(σ
(1)
0 ) + w(σ

(1)
1 ) = 0 + 1 = 1.

Suppose Assertion(∗ ) is valid for some integer k. Note that for any β in

ΩIN3 , we have, by the induction hypothesis,

(L1L3)
2k

(α
(k)
0 , β) = (α

(k)
0 , σ

(k)

2k−1σ
(k)

2k−2 · · · σ
(k)
0 (β)).

Observe that L
(1)
1 L

(1)
3 = (13), while L

(1)
2 L

(1)
3 = (132); hence any prod-

uct πm · · · π0, where each πj is either L
(1)
2 L

(1)
3 or L

(1)
1 L

(1)
3 , is an even or odd

permutation according as w is even or odd, where w = #{i : 0 ≤ i ≤

m,wi = L
(1)
1 L

(1)
3 }. Let πj ∈ S3, 0 ≤ j < 2k, be defined by πj = L(1)

x L(1)
y if

σ
(k)
j = LxLy. Then, by the statement (∗ iii), it follows that π = π2k−1π2k−2 · · · π0

is an odd permutation in S3 - i.e.,π is a transposition. Let a0 ∈ {1, 2, 3} be
such that a0 is moved by π, and such that a0 is distinct from the last co-
ordinate of α

(k)
0 . Put α

(k+1)
0 = (α

(k)
0 , a0). Then α

(k+1)
0 ∈ Xk+1, the first

co-ordinate of α
(k+1)
0 is 1, and, more importantly,

(L
(k+1)
1 L

(k+1)
3 )2k

(α
(k+1)
0 ) = (α

(k)
0 , ã0)

where ã0 = π(a0); hence (γ
(k+1)
0 )2k

(α
(k+1)
0 ) 6= α

(k+1)
0 .

For this choice of α
(k+1)
0 , let α

(k+1)
j , 1 ≤ j ≤ 2k+1 and σ

(k+1)
j , 0 ≤ j ≤

2k+1 be defined as in Assertion(∗ ). It must be clear that, for 0 ≤ j <

2k, α
(k+1)
j = (α

(k)
j , aj) for some aj ∈ Ω3; by choice, we have α

(k+1)

2k = (α
(k)
0 , ã0)

with ã0 6= a0. It follows easily that α
(k+1)

2k+j = (α
(k)
j , ãj) for some ãj ∈ Ω3, 0 ≤

j < 2k; since α
(k+1)
0 6= α

(k+1)

2k and since γ
(k+1)
0 is injective, it follows that

aj 6= ãj for 0 ≤ j < 2k. Thus, we have proved (∗ i) for k + 1.
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As for (∗ ii), since (L
(k)
1 L

(k)
3 )(α

(k)

2k−1) = α
(k)
0 , it must be the case that

(L
(k+1)
1 L

(k+1)
3 )(α

(k+1)

2k+1−1) = (L
(k+1)
1 L

(k+1)
3 )(α

(k)

2k−1, ã2k−1) = (α
(k)
0 , b) for some

b in Ω3. But since Xk+1 is stable under Gk, we know that a and ã are the only

two elements of Ω3 such that (α
(k)
0 , a), (α

(k)
0 , ã) ∈ Xk+1. Hence b ∈ {a, ã}.

Since γ
(k+1)
0 is injective and γ

(k+1)
0 (α

(k+1)

2k−1 ) = (α
(k)
0 , ã), it must be that b = a;

i.e., α
(k+1)

2k+1 = α
(k+1)
0 , as desired.

Now for (∗ iii). For l = k, k + 1, x ∈ Ω3 and σ ∈ S( = {L1L3, L2L3}),

define C(l)
x,σ = #{j : 0 ≤ j < 2l, (α

(l)
j )l = x, σ

(l)
j = σ} ( where, of course,

(α
(l)
j )l denotes the l-th co-ordinate of α

(l)
j ).

To make the exposition clear, suppose some α
(k)
j ends in 2 and σ

(k)
j = L1L3.

Then, the proof of (∗ i) shows that {α
(k+1)
j , α

(k+1)

2k+j } = {α
(k)
j } × {1, 3}. The

column indexed by L1L3 and the rows indexed by (1, β) and (3, β) in the table

(occurring at the start of this proof) show then that {σ
(k+1)
j , σ

(k+1)

2k+j } = {L2L3, L1L3}.

More generally, consider the bipartite graph Λ with the sets Λ(0) and
Λ(1) of even and odd vertices both being indexed by Ω3 × S: if (x, σ)0 is
an even vertex in Λ, let Ω3 \ {x} = {y, z}; if σ(y, β) = (ỹ, σ1(β)) and

σ(z, β) = (z̃, σ2(β)), for arbitrary β ∈ ΩIN3 , and appropriate σ1, σ2 ∈ S,
then(x, σ)0 is joined, in the graph Λ, to the odd vertices (y, σ1)1 and (z, σ2)1.
Thus the graph is seen to be as below:
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Figure B

A little thought and an inspection of the above graph shows that

C
(k+1)
1,L1L3

= C
(k)
2,L2L3

+ C
(k)
3,L2L3

, C
(k+1)
1,L2L3

= C
(k)
2,L1L3

+ C
(k)
3,L1L3

C
(k+1)
2,L1L3

= C
(k)
1,L1L3

+ C
(k)
3,L1L3

, C
(k+1)
2,L2L3

= C
(k)
1,L2L3

+ C
(k)
3,L2L3

C
(k+1)
3,L1L3

= C
(k)
1,L1L3

+ C
(k)
2,L1L3

, C
(k+1)
3,L2L3

= C
(k)
1,L2L3

+ C
(k)
2,L2L3
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These relations hold for all k.
Thus, the C(k)

x,σ ’s are defined by the above recursion relations, and the

initial conditions - when k = 1 - given by C
(1)
1,L2L3

= C
(1)
3,L1L3

= 1, C(1)
x,σ = 0

otherwise. We claim that for all k ≥ 1 we have: C
(k)
1,L1L3

+ C
(k)
2,L2L3

+ C
(k)
3,L2L3

is even; and C
(k)
1,L1L3

+ C
(k)
2,L1L3

+ C
(k)
3,L1L3

is odd.
These are true for k = 1; if they are known to be true for k, then the

foregoing recursion relations show that,

C
(k+1)
1,L1L3

+ C
(k+1)
2,L2L3

+ C
(k+1)
3,L2L3

= 2(C
(k)
1,L2L3

+ C
(k)
2,L2L3

+ C
(k)
3,L2L3

)

= even integer

and

C
(k+1)
1,L1L3

+ C
(k+1)
2,L1L3

+ C
(k+1)
3,L1L3

= (C
(k)
1,L1L3

+ C
(k)
2,L1L3

+ C
(k)
3,L1L3

) + (C
(k)
1,L1L3

+ C
(k)
2,L2L3

+ C
(k)
3,L2L3

)

= odd integer ( by induction hypothesis).

In particular we have proved that

2k+1−1∑

j = 0

w(σ
(k+1)
j ) ≡ C

(k+1)
1,L1L3

+ C
(k+1)
2,L1L3

+ C
(k+1)
3,L1L3

(mod 2)

which is odd, and the proof of Assertion(∗ ) is complete.
To proceed with the proof of the lemma, notice from our table that

(L1L3)(2, β) = (2, L1L3β) for all β in ΩIN3 . Hence, in the notation of

the statement (b) in the Lemma, the group Γ
(k)
0 leaves B

(k)
2 (and hence

B
(k)
1 = Xk \B

(k)
2 ) invariant. Since #B

(k)
1 = 2k, it follows from Assertion(∗

) that Γ
(k)
0 acts transitively on B

(k)
1 for each k.

However, B
(k)
2 = {2}×B(k−1)

1 and since γ
(k)
0 acts on B

(k)
2 = {2}×B(k−1)

1

as id × γ
(k−1)
1 , the preceding conclusion about B

(k)
1 , for each k, now shows

that γ
(k)
0 |

B
(k)
2

has order 2k−1. This completes the proof of (b).

(c) Notice that, by Lemma 30, (L
(k)
1 L

(k)
2 )(1 3 1 3 · · ·) = (2 3 2 3 · · ·); this

observation, together with (b), completes the proof of (c).

(d) Since the cyclic group Γ
(k)
0 acts transitively on each of B

(k)
1 and B

(k)
2 ,

we can repeat the argument given to prove Lemma 26 (b) to see that for
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j = 1, 2, no two distinct elements of B
(k)
j are equivalent ( with respect to

∼k) . Since Γ
(k)
0 preserves equivalence, since B

(k)
1 (resp., B

(k)
2 ) consists of 2k

(resp., 2k−1) inequivalent elements, no element of B
(k)
1 can be equivalent to

B
(k)
2 . ( The argument for this is exactly like the proof of Lemma 26 (c). )

The proof of the lemma is finally complete. 2

In the sequel, if a ∈ Ω3, we shall find it convenient to denote by a(k), the
constant sequence in Ωk

3 with all co-ordinates equal to a. In the proof of the
next lemma, we shall need the obvious consequence of Proposition 17(d) that

(α, a(m)) ∼ (α, b(m)) for any α ∈ Ω
(l)
3 , l ≥ 1 and any a, b ∈ Ω3, provided m is

even.

Lemma 33 Let k ≥ 1 and β ∈ Ωk
3. Then there exists a unique integer l ≤ k

and an element α ∈ Xl such that:
(i) β ∼k (α, α

(k−l)
l ); and

(ii) 0 ≤ l ≤ k and l ≡ k (mod 2),
where the possibility l = 0 is interpreted to mean: k is even and β ∼k

1(k) ∼k 2(k) ∼k 3(k).

Proof: Existence: It follows easily from Lemma 20 and proposition 17 (d)

that there exists an l ≤ k and α ∈ Xl such that β ∼k (α, α
(k−l)
l ). If this l were

such that l ≡ k (mod 2 ), we are done; if (k− l) is odd, and l = 0,then β ∼k

1(k) with k odd, and we may just as well choose l = 1 and α = (1); if (k− l)

is odd and l ≥ 1, then β ∼k (α1, · · ·αl, α
(k−l)
l ) = (α1, · · ·αl−1, α

(k−l+1)
l ) ∼k

(α1, · · ·αl−1, α
(k−l+1)
l−1 ), and the proof of existence is complete.

Uniqueness: Suppose β ∼k β
′ = (α, α

(k−l)
l ), with l, α as in the statement

of the Lemma. Corollary 18(ii) implies that {π(β′) : π ∈ Gk} ⊆ {(γ, γ
(k−l)
l :

γ ∈ Xl}; however, Lemma 32 (c) and Corollary 18 (ii) imply that the above
inclusion is actually an equality.

Since (k − l) is even, observe - in view of Proposition 17 and Lemma 32
(d) - that for γ, κ ∈ Xl, and m even, we have:

(γ, γ
(m)
l ) ∼l+m (κ, κ

(m)
l ) ⇒ (γ, γ

(m)
l ) ∼ (κ, γ

(m)
l ) (12)

⇒ γ = κ.
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Suppose β ∼k β
′ = (α, α

(k−l)
l ) as above.

Case (i): k is even and l = 0. Then β ∼k 1(k) ∼k 2(k) ∼k 3(k). Since
{1(k), 2(k), 3(k)} is a Gk-orbit, and since Gk preserves ∼k, we find that all
elements in the Gk-orbit of β must be equivalent;
Case(ii): l 6= 0. Then the Gk-orbit of β′ consists of precisely 3 ·2l−1 elements,
which are pairwise inequivalent. Hence, the Gk-orbit of β meets precisely
3 · 2l−1 equivalence classes.

In any case, we see that if β, β′, l and α are as above, the Gk-orbit of β
meets precisely nl distinct equivalence classes, where

nl =

{
1, if l = 0
3 · 2l−1, if l ≥ 1

Since l 7→ nl is clearly an injective function, we see that β determines l
uniquely.

The proof is now complete in view of equation 12. 2

If k is a positive integer, then the number of integers l satisfying 0 ≤ l ≤ k
and l ≡ k (mod 2) is given by {k/2} where {x} is the smallest integer which
is strictly greater than x. ( Thus {2n+1

2
} = {2n

2
} = n+ 1. )

Proposition 34 Let k be a positive integer, and let Ik = {l : 0 ≤ l ≤ k, l ≡

k(mod 2)}. For each l in Ik and α ∈ Xl, define E
(k)
l,α = [(α, α

(k−l)
l )]∼k

= {β ∈

Ωk
3 : β ∼k (α, α

(k−l)
l )} ( with the obvious convention that if k is even, then

E
(k)
0,· = {β ∈ Ωk

3 : β ∼k 1(k)} ). Then,

(a) {E
(k)
l,α : l ∈ Ik, α ∈ Xl} is the partition of Ωk

3 into ∼k- equivalence classes.
(b) For each fixed l in Ik, the group Gk acts transitively on the collection

O
(k)
l = {E

(k)
l,α : α ∈ Xl} of equivalence classes, and hence {O

(k)
l : l ∈ Ik} is

the collection of Gk- orbits of equivalence classes.
(c) {σ ∈ Gk : σ(E

(k)
l,α ) = E

(k)
l,α } = {σ ∈ Gk : σ(α) = α} for each l ∈ Ik

and α ∈ Xl.

Proof: (a) is just a reformulation of Lemma 33.

(b) For fixed l in Ik, let Rl = {(α, α
(k−l)
l ) : α ∈ Xl}. It follows from

Corollary 18 and Lemma 32 (c) that Gk acts transitively on Rl. This proves
(b).
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(c) Notice that E
(k)
l,α ∩Rl = {(α, α

(k−l)
l )}, thanks to Lemma 33. Since Rl is

stable under Gk, (c) is proved. 2

Definition 35 Fix a positive integer k. Define the following objects:
(a) πk : G 7→ S(Ωk

3) is the unique homomorphism such that πk(Lx) = L(k)
x

for all x in Ωk
3;

(b) α(k) = (1, 3, 1, 3, · · ·) ∈ Ωk
3 ;

(c) Hk = {σ ∈ G : πk(σ)(α(k)) = α(k)}; we shall find it convenient to also
write H0 = G;
(d) for 0 ≤ l ≤ k, l ≡ k (mod 2) , π

(k)
l : Hl 7→ S(E

(k)

l,α(l)) is given by

π
(k)
l (σ) = πk(σ)|

E
(k)

l,α(l)

. (Recall that, by Proposition 34(c), the set E
(k)

l,α(l) is

stable under Hl).

Notice that G acts transitively on Xk ( via σ 7→ πk(σ)|Xk

) and that the

isotropy subgroup of the point α(k) is precisely Hk; hence [G : Hk] = 3 ·2k−1

for k ≥ 1. Also, clearly, Hk ⊇ Hk+1. Thus we see that {Hk}
∞
k = 1 is a de-

creasing sequence of subgroups of G such that for k ≥ 0, we have

[Hk : Hk+1] =

{
3, if k = 0
2, if k ≥ 1

Also, in view of Proposition 10 and Proposition 34, we may deduce that
the k-th relative commutant is given, in this case by

Ck ∼=
⊕

l∈Ik

π
(k)
l (Hl)

′

(where we view π
(k)
l as a unitary ( permutation) representation in the natural

manner).
In order to describe the inclusion of Ck into Ck+1 ( via x 7→ x ⊗ 1 ), we

need the next result.

Lemma 36 With the preceding notation, we have, for k ≥ 1 and l ∈ Ik,

π
(k)
l = ResHl−1↓Hl

π
(k−1)
l−1 ⊕ IndHl+1↑Hl

π
(k−1)
l+1 ,
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where, of course, Res and Ind denote restriction and induction, and we adopt
the convention that the first (resp., second) summand above is non-existent
when l = 0 ( resp., l = k ).

Proof: In the following, if α ∈ Ωk
3, we write [α]k = {α′ ∈ Ωk

3 : α ∼k α
′}.

Begin by observing the following consequence of the cancellation law (cf.
Proposition 17(e) ) : if β ∈ Ωk+1

3 and x ∈ Ω3, then either [β]k+1 ∩ ( Ωk
3 ×

{x}) = ∅ or there exists an α in Ωk
3 such that [β]k+1 ∩ ( Ωk

3×{x}) = [α]k×
{x}. vThus, for instance, if k ≥ 2 and if k is even then,

E
(k)
0,· =

∐

a∈Ω3

E
(k−1)
1,(a) × {a}.

Next, suppose k ≥ 2, l ∈ Ik and 0 < l < k; suppose β = (α, a) ∈ Xl - where
α ∈ Xl−1 and a ∈ Ω\{αl−1} - then observe that (α, a, a(k−l)) = (α, a(k−l), a) ∼

(α, α
(k−l)
l−1 , a); similarly, for any b ∈ Ω3 \ {a}, observe that

(α, a, a(k−l)) ∼ (α, a, b(k−l)) = (α, a, b, b(k−l−1)). Deduce that

E
(k)
l,(α,a) = (E

(k−1)
l−1,α × {a}) ∐

⋃

b∈Ω3\{a}

(E
(k−1)
l+1,(α,a,b) × {b}).

In view of Lemma 33 we also have, for β = (α, a) ∈ Xk, α ∈ Xk−1, a ∈ Ω3,

E
(k)
k,(α,a) = E

(k−1)
k−1,α × {a}.

Recall our notation α(l) = (1, 3, 1, 3, · · ·) ∈ Xl. Let us also simply write

E
(k)
l for E

(k)

l,α(l) . The preceding equations now imply that

E
(k)
l = (E

(k−1)
l−1 × {al}) ∐

⋃

b∈Ω3\{al}

(E
(k−1)

l+1,(α(l),b)
× {b}) (13)

where al is 1 or 3 according as l ( and hence k ) is odd or even - with the
understanding that if l = 0 then the first term on the right side does not
feature and the second term is interpreted as

⋃

b∈Ω3

(E
(k−1)
1,(b) ×{b}), and if l = k,

only the first term survives.
We prove the lemma by considering several cases (to account for the

‘boundary’ terms).

Case(i) : k = l. Note, by definition, that π
(k)
k is the trivial ( 1- dimen-

sional ) representation of Hk ( since E
(k)
k is a singleton, by Lemma 33). The

57



conclusion of the lemma is trivially valid, since the restriction of the trivial
representation is the trivial representation.

Case(ii): 0 < l < k. Notice first that if α, α′ ∈ Ωk
3, and a, b, x ∈ Ω3, if α ∼k

α′ and L(k+1)
x (α, a) = (L(k)

x (α), b), then L(k+1)
x (α′, a) = (L(k)

x (α′), b) and
L(k)
x (α) ∼k L

(k)
x (α′); hence if σ ∈ G is arbitrary and πk+1(σ)(α, a) = (πk(σ)(α), b),

then πk+1(σ)(α′, a) = (πk(σ)α′, b) and πk(σ)(α) ∼k πk(σ)(α′). In particular,
if πk+1(σ)(α, a) = (α, a), then πk+1(σ) maps [α]k × {a} into itself.

With al as in equation 13,note that Ω3 \ {al} = {al+1, 2}. By definition,

the representation π
(k)
l of Hl acts on a vector space V (l) with basis indexed

by E
(k)
l . Let V

(l)
1 (resp., W

(l)
1 , resp.,W

(l)
2 ) be the subspace of V spanned by

basis vectors indexed by E
(k−1)
l−1 × {al} (resp., E

(k−1)

l+1,(α(l),al+1)
× {al+1}, resp.,

E
(k−1)

l+1,(α(l),2)
× {2} ). The preceding paragraph shows that V

(l)
1 is an invariant

subspace for π
(k)
l ( and consequently, so is W

(l)
1 ⊕W

(l)
2 ). In fact, we can even

deduce from the previous paragraph that the subrepresentation of π
(k)
l given

by V
(l)
1 can be identified with ResHl−1↓Hl

(π
(k−1)
l−1 ).

Notice next that [Hl : Hl+1] = 2; in fact, it follows from Lemma 32 (b)

that (L1L3)
2l

∈ Hl\Hl+1 and that necessarily (L
(l+1)
1 L

(l+1)
3 )2l

(α(l), 2) = (α(l), al+1).

Hence π
(k)
l ((L1L3)

2l

)(W
(l)
1 ) = W

(l)
2 . On the other hand, it is clear that

π
(k)
l (Hl+1) leaves W

(l)
1 invariant and that the associated representation of

Hl+1 is identifiable with πk−1
l+1 . Since, clearly, π

(k)
l ((L1L3)

2l

Hl+1)(W
(l)
1 ) = W

(l)
2 ,

it follows easily that the subrepresentation of π
(k)
l afforded by the invariant

subspace W
(l)
1 ⊕W

(l)
2 is identifiable with IndHl+1↑Hl

(π
(k−1)
l+1 ).

Case(iii) l = 0 ( and k is even). In this case, as has already been

noticed, E
(k)
0,· = (E

(k−1)
1,(1) × {1}) ∐ (E

(k−1)
1,(2) × {2}) ∐ (E

(k−1)
1,(3) × {3}). The

representation π
(k)
0 of H0( = G) acts on a vector space V

(k)
0 with ba-

sis indexed by
3∐

i = 1

(E
(k−1)
1,(i) × {i}). Let W

(k−1)
i be the subspace spanned

by basis vectors indexed by (E
(k−1)
1,(i) × {i}), for i = 1, 2, 3. The defini-

tions show that H0 =
3∐

i = 1

LiH1 is the decomposition of H0 into H1-

cosets ( since π1(L1) = idΩ3 , π1(L2) = (12) and π1(L3) = (13)). For

i = 1, 2, 3, note that π
(k)
0 (Li)(1

(k)) = i(k), from which it follows thhat

π
(k)
0 (Li)(W

(k−1)
1 ) = W

(k−1)
i . Also it is clear that W

(k−1)
1 is invariant under

58



π
(k)
0 (H1) ( since πk(H1)(1

(k)) = 1(k) ), and that the subrepresentation of H1

afforded by W
(k−1)
1 is seen to be identifiable with π

(k−1)
1 . It follows that we

may identify π
(k)
0 with IndH1↑H0(π

(k−1)
1 ). 2

All the pieces are now in place for our final result.

Theorem 37 Let H0 ⊇ H1 ⊇ H2 ⊇ · · · be the tunnel of subgroups described
in Definition 35. The principal graph for the subfactor given by this case
(Case 15) has the following description:

Consider the (infinite) bipartite graph G̃ with the sets G̃(0) (resp., G̃(1))

of even (resp., odd) vertices being indexed by
∞∐

k = 0

Ĥk (where Ĥ denotes

the ‘unitary dual’ of the (discrete) group H), and with the even vertex (σ, l)0

( i.e., σ ∈ Ĥl) connected only to odd vertices of the form (π, l ± 1)1, the
number of bonds joining (σ, l)0 to (π, l − 1)1 (resp., (π̃, l + 1)1) being given
by the multiplicity with which the irreducible representation σ of Hl (resp., π̃
of Hl+1) features in the restriction to Hl (resp., Hl+1) of the representation
π of Hl−1 (resp., σ of Hl).

Let G be the connected component in G̃ of (1, 0)0, where (1, 0)0 denotes
the trivial representation of H0 (viewed as an even vertex of G̃). Then G is
the desired principal graph.

Proof: The proof of the theorem follows from the foregoing analysis of
this case, coupled with the general Proposition 10, and the verification that
the identifications we have made are compatible with the various natural
inclusions.

2

Without going through the details of the analysis, we just draw the sub-
graph of the principal graph induced by the set of vertices at distance at
most 5 from ∗ ( which is (1, 0)0 in the notation of Theorem 37).
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Figure 15

In this case, also, we believe the principal graph is actually a tree, but do
not as yet have a proof of that. We do, however, make the obvious remark
that the graph is certainly infinite. ( Reason : this is clear from Theorem
37; this can also be deduced from Lemma 32 and Lemma 33 in exactly the
same manner in which infinite depth was proved in Case (11).

9 Concluding remarks

(a) It is true, in general, that if u = ((uαaβb )) is a biunitary Nk×Nk matrix,
then the transposed matrix ut is also biunitary and in fact there is an
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isomorphism of pairs (R,Rut) ∼= (R1, R), where Ru ⊆ R ⊆ R1 is the basic
construction; thus ut should be thought of as the biunitary matrix that is
‘dual’ to u. In the special case when u is the biunitary permutation matrix
corresponding to π ↔ (ρ, λ), it follows that ut corresponds to (φ−1, ψ−1).
It is seen from the list in §6, and the manner in which we obtained the
reduction to the 18 special cases in §6, that each of the biunitary matrices
coming from the list is equivalent to its dual; thus, we find that if u is
any biunitary permutation matrix in U(9), then the subfactor Ru ⊆ R is
self-dual - meaning that (R,Ru) ∼= (R1, R), where Ru ⊆ R ⊆ R1 is
the basic construction. The following question is natural: Is it true that
for any biunitary permutation matrix u ∈ U(Nk), the associated subfactor
Ru ⊆ R is always self-dual? (More generally, the authors do not know of a
subfactor arising from a vertex model - as in §2 - which is not self-dual, and
would like to see an example of this phenomenon.)

(b) This remark concerns what we might call the Cayley graph of a group
or a group-dual corresponding to a subset Γ. ( See [P1].) Suppose G (resp.,
K ) is a discrete (resp., compact) group, and suppose Γ is a (finite, in all
cases of interest to us ) subset of G (resp., K̂, the ‘unitary dual’ of K )
possibly with repetitions. The Cayley graph of G (resp., K̂) with respect to
Γ is the bipartite graph G, which we shall denote by C(G,Γ) (resp., C(K̂,Γ)),
described as follows: let G̃ be the bipartite graph whose sets of even and odd
vertices, denoted by G̃(0) and G̃(1), are given by G̃(i) = G × {i} ( resp.,
K̂ × {i} ), for i = 1, 2. Adjacency in G̃ is defined by the prescription
that if (gi, i) ∈ G̃(i) (resp., (πi, i) ∈ G̃(i)), then the number of bonds joining
(g0, 0) to (g1, 1) (resp., (π0, 0) to (π1, 1)) is given by #{γ ∈ Γ : g1 = g0γ}
(resp.,

∑

ρ∈Γ

< π0⊗ρ, π1 >). The Cayley graph C(G,Γ) (resp., C(K̂,Γ)) is the

connected component in G̃ of (1, 0), where 1 denotes the identity element of
G (resp., the trivial representation of K).

These were precisely the sort of graphs encountered in §5, Cases (1) and
(2). By a somewhat peculiar coincidence, each of the 15 finite principal
graphs encountered, when N = 3, is of the above sort. We list below the
group / group dual and the set Γ for each of the 15 cases in the following
tabular form - for reasons that will become transparent when we make the
next remark.

Table(C)
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We do not, as yet, know of an example of a finite principal graph for
a subfactor arising from a permutation biunitary matrix ( vertex model)
which is not the Cayley graph of a group or a group-dual. The reason for
our including Case(3) in §5 was to indicate that surely such examples must
exist.

In the process of our finding the group for which a certain graph was a
Cayley graph, we made a fairly simple observation which might be of interest
to specialists: in order that a finite principal graph is a Cayley graph of a
group, it is necessary and sufficient that the principal graph be regular -
meaning that all its vertices have the same degree.

(c) This remark concerns the possible relation between the subfactors con-
structed out of a pair of biunitary matrices which are adjoints of one another.
For biunitary permutation matrices, this means the subfactors arising from
(ρ, λ) and (ψ−1, φ−1). For the purposes of this remark, it will be convenient
to call the biunitary permutation (ψ−1, φ−1) the transpose of the biunitary
permutation (ρ, λ).

The reason for Table (C) is the following: two permutation biunitary
matrices which are equivalent to transposes of one another (and occur in our
list) and which yield finite principal graphs are listed in the same line of the
table. A line in the table consists of a single case only when that (ρ, λ) is
such that (ρ, λ) ∼ (ψ−1, φ−1) in the sense of §6. Note that, whenever a line
in the table has two cases listed in it, the principal graphs in those two cases
are of the form C(G,Γ1) and C(Ĝ,Γ2) for some finite group G and some sets
Γ1, Γ2.

It is also worth noting that the two infinite principal graphs discussed in
§8 arise from a pair of biunitary permutation matrices which are transposes
of one another. These observations prompt the following question.
Question: Suppose u ∈MN(C)⊗Mk(C) is a biunitary matrix. Let N (resp.,
N∗) be the subfactor of the hyperfinite factor constructed from u (resp., u∗).

Does N have finite depth precisely when N∗ does ?
Note that N∗ does not inherit irreducibility from N. (This is clear from
the two infinite depth examples, as also from the Cayley graph examples.)
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C(G,Γ)
Case

No. λ ρ G Γ No.
1. (id, id, id) (id, id, id) (1) {1, 1, 1}
2. (id, id, id) (id, id, (12)) Z2 = {0, 1} {0, 0, 1} 6. (id,

3. (id, id, id) (id, id, (123)) Z3 = {0, 1, 2} {0, 0, 1} 12. (id,
4. (id, id, id) (id, (12), (13)) S3 {id, (12), (13)} 14. (id,
5. (id, id, id) (id, (123), (132)) Z3 = {0, 1, 2} {0, 1, 2} 17. (id,
7. (id, id, (12)) (id, id, (12)) Z2 × Z2 {(1, 0), (0, 1), (1, 1)}
8. (id, id, (12)) (id, id, (13)) Z8 {0, 1 · · · 7}
9. (id, id, (12)) (id, id, (123)) A4 {(12)(34), (13)(24), (123)} 13. (id,

10. (id,
18. (id, (123), (132)) (id, (132), (123)) Z9 Z9

Note: In the last column, the symbol π (resp., ρ, resp., σ ) denotes the
unique irreducible two-dimensional (resp., three- dimensional, resp.,

two-dimensional) representation of the symmetric group S3 (resp., the
alternating group A4, resp., the dihedral group D8 of order 8).

Table(C)
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