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Much of this talk is based on the doctoral the-

sis of my student Jijo and inspired by the in-

tuition of my colleague Vijay Kodiyalam.

Our motivation stems from:

• (Ocneanu-Szymanski) Finite-dimensional Kac

algebras (=Hopf C∗-algebras) are in bijec-

tive correspondence with subfactors of depth

two.

• (Ocneanu) The subfactor analogue of the

quantum double construction is the asymp-

totic inclusion.

• (Jones) ‘Good’ subfactors are equivalent to

planar algebras.
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“Every finite-dimensional Kac algebra (=Hopf

C∗-algebra) H admits a canonical ‘outer ac-

tion’ on the II1 factor R, and the associated

‘fixed subalgebra RH ⊂ R is the ‘protoypical

subfactor of depth 2.”

In the first part of this talk, I shall try to explain

the terms of the above paragraph, and give a

model for this action.

Ocneanu: “The subfactor analogue of the quan-

tum double is the asymptotic inclusion”

In the second part of the talk, I shall describe

the asymptotic inclusion of the ‘Kac-algebra

subfactor’.

Finally, I shall describe the planar algebraic de-

scriptions of these two subfactors.
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Let H = H(µ,1,∆, ε, S, ∗) be a Kac algebra

and A be a unital * algebra (both finite di-

mensional).

Definition (action) : An action of H on a

*-algebra A is a linear map α : H → EndC(A)

satisfying:

(i) α1 = IdA

(ii) αa(1A) = ε(a)1A, ∀a ∈ H

(iii) αab = αa ◦ αb

(iv) αa(xy) = Σαa1(x)αa2(y)

(v) αa(x)∗ = αSa∗(x
∗)

(We use (slightly modified) Sweedler-notation:

∆(a) = a1 ⊗ a2.)

Example The dual H∗ of a Kac algebra H is

also a Kac algebra, and H∗ acts on H by the

rule αf(a) = f(a2)a1
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The crossed product AoH is the unital asso-

ciative *-algebra, with underlying vector space

A ⊗ H, and multiplication and involution de-

fined by

(x o a)(y o b) = xαa1(y) o a2b

(x o a)∗ = αa∗1
(x∗) o a∗2.

The iterated crossed products: With H, A, α

as above, the action of H∗ on H can be pro-

moted to an action - call it f 7→ βf - of H∗ on

A o H by ‘ignoring the A-component’ thus:

βf(x o a) = x o αf(a) ,

and we can define

A o H o H∗ = (A o H) o H∗ .

For integers k < l, we iteratively define

A[k,l] = A[k,l−1] o Hl = Hk o Hk+1 o ....... o Hl

where

Hi =

{

H if i is odd
H∗ if i is even
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We may, and do, regard A[k,l] as a *-subalgebra

of A[k1,l1]
whenever k1 ≤ k ≤ l ≤ l1.

Let us write

φ(k) =

{

φ if k is even
h if k is odd

where h and φ respectively denote suitably nor-

malised Haar integrals in H and H∗. It is then

true∗ that there is a unique consistent trace (=

faithful normalised positive tracial functional)

‘tr’ defined on the grid {A[k,l] : −∞ < k ≤ l <

∞} satisfying

tr(x(k)
o · · · o x(l)) =

l
∏

j=k

φ(j)(x(j)) .

∗The only way we know to prove this seemingly elemen-
tary fact relies on the use of diagrammatic computa-
tions in the sense of Jones’ planar algebras.
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With the foregoing notation, write A(−∞,l] for

the weak closure of ∪∞
j=0A[l−j,l] in the GNS

representation afforded by ‘tr’. Specifically,

let N = A(−∞,−1] and M = A(−∞,0] We sum-

marise some facts about these objects below.

Theorem:

(a) N and M are both isomorphic to the hy-

perfinite II1 factor R.

(b) There is a natural action - call it α - of

H on M (by piecing together the consistently

defined actions on the A[−n,0])).

(c) N ′ ∩ M = C.

(d) MH := {x ∈ M : αa(x) = ε(a)x ∀a ∈ H} =

N , so the action α is outer.

(e) The tower {A(−∞,n] : n ≥ 1} is isomorphic

to the tower {Mn : n ≥ 1} of Jones’ basic

construction.
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The asymptotic inclusion:

For a general finite-index subfactor N ⊂ M

with associated ‘Jones tower’

N = M−1 ⊂ M = M0 ⊂ M1 ⊂ M2 ⊂ · · ·

of II1 factors, there is a consistent trace ‘tr’ on

the tower {Mn} (because a II1 factor admits a

unique trace). It follows that if we define M∞

to be the weak closure of ∪∞
n=1Mn in the GNS

representation afforderd by ‘tr’, then M = M∞

is again a II1 factor. In fact, it turns out that

N = (M ∪ (M ′∩M∞))′′ is also a II1 factor and

in fact a finite-index subfactor of M.

The subfactor N ⊂ M is the asymptotic in-

clusion of N ⊂ M .
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We now consider our model

N = A(−∞,−1] ⊂ A(−∞,0] = M

and want to describe the Jones towers for the

subfactors N ⊂ M and N ⊂ M, which we de-

note by

N = M−1 ⊂ M = M0 ⊂ M1 ⊂ M2 ⊂ · · ·

and

N = M−1 ⊂ M = M0 ⊂ M1 ⊂ M2 ⊂ · · ·

Lemma (rel.comm): If k + 2 ≤ n, then

A′
(−∞,k] ∩ A(−∞,n) = A[k+2,n]

Corollary:

N ′ ∩ Mn = A[1,n]

M = A(−∞,∞),N = (A(−∞,0] ∪ A[2,∞))
′′
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Planar algebras:

A planar algebra is a collection {Pn : n ≥ 0} of
C-vector spaces which admits an action by the
coloured operad of planar tangles. Here is an
example of a planar tangle:
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Figure 1: Tangle T

A planar tangle T has the following features:

(a) its boundary consists of an external box
(labelled B0), and some number b (which is 3
in this example, and can, in general, even be
0) of internal boxes (labelled B1, · · ·Bb).
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(b) each box Bi has an even number 2ki of

marked points, and is said to be of colour ki.

In this example,

k0 = 3, k1 = 4, k2 = 0, k3 = 3.

(c) There are a number of non-crossing ‘strings’

which are either closed curves or have their two

ends on a marked point of one of the boxes,

in such a way that every marked point is the

end-point of some string.

(d) The entire configuration comes equipped

with a checkerboard shading.

(e) One special marked point on each box of

non-zero colour is labelled with a ‘*’ in such

a way that as one travels outward (resp., in-

ward) from the *-point of an internal (resp.,

the external) box, the black region is to the

right.
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The one thing one can do with tangles is com-

position, when that makes sense: thus, if S

and T are tangles, such that the external box

of S has the same colour as the i-th internal

box of T , then we may form a new tangle T ◦iS

by ‘glueing S into the i-th internal box of T in

such a way that the *-points and the strings

at the common boundary are aligned.

A tangle T with boxes coloured k0, · · · , kb is

required to induce a linear map

(ZP
T =)ZT : ⊗b

i=1Pki
→ Pk0

and these maps are to satisfy some natural

compatibility requirements, the most impor-

tant being compatibility with composition of

tangles.
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Compatibility with composition:

If tangles S and T have colour attributes as

below,

S T T o
2

S
c

d

e

f

a

b

a

b

d

e

fc

then

Z(S) : Pa ⊗ Pb → Pc,

Z(T ) : Pd ⊗ Pc ⊗ Pe → Pf ,

Z(T ◦2 S) : Pd ⊗ Pa ⊗ Pb ⊗ Pe → Pf .

and it is required that

Z(T ◦2 S) = Z(T ) ◦ (idPd
⊗ Z(S) ⊗ idPe

)
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The planar algebra of a Kac algebra H:

Define Pk(H) to be the vector space with basis

consisting of ‘H-labelled k-tangles’: so a basis

vector is a k-tangle such that:

• every internal box has colour two and is

labelled by an element of H

• there are no loops in the tangle

The collection P(H) = {Pk(H)} admits a nat-

ural action by planar tangles. The planar al-

gebra P (H) is the quotient of this ‘free planar

algebra’ P(H) by the following set of relations

- where n = dim(H), h denotes the Haar inte-

gral, and we have used standard Hopf algebra

notation:
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The relations in P (H):

+ = ζ + = = n1/ 2(00) ;
* * *
ζa b a b

1
H

(id) (h)= h
* *

= n
−1/2

(1) = (2) = n
1/ 2

φ
ε* *a (a)

a (a)

*

*

*
*

1

2a

b
a

a b

Σ= (4)(3) Sa
*

= a

*
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It must be mentioned that if N ⊂ M is a ‘good’

subfactor, then the space Pk of the associated

planar algebra is nothing but N ′∩Mk−1, where

N = M−1 ⊂ M = M0 ⊂ M1 ⊂ M2 ⊂ · · ·

is the asociated Jones’ basic construction tower.

It follows easily from our model for the subfac-

tor N = A(−∞,−1] = MH ⊂ A(−∞,−0] = M , by

using Lemma (rel.comm), that Pk = A[1,k−1]

for k ≥ 2. (Also, P1 = C.) For instance, the

isomorphism φ4 : A[1,3] → P4 is the map which

sends aofob to the labelled tangle given below,

where F : H∗ → H is the ‘Fourier transform.:

a

Ff

b

*
*

* *
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One of the crowning results of Jijo’s thesis is:

Theorem: P(H) may be identified with the

planar subalgebra of P (H∗op), with Pn(H) con-

sisting of those elements g ∈ Pn(H∗op) which

satisfy

= (
g

g

f

f
f

ff

1

2
3

n n−1

**

*

* *

*

*

*

*

1)f

for all f ∈ P2(H
∗op) = H∗op. (Recall our ‘Sweedler-

like notation’, whereby ∆n(f) = f1 ⊗ · · · ⊗ fn,

with ∆n denoting iterated comultiplication.)
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In particular,

P2k(H) = P2k(H
∗op) ∩ ∆k(H

∗op)′ .

Corollary: If H∗ is commutative, then P(H) =

P (H∗op) and so the subfactor RH∗
⊂ R is iso-

morphic to the asymptotic inclusion of RH ⊂

R. (Thus, R ⊂ R o G is isomorphic to the

asymptotic inclusion of RG ⊂ R.)
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