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Much of this talk is based on the doctoral the-
sis of my student and inspired by the in-

tuition of my colleague

Our motivation stems from:

Finite-dimensional Kac

algebras (=Hopf C*-algebras) are in bijec-
tive correspondence with subfactors of depth

two.

T he subfactor analogue of the
quantum double construction is the asymp-

totic inclusion.

‘Good’ subfactors are equivalent to
planar algebras.



“Every finite-dimensional Kac algebra (=Hopf
C*-algebra) H admits a canonical ‘outer ac-
tion’ on the Il factor R, and the associated
‘fixed subalgebra RH - R is the ‘protoypical
subfactor of depth 2.”

In the first part of this talk, I shall try to explain
the terms of the above paragraph, and give a
model for this action.

- "T'he subfactor analogue of the quan-
tum double is the asymptotic inclusion”

In the second part of the talk, I shall describe
the asymptotic inclusion of the ‘Kac-algebra
subfactor’.

Finally, I shall describe the planar algebraic de-
scriptions of these two subfactors.



Let H = H(u,1,A,¢,S,%x) be a Kac algebra
and A be a unital * algebra (both finite di-
mensional).

Definition (action) : An action of H on a
*-algebra A is a linear map a : H — Endo(A)
satisfying:

(i) g = Idy

(ii) Oza(lA) = e(a)lA,Va c H

(III) Aap — g O Oy

(iv) aa(zy) = Zoa; (@) aa, (y)

(V) aa(z)* = age(z”)

(We use (slightly modified) Sweedler-notation:
Ala) =a1 R as.)

Example The dual H* of a Kac algebra H is
also a Kac algebra, and H* acts on H by the

rule ar(a) = f(az)ay



The crossed product A x H is the unital asso-
ciative *-algebra, with underlying vector space
A ® H, and multiplication and involution de-
fined by

(xxa)(yxbdb) = zag,(y) > ab
(x xa)* oza»i(x*) X as.

The iterated crossed products: With H, A, o
as above, the action of H* on H can be pro-
moted to an action - call it f+— B - of H* on
A x H by ‘ignoring the A-component’ thus:

Br(x xa) = xxar(a),
and we can define
AXHXH* = (AxH)xH* .
For integers k < [, we iteratively define
A = Ap—1) X Hy = Hig X Hygp 1 X X Hj
where

7. — H if 4 is odd
] H* if 1 is even



We may, and do, regard A[k,l] as a *-subalgebra
of A[k1,l1] whenever k1 < k<[ < ;.

Let us write

5 — { ¢ if k is even
h if k is odd
where h and ¢ respectively denote suitably nor-
malised Haar integrals in H and H™*. It is then
true* that there is a unique consistent trace (=
faithful normalised positive tracial functional)
‘tr' defined on the grid {Ap ;1 —00 <k <1<
oo} satisfying

[
tT(CE(k) TR :B(l)) — H (b(j)(x(j)) .

j=k

*The only way we know to prove this seemingly elemen-
tary fact relies on the use of diagrammatic computa-
tions in the sense of Jones’ planar algebras.



With the foregoing notation, write A(_,, , for
the weak closure of UZ,Ap_j; in the GNS
representation afforded by ‘tr’. Specifically,
let N = A(—oo,—l] and M = A(—OO,O] We sum-
marise some facts about these objects below.

Theorem:

(a) N and M are both isomorphic to the hy-
perfinite 17 factor R.

(b) There is a natural action - call it o - of
H on M (by piecing together the consistently
defined actions on the A;_, qopy).

(c) NNnM =_C.

(d) MH :={z e M : ag(z) = e(a)z Ya € H} =
N, so the action « is outer.

(e) The tower {A_ ,:n > 1} is isomorphic
to the tower {M, : n > 1} of Jones’ basic
construction.



The asymptotic inclusion:

For a general finite-index subfactor N C M
with associated ‘Jones tower’

N=M_{1CM=MygCM CMyC:--

of 11 factors, there is a consistent trace ‘tr’ on
the tower { My} (because a I factor admits a
unique trace). It follows that if we define My
to be the weak closure of UP2_; My in the GNS
representation afforderd by ‘tr’, then M = M«
IS again a I1q factor. In fact, it turns out that
N=(MU(M NMx))"is also a II; factor and
in fact a finite-index subfactor of M.

The subfactor N C M is the asymptotic in-
clusion of N C M.



We now consider our model

N'= Acoo-1) © A(—ooi0) =M

and want to describe the Jones towers for the
subfactors N ¢ M and N C M, which we de-
note by

NZM_1CM:MOCMch2C”.

and

N=M_i1CM=MogCMiCMyC---

Lemma (rel.comm): If £+ 2 <n, then
Al ookl N A(=com) = Apt2n)
Corollary:
NN Mp = A )
M=A_0oc) N =(ACao0 U A[Q,OO))”

8



Planar algebras:

A planar algebra is a collection {P, : n > 0} of
C-vector spaces which admits an action by the
coloured operad of planar tangles. Here is an
example of a planar tangle:

B

,,,,,,

e

Figure 1: Tangle T
A planar tangle T" has the following features:

(a) its boundary consists of an external box
(labelled Bg), and some number b (which is 3
in this example, and can, in general, even be
0) of internal boxes (labelled By, - By).



(b) each box B; has an even number 2k; of
marked points, and is said to be of colour k;.
In this example,

ko=3,k; =4,k =0, k3 = 3.

(c) There are a number of non-crossing ‘strings’
which are either closed curves or have their two
ends on a marked point of one of the boxes,
in such a way that every marked point is the
end-point of some string.

(d) The entire configuration comes equipped
with a checkerboard shading.

(e) One special marked point on each box of
non-zero colour is labelled with a ‘*’ in such
a way that as one travels outward (resp., in-
ward) from the *-point of an internal (resp.,
the external) box, the black region is to the
right.
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The one thing one can do with tangles is com-
position, when that makes sense: thus, if S
and T are tangles, such that the external box
of S has the same colour as the i-th internal
box of T', then we may form a new tangle To;S
by ‘glueing S into the -th internal box of 71" in
such a way that the *-points and the strings
at the common boundary are aligned.

A tangle T with boxes coloured kq,---,kp IS
required to induce a linear map

(Z'ZE :)ZT : ®7I,):1sz — Pko

and these maps are to satisfy some natural
compatibility requirements, the most impor-
tant being compatibility with composition of
tangles.
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Compatibility with composition:

If tangles S and T' have colour attributes as
below,

then

Z(T): Pp®@ Pc®@ Pe — Py,
Z(TOQS):Pd@)P&@Pb@Pe — Pf

and it is required that

Z(T o> S8)=7Z(T) o (idpd ® Z(S) ® idpe)
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The planar algebra of a Kac algebra H.:

Define P,.(H) to be the vector space with basis
consisting of ‘H-labelled k-tangles’: so a basis
vector is a k-tangle such that:

e every internal box has colour two and is
labelled by an element of H

e there are no loops in the tangle

The collection P(H) = {P,(H)} admits a nat-
ural action by planar tangles. The planar al-
gebra P(H) is the quotient of this ‘free planar
algebra’ P(H) by the following set of relations
- where n = dim(H), h denotes the Haar inte-
gral, and we have used standard Hopf algebra
notation:
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The relations in P(H):
L LU
T Tl OO

(id) 1 =

L - U r
(1) a = g(a 5 . T 0@
] § rQ ) l

*Tai J - b / K 3
(3) . =3, \ @ [Sa] = [ 2
b ' P

‘F S |
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It must be mentioned that if N C M is a ‘good’
subfactor, then the space P, of the associated
planar algebra is nothing but N'NnM;_41, where

N=M_1CM=MygCM CMyC---

is the asociated Jones’ basic construction tower.

It follows easily from our model for the subfac-
tor N = A(—oo,—l] = MH C A(—oo,—O] = M, by
using Lemma (rel.comm), that P, = Ap ;)
for k > 2. (Also, P = C.) For instance, the
isomorphism ¢4 A[1)3] — P, is the map which
sends ax fxb to the labelled tangle given below,
where F' : H* — H is the ‘Fourier transform.:
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One of the crowning results of Jijo's thesis is:

Theorem: P(H) may be identified with the
planar subalgebra of P(H*°P), with P,(H) con-
sisting of those elements g € Pr(H*°P) which
satisfy

= f(1) 9

forall f € Po(H*°P) = H*°P, (Recall our ‘Sweedler-
like notation’, whereby An(f) = f1 Q- Q fn,
with A, denoting iterated comultiplication.)
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In particular,

Por(H) = Pop,(H*P) N AR (H*P) .

Corollary: If H* is commutative, then P(H) =
P(H*°P) and so the subfactor RH" ¢ R is iso-
morphic to the asymptotic inclusion of R
R. (Thus, R C R x G is isomorphic to the
asymptotic inclusion of RG C R.)
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