
NOTES ON VON NEUMANN ALGEBRAS

ARUNDHATHI KRISHNAN

0.1. Topologies on B(H). Let H be a complex separable Hilbert space and B(H)
be the ∗-algebra of bounded operators on H. A ⊆ B(H) is a C∗ algebra if and only
if it is closed in the norm topology. We define some other topologies on B(H).

Definition 0.1. We say that a net {xλ}λ∈Λ in B(H) converges strongly to x ∈
B(H) if ‖xλξ − xξ‖ → 0∀ξ ∈ H. This is denoted by xλ

st−→ x.

Equivalently, we can define a strong neighbourhood as follows: For ξ1, ξ2, · · · ,
ξn ∈ H, ε > 0, x ∈ B(H), let N(x, ξ1, ξ2, · · · , ξn, ε) = {y ∈ B(H) : ‖xξi − yξi‖ <
ε∀i ∈ {1, 2, · · · , n}}. Then this gives a basis for the strong topology, also called the
strong operator topology or SOT.

Definition 0.2. We say that a net {xλ}λ∈Λ in B(H) converges weakly to x ∈ B(H)
if 〈xλξ, η〉 → 〈xξ, η〉 ∀ξ, η ∈ H. This is denoted by xλ

w−→ x.

Equivalently, a weak neighbourhood is given as follows: For ξ1, ξ2, · · · , ξn ∈ H
and η1, η2, · · · , ηn ∈ H, ε > 0, x ∈ B(H), let N(x, ξ1, ξ2, · · · , ξn, η1, η2, · · · , ηn, ε) =
{y ∈ B(H) : |〈(x− y)ξi, ηi〉| < ε∀i ∈ {1, 2, · · · , n}}. This gives a basis for the weak
or weak operator topology (WOT). Then the weak topology is contained in the
strong topology, which is contained in the norm topology.

Exercise 0.3. (1) Let {xλ} be a net such that sup
λ∈Λ

‖xλ‖ < ∞. Let S ⊆ H

be total. Then xλ
st−→ x iff xλξ → xξ ∀ξ ∈ S. Similarly, xλ

w−→ x iff
〈xλξ, η〉 → 〈xξ, η〉 ∀ξ, η ∈ S.

(2) Let H = l2(N) and S((x1, x2, · · · )) = (0, x1, x2, · · · ). Let Sn = Sn. Then
S∗n

st−→ 0 but Sn 9 0 strongly.
Similarly,for a continuous version of the above, let H = L2((0,∞)) and

Stf(s) =

{
f(s− t), s ≥ t,

0, otherwise.
Then S∗t

st−→ 0 but St does not converge

to 0 strongly. Hence the ∗ operation is not strongly continuous.
(3) x → x∗ is weakly continuous.
(4) If xλ

st−→
w

x, then xλy
st−→
w

xy and yxλ
st−→
w

yx. That is, multiplication is
separately continuous.

(5) If {xλ} is a net such that sup
λ∈Λ

‖xλ‖ < ∞ and {yλ} such that sup
λ∈Λ

‖yλ‖ < ∞,

and xλ
st−→ x, yλ

st−→, then xλyλ
st−→ xy. So for bounded nets, multiplication

is jointly continuous.
(6) If S ⊆ B(H) is bounded, then the strong and topologies on S are metrizable.

Choosing an orthonormal basis {ξn} for H, we can write the metric as

d(x, y) =
∞∑

n=1

1
2n
‖xξn − yξn‖

and

d(x, y) =
∞∑

m,n=1

1
2m+n

|〈(x− y)ξn, ξm〉|

1



2 ARUNDHATHI KRISHNAN

for the strong and weak topologies respectively.
(7) Let H0 ⊆ H be a closed subspace and p be the projection onto H0. Then

TFAE for x ∈ B(H):
(a) xH0 ⊆ H0

(b) pxp = xp
Similarly, TFAE for x ∈ B(H):
(a) xH0 ⊆ H0, x

∗H0 ⊆ H0

(b) px = xp
(8) Let A ⊆ B(H) be a ∗ algebra. Then TFAE:

(a) xH0 ⊆ H0 ∀x ∈ A
(b) p ∈ A′ = {x ∈ B(H) : xx′ = x′x∀x ∈ A}

0.2. Commutants. Let S be a subset of B(H). Then define the commutant of S
as S′ = {x ∈ B(H) : xx′ = x′x∀x ∈ S}. We define S′′ as the commutant of S′ and
so on. Now, clearly, S ⊆ S′′. This implies that S′′′ ⊆ S′. But substituting S by S′

in the first inclusion, we get S′ ⊆ S′′′. Hence ∀n ∈ N, S2n+1 are all equal, and S2n

are equal for n ≥ 1. The question, then, is: When is S = S′′? This is answered by
the von Neumann density theorem. We first look at the finite dimensional version.

Proposition 0.4. Let A ⊆ B(H) be a unital ∗-subalgebra, where H is of finite
dimension, say n. Then A = A′′.

Proof. Clearly A ⊆ A′′. Let y ∈ A′′. In order to show that y ∈ A, we will show
that ∃x ∈ A such that xξi = yξi for any arbitrary n vectors in H. We embed
A into B(H ⊗ H) = B(⊕n

i=1Hi) (where each Hi = H) by means of the map
Π : A → B(H ⊗ H) given by π(x) = x ⊗ 1. Let ξ = (ξ1, · · · , ξn) ∈ H ⊗ H. Let
K = Π(A)ξ = {(x⊗ 1)ξ : x ∈ A}. Let pk : H ⊗H → K be the projection onto K.
As K is invariant under Π(A), pk ∈ Π(A)′. Hence Π(A)′′pk = pkΠ(A)′′ and so K

is invariant under Π(A)′′. Now Π(A) = {

 x 0 · · · 0
0 x · · · 0
... · · · x

 : x ∈ A}.

Exercise 0.5. Show that Π(A)′ = Mn(A′) and Π(A)′′ = Π(A′′).

Now, for y ∈ A′′, η ∈ K,∃x ∈ A such that Π(y)η = Π(x)ξ since K is invariant
under Π(A)′′. In particular, take η = ξ. Then ∃x ∈ A such that Π(y)ξ = Π(x)ξ.
But this implies that yξi = xξi ∀i ∈ {1, 2, · · · , n}. �

Theorem 0.6 (von Neumann density theorem). Let A ⊆ B(H) be a unital ∗-
subalgebra. Then Āst = A′′, where Āst denotes the strong closure of A.

Proof. Clearly, A ⊆ A′′ and A′′ is strongly closed. Let y ∈ A′′ and let ξ1, · · · , ξn ∈
H, ε > 0. We will show that ∃x ∈ A such that x ∈ N(y, ξ1, · · · , ξn, ε). Embed A
into B(H ⊗ Cn) = B(⊕n

i=1Hi), where each Hi = H. Let Π denote the embedding.
Then as earlier, Π(A)′ = Mn(A′). For ξ = (ξ1, · · · , ξn), let K = Π(A)ξ. Then K is
invariant under Π(A) and hence under Π(A)′′, as earlier. For y ∈ A′′, Π(y)ξ ∈ K
and hence, for ε > 0, ∃x ∈ A such that ‖Π(x)ξ−Π(y)ξ]‖ < ε. But this implies that
‖yξi − xξi‖ < ε ∀i ∈ {1, · · · , n}. �

Corollary 0.7 (von Neumann double commutant theorem). TFAE for a unital
∗-algebra.

(1) M = M ′′

(2) M is strongly closed.
(3) M is weakly closed.

Definition 0.8. A unital ∗-subalgebra of B(H) that satisfies one of the above
equivalent conditions is called a von Neumann algebra.
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Example 0.9. (1) Any finite dimensional unital ∗-algebra is a vNa.
(2) B(H) is a vNa.
(3) L∞([0, 1],B, λ) where λ is the Lebesgue measure on the Borel σ-algebra B.

For f ∈ L∞, the corresponding multiplication operator Mf ∈ B(L2([0, 1)).
The claim is that M = {Mf : f ∈ L∞} is a von Neumann algebra, that
is M = M ′′. To prove this, it is sufficient to show that M is a maximal
abelian subalgebra of B(H), which means M = M ′. Let T ∈ M ′ ⊆ B(L2).
We want f0 ∈ L∞ such that Mf0 = T . We define f0 := T1. Since L∞

is dense in L2, it is sufficient to show that Tf = Mf0f ∀f ∈ L∞. Now
Tf = TMf1 = MfT1 = Mff0 = f0f . Finally, we must show that f0 ∈ L∞.
We will prove that λ({t ∈ [0, 1] : |f0(t)| > ‖T‖}) = 0. This happens iff
λ({t ∈ [0, 1] : |f0(t)| ≥ ‖T‖ + 1

n}) = λ(En) = 0∀n. Suppose not, then
λ(En) > 0 for some n. Let ξn = 1En

(λ(En))
1
2
, a unit vector in L∞. Then

‖Tξn‖ ≤ ‖T‖. But ‖Tξn‖ = ‖f0ξn‖ ≥ ‖T‖+ 1
n , a contradiction.

Exercise 0.10. Show that {Mx̃ : x̃ ∈ l∞} ⊆ B(l2(N)) is a maximal abelian
subalgebra.

0.3. Group von Neumann algebras.

Definition 0.11. A vNa M is called a factor if Z(M) = M ∩M ′ = C1.

Example 0.12. Mn(C) and B(H) are examples of factors. We consider another
example. Let G be a locally compact Hausdorff group. Then ∃ a unique (upto
scalar) Haar measure on G, i.e. a measure µ on G such that∫

G

f(st) dµ(t) =
∫

G

f(t) dµ(t) ∀f ∈ L1(G, µ).

Define for g ∈ G, f ∈ L2(G),

(ugf)(g′) = f(g−1g′), g′ ∈ G.

Exercise 0.13. Each ug is a unitary with u∗g = ug−1 .

Definition 0.14. We define the group von Neumann algebra as

λ(G) = {ug : g ∈ G}′′.
From now on, we consider G to be a countable discrete group. Let H = l2(G).

Let

eg(g′) = δg,g′ =

{
1 g = g′

0 otherwise

Then {eg : g ∈ G} is an orthonormal basis for l2(G). If ug is defined as above, i,e,
(ugf)(g′) = f(g−1g′), then it is seen that ugeg′ = egg′ .

Example 0.15. Let G = (Zn,+). Then H = l2(G) = Cn. Its orthonormal basis
is given by

em(k) = δm,k =

{
1 m = k

0 m 6= k

Then ukem = e(k+m)mod n. It can be seen that the uns will be matrices that are
constant (= 1) on the diagonals. λ(G) = span {ug : g ∈ G} and hence if n = 4,
say, λ(G) consists of elements of the form

a b c d
d a b c
c d a b
b c d a

 .

Since G is commutative, so is λ(G).
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Any T ∈ B(l2(G)) can be considered as an infinite matrix indexed by G×G. If
x ∈ λ(G), we denote the associated matrix also by x with x(g, g′) = 〈xeg′ , eg〉.

Proposition 0.16. x ∈ λ(G) ⊆ B(l2(G)) can be given in matrix form with respect
to the orthonormal basis {eg}. Then x(g, g′) = x(h, h′) if gg′−1 = hh′−1.

Proof. Let x = uk. uk(g, g′) = 〈ukeg′ , eg〉 = 〈ekg′ , eg〉 = δkg′,g = δk,gg′−1 . Hence
if gg′−1 = hh′−1, then uk(g, g′) = uk(h, h′). The relation holds for finite linear
combinations and extends to the weak closure λ(G). �

Exercise 0.17. M = {x ∈ B(l2(G)) : ∃c : G → C such that x(g, g′) = c(gg′−1)}
is a von Neumann algebra. (Hint: If c is the corresponding function for x ∈ M ,
choose the function given by c∗(g) = c(g−1) for x∗ and convolve for products).

Proposition 0.18. Let M = {x ∈ B(l2(G)) : ∃c : G → C such that x(g, g′) =
c(gg′−1)}. Then λ(G) = M .

Proof. For x ∈ λ(G), take c = xe1, where 1 is the identity of G. This proves
λ(G) ⊆ M .

For the reverse inclusion, let x′ ∈ λ(G)′ and x ∈ M . We formally write x =∑
h∈G chuh. By this we (only) mean xeg =

∑
h∈G chehg. Then we can directly

verify (exercise!)
〈x′xeg, eg′〉 = 〈xx′eg, eg′〉.

Thus it follows that λ(G)′ ⊆ M ′. (This proof for the reverse inclusion was pointed
out by Debdyuti in the tutorial.) �

Definition 0.19. Given c ∈ l2(G), consider (c ? f)(g′) =
∑

g∈G c(g)f(g−1g′), f ∈
l2(G). If c ? f ∈ l2(G), then define Lc(f) = c ? f .

Proposition 0.20. Lc is bounded on l2(G).

Proof. Let fn ∈ l2(G) be such that fn → 0 and c ? fn → f0. By the closed graph
theorem, it suffices to prove that f0 = 0. Now,

|(c ? fn)(g′)| ≤ |
∑
g∈G

c(g)fn(g−1g′)| ≤ ‖c‖2‖fn‖2 ∀g′ ∈ G,

by Cauchy Schwarz. Hence ‖c ? fn‖∞ ≤ ‖c‖2‖fn‖2. As fn → 0, ‖fn‖2 → 0. Hence
c ? fn → 0 in l∞. Hence c ? fn → 0 in l2, since it is already known to converge to
some f0 in l2. �

Definition 0.21. For c as above, let λC(G) = {Lc : c ? f ∈ l2(G)∀f ∈ l2(G)}′′.

We have shown that λ(G) = M ⊆ λC(G). Indeed it is an equality which will be
clear after proving Tomita-Takesaki theorem (for II1 factors).

Definition 0.22. A group G is said to be ICC (infinite conjugacy class) if all the
conjugacy classes are infinite except for the identity.

Proposition 0.23. λ(G) is a factor iff G is ICC.

Proof. Suppose G is ICC. Let x ∈ λ(G) ∩ λ(G)′. We must show that x is a scalar.
Since λ(G) = M , we write x as the (formal) sum x =

∑
g′∈G cg′ug′ .

Now, xuh = uhx∀h ∈ G. Thus uhxu∗h = x. Hence 〈uhxu∗he1, eg〉 = 〈xu∗he1, u
∗
heg〉 =

〈xeh−1 , eh−1g〉 = 〈
∑

g′∈G cg′ug′eh−1 , eh−1g〉 = ch−1gh.
On the other hand, 〈xe1, eg〉 = cg. Hence, for each g ∈ G, ch−1gh = cg ∀h ∈ G.

So c is constant on conjugacy classes. But since c = xe1 ∈ l2(G), we must have
c = 0.

Conversely, if G is not ICC. Let C be a finite conjugacy class. Define x =∑
g∈C ug. Now,

∑
g∈C uh−1gh =

∑
g∈C ug ∀h ∈ G, since C is a conjugacy class.



NOTES ON VON NEUMANN ALGEBRAS 5

This implies that uhxu∗h = x∀h ∈ G. Hence xuh = uhx∀h ∈ G, so x is a non scalar
which is in λ(G) ∩ λ(G)′.

�

Definition 0.24. We define the trace on λ(G) by tr : λ(G) → C, tr(x) = 〈xe1, e1〉.

Proposition 0.25. The functional tr is linear, weakly continuous, tracial (i.e.
tr(xy)=tr(yx)), positive (tr(x∗x) ≥ 0∀x ∈ λ(G)), and faithful (tr(x∗x) = 0 ⇒ x =
0). Also, tr(1) = 1.

Proof. It is easily seen that tr is linear and weakly continuous. We show that it is
tracial as follows: If x =

∑
g∈G cgug and y =

∑
g∈G dgug, then

xy =
∑
h∈G

(
∑
g∈G

cgdg−1h)uh.

Hence, tr(xy) = 〈xye1, e1〉 =
∑

g∈G cgdg−1h =
∑

g∈G dgcg−1h = tr(yx).
To prove positivity, suppose tr(x∗x) = 0. Then

∑
g∈G |cg|2 = 0 ⇒ cg = 0 ∀g ∈

G ⇒ x = 0. Finally, tr(1) = 〈e1, e1〉 = 1. �

Exercise 0.26. (1) On Mn(C), define tr: Mn(C) → C by

tr((xij)) =
1
n

n∑
i=1

xii.

Then tr is the unique linear functional on Mn(C) satifying tr(xy) = tr(yx),
tr(1) = 1.

(2) Let H be an infinite dimensional Hilbert space. Then show that there exists
no weakly continuous linear functional tr: B(H) → C satisfying tr(xy) =
tr(yx)∀x, y ∈ H.

Exercise 0.27. If the the trace on a von Neumann algebra is unique, then it is
a factor. (If there exists a nontrivial central projection p consider t

tr(p) tr(xp) +
1−t

tr(1−p) tr(x(1− p)) for t ∈ (0, 1).

Definition 0.28. Let M,N be von Neumann algebras. An isomorphism Φ : M →
N is a bijective linear ∗-homomorphism which is weakly continuous. (Actually the
weakly continuous condition can be dropped from this definition.)

Proposition 0.29. If G is ICC, then λ(G) is an infinite dimensional factor not
isomorphic to B(H) for any H.

Proof. λ(G) is infinite dimensional since the set {ug : g ∈ G} is linearly indepen-
dent. The proposition follows since there exists a trace on λ(G). �

Proposition 0.30. λ(G) does not contain isometries which are not unitaries.

Proof. Suppose u ∈ λ(G) and u∗u = 1. Then

0 ≤ tr(1− uu∗) = 1− tr(uu∗) = 1− tr(u∗u) = 0.

Since u is an isometry, 1−uu∗ is a projection and hence positive. Thus tr(1−u∗u) =
0 ⇒ 1−uu∗ = 0. This is called the finiteness property of von Neumann algebras. �

We list some facts we will require.
(1) Projections generate any von Neumann algebra. This follows from spectral

theorem.
(2) Let A be a C∗ algebra. Then any x ∈ A can be written as a linear com-

bination of four unitaries. In particular, if x is self adjoint and ‖x‖ ≤ 1,
define u = x + i

√
1− x2. Then x = u+u∗

2 .
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(3) For a von Neumann algebra M , let P (M) denote the set of all projections
in M and U(M) denote the set of unitaries in M . ThenM = (P (M ′))′ =
U((M ′))′.

Definition 0.31. Let x ∈ B(H). The left support of X is defined as the projection
onto range(x) and is denoted by l(x). The right support of X is defined as the
projection onto (ker(x))⊥ and is denoted by r(x). If the two are equal, they are
called the support of x.

Exercise 0.32. l(x) is the smallest projection p such that px = x, and r(x), the
smallest projection such that xp = x.

Proposition 0.33. If x ∈ M , then l(x), r(x) ∈ M .

Proof. Suppose a projection satisfies px = x. Then for any u′ ∈ U(M ′), u′pxu′∗ =
u′xu′∗ = u′u′∗x = x. Hence px = x iff u′pxu′∗ = x∀u′ ∈ U(M ′). In particular,
u′l(x)u′∗x = x∀u′ ∈ U(M ′). Hence, by the exercise, l(x) ≤ u′l(x)u′∗ ∀u′ ∈ U(M ′).
But this implies that l(x)u′ = u′l(x)∀u′ ∈ U(M ′). Hence l(x) ∈ M . Similarly,
r(x) ∈ M . �

Exercise 0.34. Let x ∈ M and x = u(x∗x)
1
2 = u|x| be the polar decomposition of

x. Then |x|, u ∈ M .

Remark 0.35. Let p, q be projections. Then p∧ q is the projection onto pH ∩ qH,
and p ∨ q = (p⊥ ∧ q⊥)⊥ is the projection onto the space generated by pH and qH.
If p, q ∈ M , then p ∧ q, p ∨ q ∈ M .

Proposition 0.36. Let {xλ}λ∈Λ ⊆ M be an increasing net of self-adjoint elements,
i.e. xλ1 ≤ xλ2 if λ1 ≤ λ2. Let sup

λ∈Λ
‖xλ‖ < ∞. Then ∃x ∈ M such that xλ → x

strongly.

Proof. For each ξ ∈ H, 〈xλξ, ξ〉 increases to some scalar. Let the (self-adjoint)
operator determined by this quadratic form be called x. Then 〈(x− xλ)ξ, ξ〉 → 0.
Hence ‖(x− xλ)

1
2 ξ‖ → 0. This implies that (x− xλ)

1
2

st−→ 0, which in turn implies
that (x−xλ) st−→ 0 because multiplication is jointly continuous strongly on uniformly
bounded sets. �

Example 0.37. Some examples of ICC groups are:

(1) S∞ = ∪Sn = {permutations on {1, 2, · · · } fixing all but finitely many}.
(2) Fn, the free group generated by n elements.

Remark 0.38. Let {pλ : λ ∈ Λ} ⊆ M be a collection of projections. Let F
denote all finite subsets of Λ. For s ∈ F , define ps = ∨λ∈S pλ. Then {ps}s∈F is
an increasing net. Its limit is denoted by ∨λ∈Λ pλ, the projection onto the closed
subspace generated by the ranges of all pλ. Similarly, one can talk about ∧λ∈Λ pλ,
the projection onto the intersection of ranges of pλ.

0.4. Equivalence of projections.

Proposition 0.39. Let M be a von Neumann algebra in B(H), and p ∈ P (M).
Then pMp = {pxp : x ∈ M} and M ′p = {px′ : x′ ∈ M ′} are von Neumann algebras
in B(pH).

Proof. On pH, pMp and M ′p commute, as (pxp)(x′p) = pxx′pp = px′xp = (x′p)(pxp).
Hence, pMp ⊆ (M ′p)′ and M ′p ⊆ (pMp)′ on pH. We show that in both cases,
equality holds, hence pMp and M ′p are von Neumann algebras.
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Let x ∈ (M ′p)′ ⊆ B(pH). We want x̃ ∈ M such that px̃p = x. Let x̃ = xp on
H. Then x̃ = xp = pxp on pH. Let x′ ∈ M ′. Then

x′x̃ = x′xp

= x′pxp

= (x′p)(pxp)

= (pxp)(x′p)

= x̃x′ (on pH).

Hence x̃ ∈ M ′′ = M . Next, we prove that (pMp)′ ⊆ M ′p. It is enough to prove
this for the unitaries of (pMp)′. Let u ∈ U(pMp)′. Let K = MpH ⊆ H, and
q : H → K be the projection onto K. Then q commutes with both M and M ′,
hence q ∈ Z(M). We want ũ ∈ M ′ such that ũp = u. Define u0 on K by

u0(
∑

miξi) =
∑

miuξi, mi ∈ M, ξ ∈ pH.

Then
〈u0(

∑
i

xiξi), u0(
∑

j

yjηj)〉 = 〈
∑

i

xiuξi,
∑

j

yjuηj〉

= 〈
∑

i

xipuξi,
∑

j

yjpuηj〉

=
∑
i,j

〈py∗j xipuξi, uηj〉

=
∑
i,j

〈upy∗j xipξi, uηj〉

= 〈
∑

i

xiξi,
∑

j

yjηj〉.

Hence, by the totality of the set {miξi : mi ∈ M, ξ ∈ pH} in qH, u0 is well-
defined and extends to an isometry on qH. Now define ũ = u0q, and notice that u0

commutes with M on qH. That is, u0mξ = mu0ξ ∀ξ ∈ qH. Hence ũ = u0q ∈ M ′

and u = ũp. �

Corollary 0.40. If M is a factor and p ∈ M , then pMp and M ′p are factors, and
x′ 7→ x′p is a weakly continuous ∗-isomorphism between M ′ and M ′p.

Proof. As in the previous proof, let K = MpH ⊆ H, and q : H → K be the
projection onto K. Then q commutes with both M and M ′, hence q ∈ Z(M). As
M is a factor, q must be identity, and hence K = H. Suppose, for x′ ∈ M ′, x′p = 0.
Then x′(

∑
miξi) =

∑
mix

′pξi = 0, mi ∈ M, ξ ∈ pH. Hence x′ = 0 on K = H.
Thus the above map is injective, and M ′p is a factor. But pMp = (M ′p)′ on pH,
and hence is also a factor. �

Proposition 0.41. Let M ba a factor, and p, q ∈ P (M) be non-zero projections.
Then ∃u ∈ M unitary such that puq 6= 0.

Proof. Suppose ∀u ∈ U(M), puq = 0. Then (u∗pu)q = 0 ∀u ∈ U(M), where u∗pu is
a projection. Hence (∨u∈U(M)u

∗pu)q = 0. But for non-zero p,∨u∈U(M)u
∗pu ∈ M ′

and hence equals to 1. �

Proposition 0.42. Let p, q ∈ P (M) be non-zero projections. Then ∃ a partial
isometry u 6= 0 such that u∗u ≤ q and uu∗ ≤ p.

Proof. By the previous proposition, ∃x such that pxq 6= 0. Let u be the partial
isometry in the polar decomposition pf pxq. Then it can be verified (exercise!) that
u∗u ≤ q and uu∗ ≤ p. �
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Definition 0.43. Let M be a von Neumann algebra. p ∈ P (M), a non-zero
projection, is said to be minimal if whenever 0 6= q ≤ p, for q ∈ P (M), then q = p.

Corollary 0.44. If u ∈ M is a partial isometry such that u∗u is minimal, then
uu∗ is also minimal.

Corollary 0.45. If p is a minimal projection, then pMp = Cp.

Definition 0.46. A factor M is said to be of type I if it contains minimal projec-
tions. B(H) is a type I factor.

We prove that B(H) is essentially the only kind of type I factor

Proposition 0.47. If M ⊆ B(H) is a type I factor, then ∃H0 and K Hilbert
spaces, and U : H0 ⊗K → H unitary such that U(B(H0)⊗ 1)U∗ = M .

Proof. Let e1 be any minimal projection in M . Let {e1, e2, · · · } be a maximal
collection of mutually orthogonal minimal projections in M . Claim:

∑
n en = 1. If

not, choose a partial isometry u such that u∗u ≤ 1−
∑

n en and uu∗ = e1 (possible
by Proposition 0.42). uu∗ = e1 is minimal, and so u∗u is minimal, and u∗u ⊥ en ∀n,
which contradicts the maximality of {e1, e2, · · · }.

Using minimality, now choose partial isometry e1i satisfying e1ie
∗
1i = e1 and

e∗1ie1i = ei. Let x ∈ M , then x =
∑

eixej , with the sum denoting strong conver-
gence. Notice

eixej = e∗1ie1ixe∗1je1j ∈ e1Me1 = Ce1.

Now the proposition follows from the following exercise.

Exercise 0.48. H = ⊕jejH. Let H0 = e1H and K = l2(N). Define U : H0 ⊗
l2(N) → H by U(ξ0 ⊗ f) = ⊕jf(j)ej1ξ0. Verify that U is a well-defined unitary
that satisfies U(B(H0)⊗ 1)U∗ = M .

�

Corollary 0.49. If G is ICC, then λ(G) is not type I.

Definition 0.50. Let M be a von Neumann algebra and p, q ∈ P (M) be non-zero
projections. Then p ∼ q if ∃ a partial isometry u ∈ M such that u∗u = q and
uu∗ = p. p and q are said to be Murray-von Neumann equivalent.

Exercise 0.51. ∼ is an equivalence relation.

Definition 0.52. An order is defined on P (M) as p � q if ∃ a partial isometry u
such that uu∗ = p and u∗u ≤ q.

Proposition 0.53. � is a partial order on P (M), meaning that if p � q and q � p,
then p ∼ q.

Proof. Let p � q and q � p. Then ∃u, v such that u∗u ≤ q, uu∗ = p, and v∗v ≤
p, vv∗ = q. Define

p0 = p q0 = q
p1 = v∗q0v q1 = u∗p0u
...

...
pn+1 = v∗qnv qn+1 = u∗pnu

Note that pi ⊥ pj and qi ⊥ qj ∀i 6= j. Claim: qn and pn are decreasing pro-
jections. The proof is by induction. Note that p1 = v∗q0v = v∗qv = v∗vv∗v ≤
p = p0, and similarly q1 ≤ q0. Next, suppose pn−1 ≥ pn, qn−1 ≥ qn. Then
v∗qn−1v ≥ v∗qnv ⇒ pn ≥ pn+1. Similarly, qn ≥ qn+1. Define p∞ = ∧∞n=0 pn and



NOTES ON VON NEUMANN ALGEBRAS 9

q∞ = ∧∞n=0 qn. For each i, let w = pi − pi+1 Then u∗w∗wu = qi+1 − qi+2 and
wuu∗w∗ = pi − pi+1. Hence qi+1 − qi+2 ∼ pi − pi+1. Then u∗p∞p∞u = q∞ and
p∞uu∗p∞ = p∞. Hence p∞ ∼ q∞ ⇒ p ∼ q. �

When M has a faithful weak continuous positive trace, here is an alternate proof.

Proof. tr(v∗v) ≤ tr(p) = tr(uu∗) = tr(u∗u) ≤ tr(q) = tr(vv∗) = tr(v∗v). Hence
tr(p− v∗v) = 0. Hence p = v∗v ⇒ p ∼ q. �

Definition 0.54. (1) p ∈ P (M) is said to be infinite if ∃q � p such that q ∼ p.
(2) p ∈ P (M) is said to be finite if it is not infinite.
(3) A von Neumann algebra is said to be infinite if 1 is an infinite projection.
(4) A factor M is said to be type I if it contains non-zero minimal projections

(eg. B(H)).
(5) A factor M is said to be type II if contains no minimal projections, but

non-zero finite projections exist (eg. λ(G) when G is ICC).
(6) A factor M is said to be type II1 if it is type II and 1 is finite.
(7) A factor M is said to be type II∞ if it is type II and 1 is infinite.
(8) A factor M is said to be type III if it has no finite projections.

Exercise 0.55. If 1 is finite then all projections are finite.

Proposition 0.56. If M is a factor then � is a total order on P (M).

Proof. Let p, q ∈ P (M). We must show that either p � q or q � p. By Proposition
0.42, ∃u partial isometry such that uu∗ ≤ p, u∗u ≤ q.
Let S = {partial isometries u such that uu∗ ≤ p, u∗u ≤ q}. Define a partial order
on S by u ≤ v if u∗u ≤ v∗v and v �u∗uH= u. Under this partial order, every
chain has an upper bound. Let u0 be a maximal element. Claim: Either u0u

∗
0 = p

or u∗0u0 = q. If not, p − u0u
∗
0 > 0 and q − u∗0u0 > 0. Then, by Proposition

0.42, ∃ a partial isometry v such that vv∗ ≤ p − u0u
∗
0, v

∗v ≤ q − u∗0u0. Then
(u0 + v)(u0 + v)∗ ≤ p and (u0 + v)∗(u0 + v) ≤ q, contradicting the maximality of
u0. �

Definition 0.57. A trace is said to be normal if 0 ≤ xα ↗ x ⇒ tr(xα) ↗ tr(x).

0.5. Type II1 factors.

Theorem 0.58. Any II1 factor admits a faithful normal positive trace. The con-
verse also holds.

Proposition 0.59. Let M be a II1 factor. Then given ε > 0,∃ a non-zero projec-
tion p ∈ P (M) such that tr(p) < ε.

Proof. Suppose the proposition is false. Let 0 < d = inf {tr(p) : p ∈ P (M), p 6= 0}.
Let ε > 0 be arbitrary. ∃p ∈ P (M) such that d ≤ tr(p) < d + ε. We know that M
contains no minimal projection. Hence ∃q � p so that p − q 6= 0. Then d ≤ tr(q).
But tr(p− q) < d + ε− tr(q) ≤ ε. But this is a contradiction as ε is arbitrary and
can be chosen smaller than d. �

Lemma 0.60. Let M be type II1 and 0 6= p ∈ P (M). Then pMp is also a type II1
factor.

Proof. Define trp(pmp) = tr(pmp)
tr(p) , m ∈ M . Then trp is a trace on pMp, hence pMp

is II1. �

Proposition 0.61. Let M be type II1. Then tr: P (M) → [0, 1] is onto.
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Proof. Let r ∈ [0, 1]. We want p ∈ P (M) such that tr(p) = r. Let S = {p ∈
P (M) : tr(p) ≤ r} with the usual order for self-adjoints. By Zorn’s lemma, S has
a maximal elements, say q. Claim: tr(q) = r. Suppose not. Then (1− q)M(1− q)
is type II by Lemma 0.60. By Proposition 0.59, ∃ a projection p ∈ (1− q)M(1− q)
such that tr(p) < r − tr(q). Then p + q ≥ q and tr(p + q) ≤ r, contradicting the
maximality of q. �

Corollary 0.62. Let M be a type II1 factor. Then tr : P (M)/∼ → [0, 1] is an
order isomorphism, i.e., it is 1− 1, onto and order preserving.

Proof. The map is 1− 1 as � is a total order on P (M)/∼. �

Definition 0.63. (1) ω ∈ H is said to be cyclic for M if [Mω] = H, where
[Mω] = {xω : x ∈ M}.

(2) ω ∈ H is said to be separating for M if x ∈ M,xω ⇒ x = 0.

Proposition 0.64. Let M ⊆ B(H) be a von Neumann algebra. Then ω ∈ H is
cyclic for M iff ω is separating for M ′.

Proof. Let ω be cyclic for M and x′ω = 0 for x′ ∈ M ′. Then x′xω = xx′ω =
0∀x ∈ M . Hence x′ = 0. Next, suppose ω is separating for M ′. Let H0 = [Mω].
Let p : H → H0. Since p leaves H0 invariant, p ∈ M ′, and so 1 − p ∈ M ′. Then
(1− p)ω = 0 ⇒ 1− p = 0. Hence H0 = H. �

Corollary 0.65. Let M be a von Neumann algebra. Then ω is cyclic and separating
for M iff it is cyclic and separating for M ′.

Definition 0.66. Let M ⊆ B(H) be a II1 factor with a trace tr. We say that
M is in standard form if ∃ω ∈ H which is cyclic and separating for M such that
tr(x) = 〈xω, ω〉.

Example 0.67. (1) Λ(G) ⊆ B(l2(G)) is in standard form with ω = e1. Let
x =

∑
cgeg ∈ λ(G). xe1 = 0 ⇒

∑
cgeg = 0. Hence x = 0. This shows

that e1 is separating. e1 can be shown to be cyclic by considering finitely
supported l2(G) functions.

(2) Let M be a II1 factor with a trace tr. Define 〈x, y〉 = tr(y∗x) and let
H = l2(M) be the closure of M with respect to this inner product. Let
ω = 1 ∈ M̄ and Πtr : M → B(H) be the associated representation. Then
Πtr(M) is in standard form.

From now, we assume that M ⊆ B(H) is a type II1 factor in standard form.
Define JM (xω) = x∗ω, x ∈ M . Then JM is antilinear and J2

M = 1.

Proposition 0.68. JM extends to H as an anti-unitary.

Proof. 〈JMxω, JMyω〉 = 〈x∗ω, y∗ω〉 = tr(yx∗) = tr(x∗y) = 〈yω, xω〉. �

Proposition 0.69. JMx∗JM (yω) = yxω, x, y ∈ M .

Hence the operator JMx∗JM acts as right multiplication by x.

Proposition 0.70. JMMJM ⊆ M ′.

The proof follows since elements of M act as left multiplication, JMx∗JM acts
as right multiplication and by associativity. Indeed, equality holds in the above
proposition (Tomita-Takesaki theorem).

Proposition 0.71. Let M be in standard form with ω ∈ H cyclic and separating.
Then JM (x′ω) = x′∗ω and x′ 7→ 〈x′ω, ω〉 is a trace on M ′. Hence M ′ is also in
standard form and JM = JM ′ .



NOTES ON VON NEUMANN ALGEBRAS 11

Proof. Let x ∈ M,x′ ∈ M ′. Then

〈JM (x′ω), xω〉 = 〈JMxω, JMJM (x′ω)〉
= 〈JMxω, x′ω〉
= 〈x∗ω, x′ω〉
= 〈ω, xx′ω〉
= 〈ω, x′xω〉
= 〈x′∗ω, xω〉.

Hence JM (x′) = x′∗ω and JM = JM ′ . Further,

〈x′y′ω, ω〉 = 〈y′ω, x′∗ω〉
= 〈Jx′∗ω, Jy′ω〉
= 〈x′ω, y′∗ω〉
= 〈y′x′ω, ω〉.

Hence the tracial property is satisfied. �

Corollary 0.72. If M is a II1 factor in standard form, then M ′ ⊆ B(H) is a II1
factor in standard form, and JMJ = M ′, i.e., M ′ is anti-isomorphic to M

Proof. Let φ be the map that sends x to Jx∗J . Then φ(xy) = φ(y)φ(x). �

We can also associate a von Neumann algebra to a group through right multi-
plication as follows. For a countable group G, define vheg = egh−1, and extend to
l2(G). Let ρ(G) = {vg : g ∈ G}′′; we can also define ρC(G) by right convolution
operators similar to λC(G). Then ρ(G) ⊆ ρC(G) and hence ρC(G)′ ⊆ ρ(G)′.

We have proved λ(G) ⊆ ρ(G)′; also λC(G) ⊆ ρC(G)′. Now it is easy to verify
directly using Tomita-Takesaki theory for II1 factors that λ(G)′ = ρ(G). Hence it
follows that λ(G) = λC(G) = ρC(G)′ = ρ(G)′.

We do not prove the following converse statement, but will be used.

Proposition 0.73. Let M be a finite von Neumann algebra. Then there exists a
faithful normal positive trace on M .

0.6. Type II∞ factors.

Exercise 0.74. Any projection p ∈ M , p is finite if and only if pMp is finite.

Lemma 0.75. Let p, q are finite projections satisfying p ⊥ q. Then p + q is also
finite.

Proof. Since both pMp and qMq are finite, there exists traces on them. Now we
can define a trace on (p + q)M(p + q) by 1/2(tr(pxp) + tr(qxq)). �

Lemma 0.76. Let M be type II∞ and p ∈ P (M) be finite. Then ∃ countably
infinite projections p1, p2, · · · such that pn ∼ p∀n and

∑∞
n=1 pn = 1.

Proof. Let S = {p1, p2, · · · } be the maximal family of orthogonal projections such
that pn ∼ p and p1 = p. Then S has to be infinite since each pn is a finite projection.
Let q = 1−

∑∞
n=1 pn. Then q � p, for otherwise, maximality of S is contradicted.

Now,
∑∞

n=1 pn ∼
∑∞

n=2 pn (exercise!). Hence 1 = q+
∑∞

n=1 pn � p1+
∑∞

n=2 pn � 1.
Hence

∑∞
n=1 pn ∼ 1. If u is the partial isometry (indeed an isometry) implementing

this equivalence, then by replacing pn by u∗pn we may assume
∑∞

n=1 pn = 1. �

Proposition 0.77. Let M be type II∞. Then for any finite projection p ∈ M ,
pMp is type II1 ⊆ B(pH) and pMp⊗B(l2(N) is isomorphic to M .
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Proof. pMp is a II1 factor. By Lemma 0.76, ∃ countably infinite projections
p1, p2, · · · such that pn ∼ p∀n and

∑∞
n=1 pn = 1. Then ∃ui1 such that u∗i1ui1 = p1

and ui1u
∗
i1 = pi. Let uij = u∗i1u1j . The required map from M to pMp ⊗ B(l2(N)

can be defined by m 7→ ((ui1mu∗j1)). �

0.7. Type III factors. The following is a way to construct type III. Let M2n =
M2n(C). Consider the tower of algebras

A1 = M2 ↪→ A2 = M4 ↪→ · · · ↪→ An = M2n ↪→ M2n+1···

via the maps
x 7→ x⊗ 1 7→ x⊗ 1⊗ 1 · · · .

Then we can consider A0 =
⋃∞

n=1 An as formal infinite tensors with 1 in all but
finitely many places. A trace and norm is well-defined on this ‘inductive limit’,
since that is preserved under the inclusion maps. Let πtr be the associated GNS
representation then M = πtr(A0)′′ is a II1 factor. (Reason: The vacuum state
given by the GNS construction is indeed a trace, since its restriction to πtr(A0) is
a trace. It is a factor since this trace is unique, as its restriction is the unique trace
on πtr(A0).)

Now, instead of the trace if take our original state on M2 as

φ

([
a b
c d

])
=

1
1 + λ

a +
λ

1 + λ
d,

for λ ∈ (0, 1), then the same construction leads to type III factors.


