NOTES ON VON NEUMANN ALGEBRAS

ARUNDHATHI KRISHNAN

0.1. Topologies on B(H). Let H be a complex separable Hilbert space and B(H)
be the x-algebra of bounded operators on H. A C B(H) is a C* algebra if and only
if it is closed in the norm topology. We define some other topologies on B(H).
Definition 0.1. We say that a net {z)}xea in B(H) converges strongly to « €
B(H) if ||zz& — x€]| — 0VE € H. This is denoted by x5 =5 .

Equivalently, we can define a strong neighbourhood as follows: For &1,&,-- -,
én € Hye > 0,z € B(H), let N(x,&1,82,-++ ,én,€) = {y € B(H) : ||z& — &l <
eVi € {1,2,--- ,n}}. Then this gives a basis for the strong topology, also called the
strong operator topology or SOT.

Definition 0.2. We say that a net {xx}xea in B(H) converges weakly to z € B(H)
if (x\&,n) — (x&,m)VE,n € H. This is denoted by x) — .

Equivalently, a weak neighbourhood is given as follows: For &1,&s,---,&, € H
and n,nN2, M € H76 > Oal: € B(H)7 let N(x7§1a§23"' ,fnﬂ?lﬂhy"' annve) =
{ye B(H) : [{(x —y)&,mi)| < eVie{1,2,--- ,n}}. This gives a basis for the weak
or weak operator topology (WOT). Then the weak topology is contained in the
strong topology, which is contained in the norm topology.

Exercise 0.3. (1) Let {z»} be a net such that sup ||zs]] < co. Let S C H
A€A

be total. Then z) -5 z iff € — xEVE € S. Similarly, z) — x iff

(za&,m) — (x€,m) V€, € 5.
(2) Let H = [3(N) and S((x1,72,---)) = (0,21,22,---). Let S,, = S™. Then

Sy 250 but Sn - 0 strongly.
Similarly,for a continuous version of the above, let H = L?((0,00)) and

Stf(S)Z f($7t), s> 1,

0, otherwise.
to 0 strongly. Hence the % operation is not strongly continuous.
(3) © — a* is weakly continuous.

Then Sf “, 0 but S; does not converge

(4) If ) =, x, then z,y 2, zy and yxy =, yz. That is, multiplication is
w w w
separately continuous.
(5) If {zx} is a net such that s}\ur/)\ lza]| < oo and {yx} such that s)\ug\ lyall < oo,
€ €

and x) = T, Yx it», then x yx =t zy. So for bounded nets, multiplication
is jointly continuous.
(6) If S C B(H) is bounded, then the strong and topologies on S are metrizable.
Choosing an orthonormal basis {£,} for H, we can write the metric as
— 1
d(w,y) = 5ollegn = yéal
n=1

and
oo

Ay) = 3 s (@~ 1), )

m,n=1

1
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for the strong and weak topologies respectively.
(7) Let Hy C H be a closed subspace and p be the projection onto Hy. Then

TFAE for «x € B(H):

(a) xHo C Hy

(b) pzp=azp

Similarly, TFAE for 2 € B(H):

(a) xHy € Ho,x*Hy C Hy

(b) pr =ap
(8) Let A C B(H) be a x algebra. Then TFAE:

(a) xHo C HoVz € A

(b) pe A ={x € B(H) : xx' =2'zVx € A}

0.2. Commutants. Let S be a subset of B(H). Then define the commutant of S
as 8" ={x € B(H) : 2’ = 2’2 Vz € S}. We define S” as the commutant of S and
so on. Now, clearly, S C S”. This implies that S”/ C S’. But substituting S by S’
in the first inclusion, we get S’ C S"’. Hence Vn € N, §2"*! are all equal, and 52"
are equal for n > 1. The question, then, is: When is S = S”? This is answered by
the von Neumann density theorem. We first look at the finite dimensional version.

Proposition 0.4. Let A C B(H) be a unital x-subalgebra, where H is of finite
dimension, say n. Then A= A".

Proof. Clearly A C A”. Let y € A”. In order to show that y € A, we will show
that 3x € A such that x§; = y&; for any arbitrary n vectors in H. We embed
A into B(H ® H) = B(®!.,H;) (where each H; = H) by means of the map
II:A— B(H®H) givenby n(z) =2z®1. Let £ = (&,---,&,) € H® H. Let
K=II(A) ={(zx®1){ : x € A}. Let py, : H® H — K be the projection onto K.
As K is invariant under II(A), pi € II(A)". Hence II(A)"pr, = ppII(A)” and so K

z 0 - 0
is invariant under II(A)”. Now II(A)={| 0 =~ 0 | .z ¢ 4}
: x

Exercise 0.5. Show that II(A) = M, (A") and TI(A)"” = TI(A”).

Now, for y € A”,n € K,3z € A such that TI(y)n = H(x)¢ since K is invariant
under II(A)”. In particular, take n = . Then Jz € A such that II(y)¢ = I(x)E.
But this implies that y&; = z&; Vi € {1,2,--- ,n}. O

Theorem 0.6 (von Neumann density theorem). Let A C B(H) be a unital *-
subalgebra. Then A%t = A", where A%t denotes the strong closure of A.

Proof. Clearly, A C A” and A" is strongly closed. Let y € A” and let &1,--- ,&, €
H,e > 0. We will show that 3= € A such that © € N(y,&;,--- ,&n,€). Embed A
into B(H ® C") = B(®}_,H;), where each H; = H. Let II denote the embedding.
Then as earlier, II(A)" = M, (A’). For & = (&1, ,&n), let K =TI(A)¢. Then K is
invariant under II(A) and hence under II(A)”, as earlier. For y € A" I(y)¢{ € K
and hence, for € > 0, 3z € A such that [|II(z)¢ —II(y)¢]|| < e. But this implies that
ly&i — z&l| < eVie{l,--- ,n}. O

Corollary 0.7 (von Neumann double commutant theorem). TFAE for a unital
x-algebra.

(1) M =M"

(2) M is strongly closed.

(8) M is weakly closed.

Definition 0.8. A unital x-subalgebra of B(H) that satisfies one of the above
equivalent conditions is called a von Neumann algebra.
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Example 0.9. (1) Any finite dimensional unital *-algebra is a vNa.
(2) B(H) is a vNa.
(3) L*([0,1], B, A) where A is the Lebesgue measure on the Borel o-algebra B.
For f € L™, the corresponding multiplication operator My € B(L*([0,1)).
The claim is that M = {M; : f € L>} is a von Neumann algebra, that
is M = M"”. To prove this, it is sufficient to show that M is a maximal
abelian subalgebra of B(H), which means M = M’. Let T € M’ C B(L?).
We want fo € L* such that My = T. We define f, := T'1. Since L™
is dense in L?, it is sufficient to show that Tf = My, fVf € L*. Now
Tf=TM;l=M¢Tl=M;fo= fof. Finally, we must show that fo € L*.
We will prove that A({¢t € [0,1] : |fo(t)] > ||T||}) = 0. This happens iff
A{t € 0,1] : [fo®)| = [IT|| + £}) = A(E,) = 0¥n. Suppose not, then
A E,) > 0 for some n. Let &, = (/\(1;"))%, a unit vector in L*°. Then
|IT€all < (IT1- But |T€,]| = [|fo&nll = IT]| + 5 a contradiction.
Exercise 0.10. Show that {M; : # € [*} C B(I*(N)) is a maximal abelian
subalgebra.

0.3. Group von Neumann algebras.
Definition 0.11. A vNa M is called a factor if Z(M) =M N M’ = C1.

Example 0.12. M,,(C) and B(H) are examples of factors. We consider another
example. Let G be a locally compact Hausdorff group. Then 3 a unique (upto
scalar) Haar measure on G, i.e. a measure p on G such that

L renau = [ jwaut) vre1G.w.
Define for g € G, f € L*(Q),
(ugf)(9") = flg7'9). ¢ € G.
Exercise 0.13. Each u, is a unitary with uy = u,-1.
Definition 0.14. We define the group von Neumann algebra as
ANG) ={uy: g€ G}

From now on, we consider G' to be a countable discrete group. Let H = I?(G).

Let
1L g=¢
e ! = 5 ;] =
s(9) 99 0 otherwise

Then {e, : g € G} is an orthonormal basis for [%(G). If u, is defined as above, ie,
(ugf)(g") = f(g71g’), then it is seen that ugzey = €4y
Example 0.15. Let G = (Z,,+). Then H = [*(G) = C". Its orthonormal basis
is given by
1 m=k
]{j = 5 =
em(k) ok {O m#k

Then ugem = €(k4m)mod n- It can be seen that the u,s will be matrices that are
constant (= 1) on the diagonals. A\(G) = span {u, : g € G} and hence if n = 4,
say, A(G) consists of elements of the form

b

S0 Qe
QUL 0
Q o0 Q.

a
d
c

Since G is commutative, so is A(G).
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Any T € B(I?(G)) can be considered as an infinite matrix indexed by G x G. If
x € A(G), we denote the associated matrix also by z with z(g, ¢') = (zey, eg4).

Proposition 0.16. x € A\(G) C B(I3(G)) can be given in matriz form with respect
to the orthonormal basis {e,}. Then x(g,g') = x(h, 1) if gg'~' = hh'~1.

Proof. Let & = up. up(g,9') = (urey,eg) = (erg,€q) = Opgr.g = Of gg—1. Hence
if gg~! = hh/~1, then ux(g,9') = ur(h,h’). The relation holds for finite linear
combinations and extends to the weak closure A(G). O

Exercise 0.17. M = {x € B(I*(G)) : 3¢ : G — C such that x(g,¢") = c(gg'~1)}
is a von Neumann algebra. (Hint: If ¢ is the corresponding function for x € M,
choose the function given by ¢*(g) = ¢(g~!) for * and convolve for products).

Proposition 0.18. Let M = {z € B(I*(Q)) : 3¢ : G — C such that x(g,q') =
c(gg’™1)}. Then \(G) = M.

Proof. For x € A(G), take ¢ = wey, where 1 is the identity of G. This proves
AMG) C M.

For the reverse inclusion, let 2’ € A\(G)" and z € M. We formally write z =
> he Chun. By this we (only) mean xze;, = 37, . cheng. Then we can directly
verify (exercise!)

(a'zeg,eq) = (xa'ey, e4).
Thus it follows that A(G)" € M’. (This proof for the reverse inclusion was pointed
out by Debdyuti in the tutorial.) O

Definition 0.19. Given ¢ € I*(G), consider (cx f)(¢') = > ,cqc(9)f(g7'd), f €
I2(G). If ex f € I*(GQ), then define L.(f) = c* f.

Proposition 0.20. L. is bounded on 1*(G).

Proof. Let f, € I?(G) be such that f,, — 0 and c¢* f,, — fo. By the closed graph
theorem, it suffices to prove that fo = 0. Now,

(ex £ < 1S el9)fulg ™) < llclallfull2 Vo' € G,
geG
by Cauchy Schwarz. Hence ||cx fr|loo < |lcll2]lfnll2- As frn — 0, || fnll2 — 0. Hence
c* fn — 01in (>, Hence c* f, — 0 in [?, since it is already known to converge to
some fy in 2. O

Definition 0.21. For ¢ as above, let \C(G) = {L.: cx f € >(G)Vf € I?(G)}".

We have shown that A\(G) = M C AC(G). Indeed it is an equality which will be
clear after proving Tomita-Takesaki theorem (for II; factors).

Definition 0.22. A group G is said to be ICC (infinite conjugacy class) if all the
conjugacy classes are infinite except for the identity.

Proposition 0.23. A\(G) is a factor iff G is ICC.

Proof. Suppose G is ICC. Let € A(G) N A(G)’. We must show that x is a scalar.
Since A(G) = M, we write z as the (formal) sum z = 3" 5 cgrug.

Now, zup = upxVh € G. Thus upzu), = x. Hence (upzujer, eq) = (xujer, ujeq)
<xeh—17eh_1g> = <Zg/€G cg/ug/eh_17eh_1g> = Ch—1gh-

On the other hand, (zei,ey) = ¢4. Hence, for each g € G, ¢cj,-14, = ¢4 Vh € G.
So ¢ is constant on conjugacy classes. But since ¢ = xe; € [2(G), we must have
c=0.

Conversely, if G is not ICC. Let C be a finite conjugacy class. Define z =
dec ug. Now, dec Up-1gp = dec ugVh € G, since C is a conjugacy class.
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This implies that upzu; = xVh € G. Hence xup = upxVh € G, so x is a non scalar
which is in A(G) N A(G)".
O

Definition 0.24. We define the trace on A\(G) by tr : A\(G) — C, tr(z) = (zey, e1).

Proposition 0.25. The functional tr is linear, weakly continuous, tracial (i.e.
tr(zy)=tr(yzx) ), positive (tr(z*x) > 0Vx € M(G)), and faithful (tr(x*z) = 0=z =
0). Also, tr(1) = 1.

Proof. 1t is easily seen that tr is linear and weakly continuous. We show that it is
tracial as follows: If v =3 cqug and y =3° 5 dgug, then

o= (5 et
heG geG
Hence, tr(zy) = (zyer,e1) = 3 cq Codg-1n = D eq dgCg—1n = tr(yz).
To prove positivity, suppose tr(z*z) = 0. Then > . legl> =0 = ¢, =0Vg €
G = x = 0. Finally, tr(1) = (e1,e1) = 1. O

Exercise 0.26. (1) On M, (C), define tr: M,,(C) — C by

xz] § L -

Then tr is the unique linear functional on M, (C) satifying tr(zy) = tr(yz),
tr(1) = 1.

(2) Let H be an infinite dimensional Hilbert space. Then show that there exists
no weakly continuous linear functional tr: B(H) — C satisfying tr(zy) =
tr(yx)Ve,y € H.

Exercise 0.27. If the the trace on a von Neumann algebra is unique, then it is

a factor (If there exists a nontrivial central projection p consider trtmtr(xp) +

iy tr(@(l —p)) for t € (0,1).

Definition 0.28. Let M, N be von Neumann algebras. An isomorphism & : M —
N is a bijective linear *-homomorphism which is weakly continuous. (Actually the
weakly continuous condition can be dropped from this definition.)

Proposition 0.29. If G is ICC, then A(G) is an infinite dimensional factor not
isomorphic to B(H) for any H.

Proof. A\(G) is infinite dimensional since the set {u, : g € G} is linearly indepen-
dent. The proposition follows since there exists a trace on A(G). O

Proposition 0.30. \(G) does not contain isometries which are not unitaries.

Proof. Suppose u € A(G) and u*u = 1. Then
0 <tr(l —wu*)=1-tr(uu*)=1-tr(u"u) =0.

Since u is an isometry, 1 —uu* is a projection and hence positive. Thus tr(1—u*u) =
0 = 1—wu* = 0. This is called the finiteness property of von Neumann algebras. [

We list some facts we will require.

(1) Projections generate any von Neumann algebra. This follows from spectral
theorem.

(2) Let A be a C* algebra. Then any x € A can be written as a linear com-
bination of four unitaries. In particular, if z is self adjoint and ||z| < 1,
define u =z +iv1 — 22. Then z = “£.
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(3) For a von Neumann algebra M, let P(M) denote the set of all projections
in M and U(M) denote the set of unitaries in M. ThenM = (P(M')) =
U((M'))".

Definition 0.31. Let « € B(H). The left support of X is defined as the projection
onto range(x) and is denoted by I(z). The right support of X is defined as the
projection onto (ker(x))* and is denoted by r(z). If the two are equal, they are
called the support of x.

Exercise 0.32. I(z) is the smallest projection p such that pz = z, and r(z), the
smallest projection such that xp = .

Proposition 0.33. If z € M, then l(x),r(x) € M.

Proof. Suppose a projection satisfies pr = x. Then for any v’ € U(M'), v'pru™ =
w'zu* = v'u*r = z. Hence px = z iff w'pzu™* = aVu' € U(M’). In particular,
ul(z)u*x = xVu' € U(M’). Hence, by the exercise, I(x) < u'l(z)u™ Vu' € U(M').
But this implies that i(z)u’ = w/i(x)Vu' € U(M'). Hence I(z) € M. Similarly,
r(z) e M. O

Exercise 0.34. Let 2 € M and 2 = u(z*z)? = ulz| be the polar decomposition of
2. Then |z|,u € M.

Remark 0.35. Let p, g be projections. Then p A ¢ is the projection onto pH NgH,
and pV q = (pt A gh)* is the projection onto the space generated by pH and ¢H.
If pge M, thenpAq,pVge M.

Proposition 0.36. Let {x\}xca C M be an increasing net of self-adjoint elements,
ie. n, < Ty, if M < Ao Let sup |lza|| < oo. Then 3z € M such that xx — =
AEA

strongly.

Proof. For each £ € H, (x)&,&) increases to some scalar. Let the (self-adjoint)
operator determined by this quadratic form be called z. Then ((x — z)§, &) — 0.
Hence ||(z — z)2&|| — 0. This implies that (z — zy)? =, 0, which in turn implies
that (x—z)) =Y, 0 because multiplication is jointly continuous strongly on uniformly
bounded sets. (]

Example 0.37. Some examples of ICC groups are:

(1) Se = US,, = {permutations on {1,2,---} fixing all but finitely many}.
(2) T, the free group generated by n elements.

Remark 0.38. Let {pn : A € A} C M be a collection of projections. Let F
denote all finite subsets of A. For s € F, define ps = Vacspr. Then {ps}ser is
an increasing net. Its limit is denoted by Vaea pa, the projection onto the closed
subspace generated by the ranges of all py. Similarly, one can talk about Axea pa,
the projection onto the intersection of ranges of py.

0.4. Equivalence of projections.

Proposition 0.39. Let M be a von Neumann algebra in B(H), and p € P(M).
Then pMp = {pzp:x € M} and M'p = {px’ : 2’ € M'} are von Neumann algebras
in B(pH).

Proof. On pH,pMp and M'p commute, as (pxp)(z'p) = pxa’pp = px’xp = ('p)(pp).
Hence, pMp C (M'p) and M’'p C (pMp)' on pH. We show that in both cases,
equality holds, hence pMp and M'p are von Neumann algebras.
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Let x € (M'p) C B(pH). We want & € M such that pZp = z. Let £ = ap on
H. Then = xp = pxp on pH. Let ' € M’. Then

2’z =2'xp
= a2'pxp
= (2p)(pzp)
= (pzp)(2'p)
= 22’ (on pH).

Hence 2 € M = M. Next, we prove that (pMp)’ C M’p. It is enough to prove
this for the unitaries of (pMp)'. Let u € U(pMp)'. Let K = MpH C H, and
q : H — K be the projection onto K. Then ¢ commutes with both M and M’,
hence ¢ € Z(M). We want @ € M’ such that ip = u. Define u® on K by

u(Y mik&i) =Y mgu&;, mi € M, & € pH.
<UO(Z i), uo(z Ying)) = <Z ziui, Z y5un;)
J = wpugi, ]Z y;pun;)
= (oy; :cz'pu;, un;)

,J

= (upy;zip&i, un;)

2,J
= <Z i Z%‘Uﬂ
i J

Hence, by the totality of the set {m;&; : m; € M, € pH} in ¢H, u® is well-
defined and extends to an isometry on ¢H. Now define & = u°¢, and notice that u°
commutes with M on ¢H. That is, u’mé = mué V¢ € ¢H. Hence @ = u®q € M’
and u = up. O

Then

Corollary 0.40. If M is a factor and p € M, then pMp and M'p are factors, and
' — x'p is a weakly continuous x-isomorphism between M’ and M'p.

Proof. As in the previous proof, let K = MpH C H, and q : H — K be the
projection onto K. Then ¢ commutes with both M and M’ hence ¢ € Z(M). As
M is a factor, ¢ must be identity, and hence K = H. Suppose, for 2’ € M’, 2'p = 0.
Then =/ (> m;&) = > ma'pé; =0, m; € M,€ € pH. Hence v’ =0 on K = H.
Thus the above map is injective, and M’p is a factor. But pMp = (M'p)’ on pH,
and hence is also a factor. O

Proposition 0.41. Let M ba a factor, and p,q € P(M) be non-zero projections.
Then Fu € M unitary such that puq # 0.

Proof. Suppose Vu € U(M), pug = 0. Then (u*pu)q = 0Vu € U(M), where u*pu is
a projection. Hence (V,ep(anu*pu)g = 0. But for non-zero p,Vycymyu*pu € M’
and hence equals to 1. O

Proposition 0.42. Let p,q € P(M) be non-zero projections. Then 3 a partial
isometry u # 0 such that u*u < q and uu* < p.

Proof. By the previous proposition, 3 such that pzrq # 0. Let u be the partial
isometry in the polar decomposition pf pzq. Then it can be verified (exercise!) that
u*u < g and uu* < p. O
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Definition 0.43. Let M be a von Neumann algebra. p € P(M), a non-zero
projection, is said to be minimal if whenever 0 # g < p, for ¢ € P(M), then g = p.

Corollary 0.44. If u € M is a partial isometry such that u*u is minimal, then
uu* is also minimal.

Corollary 0.45. If p is a minimal projection, then pMp = Cp.

Definition 0.46. A factor M is said to be of type I if it contains minimal projec-
tions. B(H) is a type I factor.

We prove that B(H) is essentially the only kind of type I factor

Proposition 0.47. If M C B(H) is a type I factor, then 3Hy and K Hilbert
spaces, and U : Hy ® K — H wunitary such that U(B(Hy) @ 1)U* = M.

Proof. Let e; be any minimal projection in M. Let {ej,es, -} be a maximal
collection of mutually orthogonal minimal projections in M. Claim: )" e, =1. If
not, choose a partial isometry u such that v*u <1—-73" e, and uu* = e; (possible
by Proposition 0.42). uu* = ey is minimal, and so «*u is minimal, and u*u L e, Vn,
which contradicts the maximality of {eq, e, - }.

Using minimality, now choose partial isometry e;; satisfying ej;ej; = e; and
eje1; = €. Let x € M, then x = )" e;ze;, with the sum denoting strong conver-
gence. Notice

ejre; = eLelixeTjelj cetMe; = Ce;.
Now the proposition follows from the following exercise.

Exercise 0.48. H = ®je;H. Let Hy = e1H and K = [*(N). Define U : Hy ®
I>(N) — H by U(& ® f) = ®;f(j)ej1&o- Verify that U is a well-defined unitary
that satisfies U(B(Hp) @ 1)U* = M.

O
Corollary 0.49. If G is ICC, then A(G) is not type I.

Definition 0.50. Let M be a von Neumann algebra and p,q € P(M) be non-zero
projections. Then p ~ ¢ if 3 a partial isometry v € M such that v*u = ¢ and
uu* = p. p and ¢ are said to be Murray-von Neumann equivalent.

Exercise 0.51. ~ is an equivalence relation.

Definition 0.52. An order is defined on P(M) as p < ¢ if 3 a partial isometry u
such that vu* = p and u*u < gq.

Proposition 0.53. < is a partial order on P(M), meaning that if p < q and ¢ < p,
then p ~ q.

Proof. Let p < q and ¢ < p. Then Ju,v such that v*u < q,uu* = p, and v*v <
p,vv* = ¢q. Define

Po =D do = ¢q
p1 = v¥qov q1 = upou

Pntl = VGuV  Qny1 = U'Pru

Note that p; L p; and ¢; L ¢;Vi # j. Claim: ¢, and p,, are decreasing pro-
jections. The proof is by induction. Note that p; = v*qov = v*qv = v*vv*v <
p = po, and similarly ¢ < qo. Next, suppose pp—1 > Pn,Gn-1 > Gn. Then
V¥ n_1v > 0*¢pU = Pp > ppy1. Similarly, ¢n, > g¢ni1. Define poo = AXZpn and
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Qoo = N2 qn. For each 4, let w = p; — p;11 Then v*w*wu = ¢+1 — giy2 and
wuu*w* = p; — piy1- Hence git1 — qiya ~ pi — pit1- Then u*pocpoctt = goo and
PoclUl*Poo = Poo- Hence po ~ goo = p ~ g. U

When M has a faithful weak continuous positive trace, here is an alternate proof.

Proof. tr(v*v) < tr(p) = tr(uu®) = tr(u*u) < tr(q) = tr(vv*) = tr(v*v). Hence
tr(p — v*v) = 0. Hence p = v*v = p ~ q. -

Definition 0.54. (1) p € P(M) is said to be infinite if 3¢ < p such that g ~ p.

(2) p € P(M) is said to be finite if it is not infinite.

(3) A von Neumann algebra is said to be infinite if 1 is an infinite projection.

(4) A factor M is said to be type I if it contains non-zero minimal projections
(eg. B(H)).

(5) A factor M is said to be type II if contains no minimal projections, but
non-zero finite projections exist (eg. A(G) when G is ICC).

(6) A factor M is said to be type II; if it is type IT and 1 is finite.

(7) A factor M is said to be type Il if it is type IT and 1 is infinite.

(8) A factor M is said to be type III if it has no finite projections.

Exercise 0.55. If 1 is finite then all projections are finite.
Proposition 0.56. If M is a factor then =< is a total order on P(M).

Proof. Let p,q € P(M). We must show that either p < ¢ or ¢ <X p. By Proposition
0.42, Ju partial isometry such that vu* < p,u*u < q.

Let S = {partial isometries u such that vu* < p,u*u < ¢}. Define a partial order
on S by u < v if u*u < v*v and v [y+,g= u. Under this partial order, every
chain has an upper bound. Let ug be a maximal element. Claim: Either uoug = p
or ugug = ¢. If not, p —woug > 0 and ¢ — ujup > 0. Then, by Proposition
0.42, 3 a partial isometry v such that vv* < p — woug,v*v < ¢ — ujug. Then
(up + v)(up +v)* < p and (ug + v)*(ug + v) < g, contradicting the maximality of
ug- O

Definition 0.57. A trace is said to be normal if 0 < z, /" z = tr(zs) / tr(x).

0.5. Type II; factors.

Theorem 0.58. Any I, factor admits a faithful normal positive trace. The con-
verse also holds.

Proposition 0.59. Let M be a Il factor. Then given € > 0,3 a non-zero projec-
tion p € P(M) such that tr(p) < e.

Proof. Suppose the proposition is false. Let 0 < d = inf {tr(p) : p € P(M),p # 0}.
Let € > 0 be arbitrary. Ip € P(M) such that d < tr(p) < d + e. We know that M
contains no minimal projection. Hence 3¢ < p so that p — ¢ # 0. Then d < tr(q).
But tr(p — q) < d+ € — tr(q) < e. But this is a contradiction as € is arbitrary and
can be chosen smaller than d. (]

Lemma 0.60. Let M be type II; and 0 # p € P(M). Then pMp is also a type I
factor.

Proof. Define tr,(pmp) = trgfg)p), m € M. Then tr, is a trace on pMp, hence pMp

is IIy. O

Proposition 0.61. Let M be type II;. Then tr: P(M) — [0, 1] is onto.
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Proof. Let r € [0,1]. We want p € P(M) such that tr(p) = r. Let S = {p €
P(M) : tr(p) < r} with the usual order for self-adjoints. By Zorn’s lemma, S has
a maximal elements, say ¢. Claim: tr(q) = r. Suppose not. Then (1 — ¢)M (1 — q)
is type II by Lemma 0.60. By Proposition 0.59, 3 a projection p € (1 —q)M (1 —q)
such that tr(p) < r — tr(q). Then p+ ¢ > ¢q and tr(p + q) < r, contradicting the
maximality of gq. (]

Corollary 0.62. Let M be a type I, factor. Then tr: P(M)/~ — [0,1] is an
order isomorphism, i.e., it is 1 — 1, onto and order preserving.

Proof. The map is 1 — 1 as < is a total order on P(M)/~. O

Definition 0.63. (1) w € H is said to be cyclic for M if [Mw] = H, where
Mw] ={zw:2 € M}.
(2) w € H is said to be separating for M if x € M,zw = z = 0.

Proposition 0.64. Let M C B(H) be a von Neumann algebra. Then w € H is
cyclic for M iff w is separating for M'.

Proof. Let w be cyclic for M and z’w = 0 for ' € M’. Then z'zw = z2'w =
0Vx € M. Hence 2’ = 0. Next, suppose w is separating for M'. Let Hy = [Mw].
Let p : H — Hy. Since p leaves Hy invariant, p € M’, and so 1 —p € M’. Then
(1-plw=0=1—-p=0. Hence Hy = H. O

Corollary 0.65. Let M be a von Neumann algebra. Then w is cyclic and separating
for M iff it is cyclic and separating for M'.

Definition 0.66. Let M C B(H) be a II; factor with a trace tr. We say that
M is in standard form if dw € H which is cyclic and separating for M such that
tr(z) = (zw, w).

Example 0.67. (1) A(G) C B(I*(@)) is in standard form with w = e;. Let
T =) cqeq € MG). zer =0 = > cqeq = 0. Hence z = 0. This shows
that ey is separating. e; can be shown to be cyclic by considering finitely
supported [2(G) functions.

(2) Let M be a II factor with a trace tr. Define (z,y) = tr(y*z) and let
H = [?(M) be the closure of M with respect to this inner product. Let
w=1¢€ M and II;, : M — B(H) be the associated representation. Then
IT;, (M) is in standard form.

From now, we assume that M C B(H) is a type II; factor in standard form.
Define Jy(rw) = 2*w, € M. Then Jy; is antilinear and J3, = 1.

Proposition 0.68. Jy; extends to H as an anti-unitary.
Proof. (Jyaw, Jyyw) = (x¥w, y*w) = tr(yz*) = tr(z*y) = (yw, 2w). O
Proposition 0.69. Jyz*Jy (yw) = yrw, z,y € M.
Hence the operator Jysz*Jys acts as right multiplication by z.
Proposition 0.70. Jy,MJy € M'.

The proof follows since elements of M act as left multiplication, Jy;x*Jy acts
as right multiplication and by associativity. Indeed, equality holds in the above
proposition (Tomita-Takesaki theorem).

Proposition 0.71. Let M be in standard form with w € H cyclic and separating.
Then Jy(2'w) = 2w and ' — {(2'w,w) is a trace on M'. Hence M’ is also in
standard form and Jy; = Jppr.
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Proof. Let x € M,2’ € M’. Then

Hence Jy(2') = 2*w and Jyr = Jpyr. Further,
('Y w,w) = (Yw,x"*w)
= (Jz"*w, Jy'w)
= (z'w,y"w)
= (y'2'w,w).
Hence the tracial property is satisfied. O

Corollary 0.72. If M is a II; factor in standard form, then M' C B(H) is a I
factor in standard form, and JMJ = M’, i.e., M’ is anti-isomorphic to M

Proof. Let ¢ be the map that sends x to Jz*J. Then ¢(zy) = ¢(y)d(x). O

We can also associate a von Neumann algebra to a group through right multi-
plication as follows. For a countable group G, define vye, = egn—1, and extend to
I>(G). Let p(G) = {vy : g € G}'; we can also define pC(G) by right convolution
operators similar to AC'(G). Then p(G) C pC(G) and hence pC(G)’ C p(G)'.

We have proved A(G) C p(G)’; also A\C(G) C pC(G)'. Now it is easy to verify
directly using Tomita-Takesaki theory for II; factors that A(G)' = p(G). Hence it
follows that A(G) = AC(G) = pC(G)' = p(G)'".

We do not prove the following converse statement, but will be used.

Proposition 0.73. Let M be a finite von Neumann algebra. Then there exists a
faithful normal positive trace on M.

0.6. Type Il factors.
Exercise 0.74. Any projection p € M, p is finite if and only if pMp is finite.

Lemma 0.75. Let p,q are finite projections satisfying p 1. q. Then p + q is also
finite.

Proof. Since both pMp and gMq are finite, there exists traces on them. Now we
can define a trace on (p+ q¢)M (p + q) by 1/2(tr(pxp) + tr(qzq)). O

Lemma 0.76. Let M be type IL,, and p € P(M) be finite. Then 3 countably
infinite projections p1,pa, - - such that p, ~ p¥n and >0 py, = 1.

Proof. Let S = {p1,p2,---} be the maximal family of orthogonal projections such
that p,, ~ p and p; = p. Then S has to be infinite since each p,, is a finite projection.
Let g=1—3"", pn. Then g < p, for otherwise, maximality of S is contradicted.
Now, 300 pn ~ > v Pp (exercise!). Hence 1 = g+ 00 pn 2 p1+D negpn < 1.
Hence >"°° | p,, ~ 1. If u is the partial isometry (indeed an isometry) implementing
this equivalence, then by replacing p,, by v*p, we may assume 220:1 p,=1. O

Proposition 0.77. Let M be type Il,. Then for any finite projection p € M,
pMp is type II; C B(pH) and pMp @ B(I*(N) is isomorphic to M.
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Proof. pMp is a II; factor. By Lemma 0.76, 3 countably infinite projections
p1, P2, - such that p, ~ pVn and 220:1 pn = 1. Then Fu;; such that ufju;1 = p1
and ujufy = p;. Let u;; = ufju1;. The required map from M to pMp @ B(I*(N)
can be defined by m +— ((u;1muj;)). O

0.7. Type III factors. The following is a way to construct type III. Let M, =
M>,(C). Consider the tower of algebras

A1:MQ(—>A2:M4‘—>"'(—)A»”:M2nc—>M2n+1_“

via the maps
T—ITRl—2z1x1.--.

Then we can consider A° = |J77_; A, as formal infinite tensors with 1 in all but
finitely many places. A trace and norm is well-defined on this ‘inductive limit’,
since that is preserved under the inclusion maps. Let 7. be the associated GNS
representation then M = m;,.(A%)” is a II; factor. (Reason: The vacuum state
given by the GNS construction is indeed a trace, since its restriction to m,.(AY) is
a trace. It is a factor since this trace is unique, as its restriction is the unique trace
on 7y (A°).)

Now, instead of the trace if take our original state on M, as

a b 1 A
¢([ ¢ dD_1+A“+1+Ad’

for A € (0,1), then the same construction leads to type III factors.



