NOTES ON VON NEUMANN ALGEBRAS

ARUNDHATHI KRISHNAN

0.1. Topologies on B(H). Let H be a complex separable Hilbert space and B(H)be the *-algebra of bounded operators on H. $A \subseteq B(H)$ is a C^* algebra if and only if it is closed in the norm topology. We define some other topologies on B(H).

Definition 0.1. We say that a net $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$ in B(H) converges strongly to $x\in$ B(H) if $||x_{\lambda}\xi - x\xi|| \to 0 \,\forall \xi \in H$. This is denoted by $x_{\lambda} \xrightarrow{st} x$.

Equivalently, we can define a strong neighbourhood as follows: For ξ_1, ξ_2, \cdots , $\xi_n \in H, \epsilon > 0, x \in B(H), \text{ let } N(x, \xi_1, \xi_2, \cdots, \xi_n, \epsilon) = \{ y \in B(H) : ||x\xi_i - y\xi_i|| < \epsilon \}$ $\epsilon \forall i \in \{1, 2, \dots, n\}\}$. Then this gives a basis for the strong topology, also called the strong operator topology or SOT.

Definition 0.2. We say that a net $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$ in B(H) converges weakly to $x\in B(H)$ if $\langle x_{\lambda}\xi,\eta\rangle \to \langle x\xi,\eta\rangle \,\forall \xi,\eta\in H$. This is denoted by $x_{\lambda}\xrightarrow{w} x$.

Equivalently, a weak neighbourhood is given as follows: For $\xi_1, \xi_2, \dots, \xi_n \in H$ and $\eta_1, \eta_2, \dots, \eta_n \in H, \epsilon > 0, x \in B(H)$, let $N(x, \xi_1, \xi_2, \dots, \xi_n, \eta_1, \eta_2, \dots, \eta_n, \epsilon) =$ $\{y \in B(H): |\langle (x-y)\xi_i, \eta_i \rangle| < \epsilon \, \forall i \in \{1, 2, \cdots, n\} \}$. This gives a basis for the weak or weak operator topology (WOT). Then the weak topology is contained in the strong topology, which is contained in the norm topology.

se 0.3. (1) Let $\{x_{\lambda}\}$ be a net such that $\sup_{\lambda \in \Lambda} ||x_{\lambda}|| < \infty$. Let $S \subseteq H$ be total. Then $x_{\lambda} \xrightarrow{st} x$ iff $x_{\lambda}\xi \to x\xi \, \forall \xi \in S$. Similarly, $x_{\lambda} \xrightarrow{w} x$ iff Exercise 0.3.

 $\begin{array}{l} \langle x_{\lambda}\xi,\eta\rangle \rightarrow \langle x\xi,\eta\rangle\, \forall \xi,\eta \in S.\\ \text{(2) Let } H=l^2(\mathbb{N}) \text{ and } S((x_1,x_2,\cdots))=(0,x_1,x_2,\cdots). \text{ Let } S_n=S^n. \text{ Then} \end{array}$ $S_n^* \xrightarrow{st} 0$ but $Sn \to 0$ strongly.

Similarly, for a continuous version of the above, let $H = L^2((0, \infty))$ and $S_t f(s) = \begin{cases} f(s-t), & s \geq t, \\ 0, & \text{otherwise.} \end{cases}$ Then $S_t^* \xrightarrow{st} 0$ but S_t does not converge

to 0 strongly. Hence the * operation is not strongly continuous.

- (3) $x \to x^*$ is weakly continuous.
- (4) If $x_{\lambda} \xrightarrow[w]{st} x$, then $x_{\lambda}y \xrightarrow[w]{st} xy$ and $yx_{\lambda} \xrightarrow[w]{st} yx$. That is, multiplication is separately continuous.
- (5) If $\{x_{\lambda}\}$ is a net such that $\sup_{\lambda \in \Lambda} \|x_{\lambda}\| < \infty$ and $\{y_{\lambda}\}$ such that $\sup_{\lambda \in \Lambda} \|y_{\lambda}\| < \infty$, and $x_{\lambda} \xrightarrow{st} x, y_{\lambda} \xrightarrow{st}$, then $x_{\lambda}y_{\lambda} \xrightarrow{st} xy$. So for bounded nets, multiplication is jointly continuous.
- (6) If $S \subseteq B(H)$ is bounded, then the strong and topologies on S are metrizable. Choosing an orthonormal basis $\{\xi_n\}$ for H, we can write the metric as

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} ||x\xi_n - y\xi_n||$$

and

$$d(x,y) = \sum_{m,n=1}^{\infty} \frac{1}{2^{m+n}} |\langle (x-y)\xi_n, \xi_m \rangle|$$

for the strong and weak topologies respectively.

- (7) Let $H_0 \subseteq H$ be a closed subspace and p be the projection onto H_0 . Then TFAE for $x \in B(H)$:
 - (a) $xH_0 \subseteq H_0$
 - (b) pxp = xp

Similarly, TFAE for $x \in B(H)$:

- (a) $xH_0 \subseteq H_0, x^*H_0 \subseteq H_0$
- (b) px = xp
- (8) Let $A \subseteq B(H)$ be a * algebra. Then TFAE:
 - (a) $xH_0 \subseteq H_0 \, \forall x \in A$
 - (b) $p \in A' = \{x \in B(H) : xx' = x'x \, \forall x \in A\}$

0.2. **Commutants.** Let S be a subset of B(H). Then define the commutant of S as $S' = \{x \in B(H) : xx' = x'x \forall x \in S\}$. We define S'' as the commutant of S' and so on. Now, clearly, $S \subseteq S''$. This implies that $S''' \subseteq S'$. But substituting S by S' in the first inclusion, we get $S' \subseteq S'''$. Hence $\forall n \in \mathbb{N}$, S^{2n+1} are all equal, and S^{2n} are equal for $n \geq 1$. The question, then, is: When is S = S''? This is answered by the von Neumann density theorem. We first look at the finite dimensional version.

Proposition 0.4. Let $A \subseteq B(H)$ be a unital *-subalgebra, where H is of finite dimension, say n. Then A = A''.

Proof. Clearly $A \subseteq A''$. Let $y \in A''$. In order to show that $y \in A$, we will show that $\exists x \in A$ such that $x\xi_i = y\xi_i$ for any arbitrary n vectors in H. We embed A into $B(H \otimes H) = B(\bigoplus_{i=1}^n H_i)$ (where each $H_i = H$) by means of the map $\Pi: A \to B(H \otimes H)$ given by $\pi(x) = x \otimes 1$. Let $\xi = (\xi_1, \dots, \xi_n) \in H \otimes H$. Let $K = \Pi(A)\xi = \{(x \otimes 1)\xi : x \in A\}$. Let $p_k: H \otimes H \to K$ be the projection onto K. As K is invariant under $\Pi(A)$, $p_k \in \Pi(A)'$. Hence $\Pi(A)''p_k = p_k\Pi(A)''$ and so K

is invariant under
$$\Pi(A)''$$
. Now $\Pi(A) = \{ \begin{bmatrix} x & 0 & \cdots & 0 \\ 0 & x & \cdots & 0 \\ \vdots & \cdots & x \end{bmatrix} : x \in A \}.$

Exercise 0.5. Show that $\Pi(A)' = M_n(A')$ and $\Pi(A)'' = \Pi(A'')$.

Now, for $y \in A'', \eta \in K, \exists x \in A$ such that $\Pi(y)\eta = \Pi(x)\xi$ since K is invariant under $\Pi(A)''$. In particular, take $\eta = \xi$. Then $\exists x \in A$ such that $\Pi(y)\xi = \Pi(x)\xi$. But this implies that $y\xi_i = x\xi_i \, \forall i \in \{1, 2, \cdots, n\}$.

Theorem 0.6 (von Neumann density theorem). Let $A \subseteq B(H)$ be a unital *-subalgebra. Then $\bar{A}^{st} = A''$, where \bar{A}^{st} denotes the strong closure of A.

Proof. Clearly, $A \subseteq A''$ and A'' is strongly closed. Let $y \in A''$ and let $\xi_1, \dots, \xi_n \in H$, $\epsilon > 0$. We will show that $\exists x \in A$ such that $x \in N(y, \xi_1, \dots, \xi_n, \epsilon)$. Embed A into $B(H \otimes \mathbb{C}^n) = B(\bigoplus_{i=1}^n H_i)$, where each $H_i = H$. Let Π denote the embedding. Then as earlier, $\Pi(A)' = M_n(A')$. For $\xi = (\xi_1, \dots, \xi_n)$, let $K = \overline{\Pi(A)\xi}$. Then K is invariant under $\Pi(A)$ and hence under $\Pi(A)''$, as earlier. For $y \in A''$, $\Pi(y)\xi \in K$ and hence, for $\epsilon > 0$, $\exists x \in A$ such that $\|\Pi(x)\xi - \Pi(y)\xi\|\| < \epsilon$. But this implies that $\|y\xi_i - x\xi_i\| < \epsilon \ \forall i \in \{1, \dots, n\}$.

Corollary 0.7 (von Neumann double commutant theorem). *TFAE for a unital* *-algebra.

- (1) M = M''
- (2) M is strongly closed.
- (3) M is weakly closed.

Definition 0.8. A unital *-subalgebra of B(H) that satisfies one of the above equivalent conditions is called a von Neumann algebra.

Example 0.9. (1) Any finite dimensional unital *-algebra is a vNa.

- (2) B(H) is a vNa.
- (3) $L^{\infty}([0,1],\mathcal{B},\lambda)$ where λ is the Lebesgue measure on the Borel σ -algebra \mathcal{B} . For $f\in L^{\infty}$, the corresponding multiplication operator $M_f\in B(L^2([0,1]))$. The claim is that $M=\{M_f:f\in L^{\infty}\}$ is a von Neumann algebra, that is M=M''. To prove this, it is sufficient to show that M is a maximal abelian subalgebra of B(H), which means M=M'. Let $T\in M'\subseteq B(L^2)$. We want $f_0\in L^{\infty}$ such that $M_{f_0}=T$. We define $f_0:=T1$. Since L^{∞} is dense in L^2 , it is sufficient to show that $Tf=M_{f_0}f\forall f\in L^{\infty}$. Now $Tf=TM_f1=M_fT1=M_ff_0=f_0f$. Finally, we must show that $f_0\in L^{\infty}$. We will prove that $\lambda(\{t\in [0,1]:|f_0(t)|>|T|\})=0$. This happens iff $\lambda(\{t\in [0,1]:|f_0(t)|\geq ||T||+\frac{1}{n}\})=\lambda(E_n)=0\,\forall n$. Suppose not, then $\lambda(E_n)>0$ for some n. Let $\xi_n=\frac{1_{E_n}}{(\lambda(E_n))^{\frac{1}{2}}}$, a unit vector in L^{∞} . Then $||T\xi_n||\leq ||T||$. But $||T\xi_n||=||f_0\xi_n||\geq ||T||+\frac{1}{n}$, a contradiction.

Exercise 0.10. Show that $\{M_{\tilde{x}}: \tilde{x} \in l^{\infty}\} \subseteq B(l^{2}(\mathbb{N}))$ is a maximal abelian subalgebra.

0.3. Group von Neumann algebras.

Definition 0.11. A vNa M is called a factor if $Z(M) = M \cap M' = \mathbb{C}1$.

Example 0.12. $M_n(\mathbb{C})$ and B(H) are examples of factors. We consider another example. Let G be a locally compact Hausdorff group. Then \exists a unique (upto scalar) Haar measure on G, i.e. a measure μ on G such that

$$\int_G f(st) \, d\mu(t) = \int_G f(t) \, d\mu(t) \quad \forall f \in L^1(G, \mu).$$

Define for $g \in G, f \in L^2(G)$,

$$(u_q f)(g') = f(g^{-1}g'), g' \in G.$$

Exercise 0.13. Each u_g is a unitary with $u_g^* = u_{g^{-1}}$.

Definition 0.14. We define the group von Neumann algebra as

$$\lambda(G) = \{u_g : g \in G\}''.$$

From now on, we consider G to be a countable discrete group. Let $H = l^2(G)$. Let

$$e_g(g') = \delta_{g,g'} = \begin{cases} 1 & g = g' \\ 0 & \text{otherwise} \end{cases}$$

Then $\{e_g : g \in G\}$ is an orthonormal basis for $l^2(G)$. If u_g is defined as above, i,e, $(u_g f)(g') = f(g^{-1}g')$, then it is seen that $u_g e_{g'} = e_{gg'}$.

Example 0.15. Let $G = (\mathbb{Z}_n, +)$. Then $H = l^2(G) = \mathbb{C}^n$. Its orthonormal basis is given by

$$e_m(k) = \delta_{m,k} = \begin{cases} 1 & m = k \\ 0 & m \neq k \end{cases}$$

Then $u_k e_m = e_{(k+m) \mod n}$. It can be seen that the u_n s will be matrices that are constant (=1) on the diagonals. $\lambda(G) = \text{span } \{u_g : g \in G\}$ and hence if n = 4, say, $\lambda(G)$ consists of elements of the form

$$\left[\begin{array}{cccc} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{array}\right].$$

Since G is commutative, so is $\lambda(G)$.

Any $T \in B(l^2(G))$ can be considered as an infinite matrix indexed by $G \times G$. If $x \in \lambda(G)$, we denote the associated matrix also by x with $x(g, g') = \langle xe_{g'}, e_g \rangle$.

Proposition 0.16. $x \in \lambda(G) \subseteq B(l^2(G))$ can be given in matrix form with respect to the orthonormal basis $\{e_g\}$. Then x(g,g') = x(h,h') if $gg'^{-1} = hh'^{-1}$.

Proof. Let $x = u_k$. $u_k(g, g') = \langle u_k e_{g'}, e_g \rangle = \langle e_{kg'}, e_g \rangle = \delta_{kg',g} = \delta_{k,gg'^{-1}}$. Hence if $gg'^{-1} = hh'^{-1}$, then $u_k(g, g') = u_k(h, h')$. The relation holds for finite linear combinations and extends to the weak closure $\lambda(G)$.

Exercise 0.17. $M = \{x \in B(l^2(G)) : \exists c : G \to \mathbb{C} \text{ such that } x(g,g') = c(gg'^{-1})\}$ is a von Neumann algebra. (Hint: If c is the corresponding function for $x \in M$, choose the function given by $c^*(g) = \overline{c(g^{-1})}$ for x^* and convolve for products).

Proposition 0.18. Let $M = \{x \in B(l^2(G)) : \exists c : G \to \mathbb{C} \text{ such that } x(g, g') = c(gg'^{-1})\}$. Then $\lambda(G) = M$.

Proof. For $x \in \lambda(G)$, take $c = xe_1$, where 1 is the identity of G. This proves $\lambda(G) \subseteq M$.

For the reverse inclusion, let $x' \in \lambda(G)'$ and $x \in M$. We formally write $x = \sum_{h \in G} c_h u_h$. By this we (only) mean $xe_g = \sum_{h \in G} c_h e_{hg}$. Then we can directly verify (exercise!)

$$\langle x'xe_g, e_{g'}\rangle = \langle xx'e_g, e_{g'}\rangle.$$

Thus it follows that $\lambda(G)' \subseteq M'$. (This proof for the reverse inclusion was pointed out by Debdyuti in the tutorial.)

Definition 0.19. Given $c \in l^2(G)$, consider $(c \star f)(g') = \sum_{g \in G} c(g) f(g^{-1}g')$, $f \in l^2(G)$. If $c \star f \in l^2(G)$, then define $L_c(f) = c \star f$.

Proposition 0.20. L_c is bounded on $l^2(G)$.

Proof. Let $f_n \in l^2(G)$ be such that $f_n \to 0$ and $c \star f_n \to f_0$. By the closed graph theorem, it suffices to prove that $f_0 = 0$. Now,

$$|(c \star f_n)(g')| \le |\sum_{g \in G} c(g) f_n(g^{-1}g')| \le ||c||_2 ||f_n||_2 \, \forall g' \in G,$$

by Cauchy Schwarz. Hence $||c \star f_n||_{\infty} \leq ||c||_2 ||f_n||_2$. As $f_n \to 0$, $||f_n||_2 \to 0$. Hence $c \star f_n \to 0$ in l^{∞} . Hence $c \star f_n \to 0$ in l^2 , since it is already known to converge to some f_0 in l^2 .

Definition 0.21. For c as above, let $\lambda C(G) = \{L_c : c \star f \in l^2(G) \forall f \in l^2(G)\}''$.

We have shown that $\lambda(G) = M \subseteq \lambda C(G)$. Indeed it is an equality which will be clear after proving Tomita-Takesaki theorem (for II₁ factors).

Definition 0.22. A group G is said to be ICC (infinite conjugacy class) if all the conjugacy classes are infinite except for the identity.

Proposition 0.23. $\lambda(G)$ is a factor iff G is ICC.

Proof. Suppose G is ICC. Let $x \in \lambda(G) \cap \lambda(G)'$. We must show that x is a scalar. Since $\lambda(G) = M$, we write x as the (formal) sum $x = \sum_{g' \in G} c_{g'} u_{g'}$.

Now, $xu_h = u_h x \, \forall h \in G$. Thus $u_h x u_h^* = x$. Hence $\langle u_h x u_h^* e_1, e_g \rangle = \langle x u_h^* e_1, u_h^* e_g \rangle = \langle x e_{h^{-1}}, e_{h^{-1}g} \rangle = \langle \sum_{g' \in G} c_{g'} u_{g'} e_{h^{-1}}, e_{h^{-1}g} \rangle = c_{h^{-1}gh}$.

On the other hand, $\langle xe_1, e_g \rangle = c_g$. Hence, for each $g \in G$, $c_{h^{-1}gh} = c_g \, \forall h \in G$. So c is constant on conjugacy classes. But since $c = xe_1 \in l^2(G)$, we must have c = 0.

Conversely, if G is not ICC. Let C be a finite conjugacy class. Define $x = \sum_{g \in C} u_g$. Now, $\sum_{g \in C} u_{h^{-1}gh} = \sum_{g \in C} u_g \, \forall h \in G$, since C is a conjugacy class.

This implies that $u_h x u_h^* = x \, \forall h \in G$. Hence $x u_h = u_h x \, \forall h \in G$, so x is a non scalar which is in $\lambda(G) \cap \lambda(G)'$.

Definition 0.24. We define the trace on $\lambda(G)$ by $\operatorname{tr}:\lambda(G)\to\mathbb{C}$, $\operatorname{tr}(x)=\langle xe_1,e_1\rangle$.

Proposition 0.25. The functional tr is linear, weakly continuous, tracial (i.e. tr(xy)=tr(yx)), positive $(tr(x^*x) \ge 0 \,\forall x \in \lambda(G))$, and faithful $(tr(x^*x) = 0 \Rightarrow x = 0)$ 0). Also, tr(1) = 1.

Proof. It is easily seen that tr is linear and weakly continuous. We show that it is tracial as follows: If $x = \sum_{g \in G} c_g u_g$ and $y = \sum_{g \in G} d_g u_g$, then

$$xy = \sum_{h \in G} (\sum_{g \in G} c_g d_{g^{-1}h}) u_h.$$

Hence, $\operatorname{tr}(xy) = \langle xye_1, e_1 \rangle = \sum_{g \in G} c_g d_{g^{-1}h} = \sum_{g \in G} d_g c_{g^{-1}h} = \operatorname{tr}(yx)$. To prove positivity, suppose $\operatorname{tr}(x^*x) = 0$. Then $\sum_{g \in G} |c_g|^2 = 0 \Rightarrow c_g = 0 \,\forall g \in G$ $G \Rightarrow x = 0$. Finally, $tr(1) = \langle e_1, e_1 \rangle = 1$.

(1) On $M_n(\mathbb{C})$, define tr: $M_n(\mathbb{C}) \to \mathbb{C}$ by Exercise 0.26.

$$\operatorname{tr}((x_{ij})) = \frac{1}{n} \sum_{i=1}^{n} x_{ii}.$$

Then tr is the unique linear functional on $M_n(\mathbb{C})$ satisfying $\operatorname{tr}(xy) = \operatorname{tr}(yx)$, tr(1) = 1.

(2) Let H be an infinite dimensional Hilbert space. Then show that there exists no weakly continuous linear functional tr: $B(H) \to \mathbb{C}$ satisfying tr(xy) = $\operatorname{tr}(yx) \, \forall x, y \in H.$

Exercise 0.27. If the the trace on a von Neumann algebra is unique, then it is a factor. (If there exists a nontrivial central projection p consider $\frac{t}{tr(p)}tr(xp)$ + $\frac{1-t}{tr(1-p)}tr(x(1-p))$ for $t \in (0,1)$.

Definition 0.28. Let M, N be von Neumann algebras. An isomorphism $\Phi: M \to \mathbb{R}$ N is a bijective linear *-homomorphism which is weakly continuous. (Actually the weakly continuous condition can be dropped from this definition.)

Proposition 0.29. If G is ICC, then $\lambda(G)$ is an infinite dimensional factor not isomorphic to B(H) for any H.

Proof. $\lambda(G)$ is infinite dimensional since the set $\{u_g:g\in G\}$ is linearly independent. The proposition follows since there exists a trace on $\lambda(G)$.

Proposition 0.30. $\lambda(G)$ does not contain isometries which are not unitaries.

Proof. Suppose $u \in \lambda(G)$ and $u^*u = 1$. Then

$$0 \le \operatorname{tr}(1 - uu^*) = 1 - \operatorname{tr}(uu^*) = 1 - \operatorname{tr}(u^*u) = 0.$$

Since u is an isometry, $1-uu^*$ is a projection and hence positive. Thus $tr(1-u^*u) =$ $0 \Rightarrow 1-uu^* = 0$. This is called the finiteness property of von Neumann algebras. \square

We list some facts we will require.

- (1) Projections generate any von Neumann algebra. This follows from spectral
- (2) Let A be a C^* algebra. Then any $x \in A$ can be written as a linear combination of four unitaries. In particular, if x is self adjoint and $||x|| \leq 1$, define $u = x + i\sqrt{1 - x^2}$. Then $x = \frac{u + u^*}{2}$.

(3) For a von Neumann algebra M, let P(M) denote the set of all projections in M and U(M) denote the set of unitaries in M. Then M = (P(M'))' = U((M'))'.

Definition 0.31. Let $x \in B(H)$. The left support of X is defined as the projection onto $\overline{\operatorname{range}(x)}$ and is denoted by l(x). The right support of X is defined as the projection onto $(\ker(x))^{\perp}$ and is denoted by r(x). If the two are equal, they are called the support of x.

Exercise 0.32. l(x) is the smallest projection p such that px = x, and r(x), the smallest projection such that xp = x.

Proposition 0.33. If $x \in M$, then $l(x), r(x) \in M$.

Proof. Suppose a projection satisfies px = x. Then for any $u' \in U(M')$, $u'pxu'^* = u'xu'^* = u'u'^*x = x$. Hence px = x iff $u'pxu'^* = x \,\forall u' \in U(M')$. In particular, $u'l(x)u'^*x = x \,\forall u' \in U(M')$. Hence, by the exercise, $l(x) \leq u'l(x)u'^* \,\forall u' \in U(M')$. But this implies that $l(x)u' = u'l(x) \,\forall u' \in U(M')$. Hence $l(x) \in M$. Similarly, $r(x) \in M$.

Exercise 0.34. Let $x \in M$ and $x = u(x^*x)^{\frac{1}{2}} = u|x|$ be the polar decomposition of x. Then $|x|, u \in M$.

Remark 0.35. Let p,q be projections. Then $p \wedge q$ is the projection onto $pH \cap qH$, and $p \vee q = (p^{\perp} \wedge q^{\perp})^{\perp}$ is the projection onto the space generated by pH and qH. If $p,q \in M$, then $p \wedge q, p \vee q \in M$.

Proposition 0.36. Let $\{x_{\lambda}\}_{{\lambda}\in\Lambda}\subseteq M$ be an increasing net of self-adjoint elements, i.e. $x_{\lambda_1}\leq x_{\lambda_2}$ if $\lambda_1\leq \lambda_2$. Let $\sup_{{\lambda}\in\Lambda}\|x_{\lambda}\|<\infty$. Then $\exists x\in M$ such that $x_{\lambda}\to x$ strongly.

Proof. For each $\xi \in H$, $\langle x_{\lambda} \xi, \xi \rangle$ increases to some scalar. Let the (self-adjoint) operator determined by this quadratic form be called x. Then $\langle (x-x_{\lambda})\xi, \xi \rangle \to 0$. Hence $\|(x-x_{\lambda})^{\frac{1}{2}}\xi\| \to 0$. This implies that $(x-x_{\lambda})^{\frac{1}{2}} \xrightarrow{\text{st}} 0$, which in turn implies that $(x-x_{\lambda}) \xrightarrow{\text{st}} 0$ because multiplication is jointly continuous strongly on uniformly bounded sets.

Example 0.37. Some examples of ICC groups are:

- (1) $S_{\infty} = \bigcup S_n = \{\text{permutations on } \{1, 2, \dots\} \text{ fixing all but finitely many} \}.$
- (2) \mathbb{F}_n , the free group generated by n elements.

Remark 0.38. Let $\{p_{\lambda} : \lambda \in \Lambda\} \subseteq M$ be a collection of projections. Let F denote all finite subsets of Λ . For $s \in F$, define $p_s = \vee_{\lambda \in S} p_{\lambda}$. Then $\{p_s\}_{s \in F}$ is an increasing net. Its limit is denoted by $\vee_{\lambda \in \Lambda} p_{\lambda}$, the projection onto the closed subspace generated by the ranges of all p_{λ} . Similarly, one can talk about $\wedge_{\lambda \in \Lambda} p_{\lambda}$, the projection onto the intersection of ranges of p_{λ} .

0.4. Equivalence of projections.

Proposition 0.39. Let M be a von Neumann algebra in B(H), and $p \in P(M)$. Then $pMp = \{pxp : x \in M\}$ and $M'p = \{px' : x' \in M'\}$ are von Neumann algebras in B(pH).

Proof. On pH, pMp and M'p commute, as (pxp)(x'p) = pxx'pp = px'xp = (x'p)(pxp). Hence, $pMp \subseteq (M'p)'$ and $M'p \subseteq (pMp)'$ on pH. We show that in both cases, equality holds, hence pMp and M'p are von Neumann algebras.

Let $x \in (M'p)' \subseteq B(pH)$. We want $\tilde{x} \in M$ such that $p\tilde{x}p = x$. Let $\tilde{x} = xp$ on H. Then $\tilde{x} = xp = pxp$ on pH. Let $x' \in M'$. Then

$$x'\tilde{x} = x'xp$$

$$= x'pxp$$

$$= (x'p)(pxp)$$

$$= (pxp)(x'p)$$

$$= \tilde{x}x' \text{ (on } pH).$$

Hence $\tilde{x} \in M'' = M$. Next, we prove that $(pMp)' \subseteq M'p$. It is enough to prove this for the unitaries of (pMp)'. Let $u \in U(pMp)'$. Let $K = \overline{MpH} \subseteq H$, and $q: H \to K$ be the projection onto K. Then q commutes with both M and M', hence $q \in Z(M)$. We want $\tilde{u} \in M'$ such that $\tilde{u}p = u$. Define u^0 on K by

$$u^0(\sum m_i \xi_i) = \sum m_i u \xi_i, m_i \in M, \xi \in pH.$$

Then

$$\begin{split} \langle u^0(\sum_i x_i \xi_i), u^0(\sum_j y_j \eta_j) \rangle &= \langle \sum_i x_i u \xi_i, \sum_j y_j u \eta_j \rangle \\ &= \langle \sum_i x_i p u \xi_i, \sum_j y_j p u \eta_j \rangle \\ &= \sum_{i,j} \langle p y_j^* x_i p u \xi_i, u \eta_j \rangle \\ &= \sum_{i,j} \langle u p y_j^* x_i p \xi_i, u \eta_j \rangle \\ &= \langle \sum_i x_i \xi_i, \sum_j y_j \eta_j \rangle. \end{split}$$

Hence, by the totality of the set $\{m_i\xi_i: m_i \in M, \xi \in pH\}$ in qH, u^0 is well-defined and extends to an isometry on qH. Now define $\tilde{u}=u^0q$, and notice that u^0 commutes with M on qH. That is, $u^0m\xi=mu^0\xi\,\forall\xi\in qH$. Hence $\tilde{u}=u^0q\in M'$ and $u=\tilde{u}p$.

Corollary 0.40. If M is a factor and $p \in M$, then pMp and M'p are factors, and $x' \mapsto x'p$ is a weakly continuous *-isomorphism between M' and M'p.

Proof. As in the previous proof, let $K = \overline{MpH} \subseteq H$, and $q: H \to K$ be the projection onto K. Then q commutes with both M and M', hence $q \in Z(M)$. As M is a factor, q must be identity, and hence K = H. Suppose, for $x' \in M'$, x'p = 0. Then $x'(\sum m_i \xi_i) = \sum m_i x' p \xi_i = 0$, $m_i \in M, \xi \in pH$. Hence x' = 0 on K = H. Thus the above map is injective, and M'p is a factor. But pMp = (M'p)' on pH, and hence is also a factor.

Proposition 0.41. Let M ba a factor, and $p, q \in P(M)$ be non-zero projections. Then $\exists u \in M$ unitary such that $puq \neq 0$.

Proof. Suppose $\forall u \in U(M), puq = 0$. Then $(u^*pu)q = 0 \forall u \in U(M)$, where u^*pu is a projection. Hence $(\vee_{u \in U(M)} u^*pu)q = 0$. But for non-zero $p, \vee_{u \in U(M)} u^*pu \in M'$ and hence equals to 1.

Proposition 0.42. Let $p, q \in P(M)$ be non-zero projections. Then \exists a partial isometry $u \neq 0$ such that $u^*u \leq q$ and $uu^* \leq p$.

Proof. By the previous proposition, $\exists x$ such that $pxq \neq 0$. Let u be the partial isometry in the polar decomposition pf pxq. Then it can be verified (exercise!) that $u^*u \leq q$ and $uu^* \leq p$.

Definition 0.43. Let M be a von Neumann algebra. $p \in P(M)$, a non-zero projection, is said to be minimal if whenever $0 \neq q \leq p$, for $q \in P(M)$, then q = p.

Corollary 0.44. If $u \in M$ is a partial isometry such that u^*u is minimal, then uu^* is also minimal.

Corollary 0.45. If p is a minimal projection, then $pMp = \mathbb{C}p$.

Definition 0.46. A factor M is said to be of type I if it contains minimal projections. B(H) is a type I factor.

We prove that B(H) is essentially the only kind of type I factor

Proposition 0.47. If $M \subseteq B(H)$ is a type I factor, then $\exists H_0 \text{ and } K$ Hilbert spaces, and $U: H_0 \otimes K \to H$ unitary such that $U(B(H_0) \otimes 1)U^* = M$.

Proof. Let e_1 be any minimal projection in M. Let $\{e_1, e_2, \cdots\}$ be a maximal collection of mutually orthogonal minimal projections in M. Claim: $\sum_n e_n = 1$. If not, choose a partial isometry u such that $u^*u \leq 1 - \sum_n e_n$ and $uu^* = e_1$ (possible by Proposition 0.42). $uu^* = e_1$ is minimal, and so u^*u is minimal, and $u^*u \perp e_n \forall n$, which contradicts the maximality of $\{e_1, e_2, \cdots\}$.

Using minimality, now choose partial isometry e_{1i} satisfying $e_{1i}e_{1i}^*=e_1$ and $e_{1i}^*e_{1i}=e_i$. Let $x\in M$, then $x=\sum e_ixe_j$, with the sum denoting strong convergence. Notice

$$e_i x e_j = e_{1i}^* e_{1i} x e_{1j}^* e_{1j} \in e_1 M e_1 = \mathbb{C} e_1.$$

Now the proposition follows from the following exercise.

Exercise 0.48. $H = \bigoplus_j e_j H$. Let $H_0 = e_1 H$ and $K = l^2(\mathbb{N})$. Define $U : H_0 \otimes l^2(\mathbb{N}) \to H$ by $U(\xi_0 \otimes f) = \bigoplus_j f(j) e_{j1} \xi_0$. Verify that U is a well-defined unitary that satisfies $U(B(H_0) \otimes 1)U^* = M$.

Corollary 0.49. If G is ICC, then $\lambda(G)$ is not type I.

Definition 0.50. Let M be a von Neumann algebra and $p, q \in P(M)$ be non-zero projections. Then $p \sim q$ if \exists a partial isometry $u \in M$ such that $u^*u = q$ and $uu^* = p$. p and q are said to be Murray-von Neumann equivalent.

Exercise 0.51. \sim is an equivalence relation.

Definition 0.52. An order is defined on P(M) as $p \leq q$ if \exists a partial isometry u such that $uu^* = p$ and $u^*u \leq q$.

Proposition 0.53. \leq is a partial order on P(M), meaning that if $p \leq q$ and $q \leq p$, then $p \sim q$.

Proof. Let $p \leq q$ and $q \leq p$. Then $\exists u, v$ such that $u^*u \leq q, uu^* = p$, and $v^*v \leq p, vv^* = q$. Define

$$p_0 = p$$
 $q_0 = q$
 $p_1 = v^* q_0 v$ $q_1 = u^* p_0 u$
 \vdots \vdots
 $p_{n+1} = v^* q_n v$ $q_{n+1} = u^* p_n u$

Note that $p_i \perp p_j$ and $q_i \perp q_j \, \forall i \neq j$. Claim: q_n and p_n are decreasing projections. The proof is by induction. Note that $p_1 = v^*q_0v = v^*qv = v^*vv^*v \leq p = p_0$, and similarly $q_1 \leq q_0$. Next, suppose $p_{n-1} \geq p_n, q_{n-1} \geq q_n$. Then $v^*q_{n-1}v \geq v^*q_nv \Rightarrow p_n \geq p_{n+1}$. Similarly, $q_n \geq q_{n+1}$. Define $p_\infty = \wedge_{n=0}^\infty p_n$ and

 $q_{\infty} = \bigwedge_{n=0}^{\infty} q_n$. For each i, let $w = p_i - p_{i+1}$ Then $u^*w^*wu = q_{i+1} - q_{i+2}$ and $wuu^*w^* = p_i - p_{i+1}$. Hence $q_{i+1} - q_{i+2} \sim p_i - p_{i+1}$. Then $u^*p_{\infty}p_{\infty}u = q_{\infty}$ and $p_{\infty}uu^*p_{\infty} = p_{\infty}$. Hence $p_{\infty} \sim q_{\infty} \Rightarrow p \sim q$.

When M has a faithful weak continuous positive trace, here is an alternate proof.

Proof.
$$\operatorname{tr}(v^*v) \leq \operatorname{tr}(p) = \operatorname{tr}(uu^*) = \operatorname{tr}(u^*u) \leq \operatorname{tr}(q) = \operatorname{tr}(vv^*) = \operatorname{tr}(v^*v)$$
. Hence $\operatorname{tr}(p-v^*v) = 0$. Hence $p = v^*v \Rightarrow p \sim q$.

Definition 0.54. (1) $p \in P(M)$ is said to be infinite if $\exists q \leq p$ such that $q \sim p$.

- (2) $p \in P(M)$ is said to be finite if it is not infinite.
- (3) A von Neumann algebra is said to be infinite if 1 is an infinite projection.
- (4) A factor M is said to be type I if it contains non-zero minimal projections (eg. B(H)).
- (5) A factor M is said to be type II if contains no minimal projections, but non-zero finite projections exist (eg. $\lambda(G)$ when G is ICC).
- (6) A factor M is said to be type II_1 if it is type II and 1 is finite.
- (7) A factor M is said to be type II_{∞} if it is type II and 1 is infinite.
- (8) A factor M is said to be type III if it has no finite projections.

Exercise 0.55. If 1 is finite then all projections are finite.

Proposition 0.56. If M is a factor then \leq is a total order on P(M).

Proof. Let $p, q \in P(M)$. We must show that either $p \leq q$ or $q \leq p$. By Proposition 0.42, $\exists u$ partial isometry such that $uu^* \leq p, u^*u \leq q$.

Let $S = \{\text{partial isometries } u \text{ such that } uu^* \leq p, u^*u \leq q \}$. Define a partial order on S by $u \leq v$ if $u^*u \leq v^*v$ and $v \upharpoonright_{u^*uH} = u$. Under this partial order, every chain has an upper bound. Let u_0 be a maximal element. Claim: Either $u_0u_0^* = p$ or $u_0^*u_0 = q$. If not, $p - u_0u_0^* > 0$ and $q - u_0^*u_0 > 0$. Then, by Proposition 0.42, \exists a partial isometry v such that $vv^* \leq p - u_0u_0^*, v^*v \leq q - u_0^*u_0$. Then $(u_0 + v)(u_0 + v)^* \leq p$ and $(u_0 + v)^*(u_0 + v) \leq q$, contradicting the maximality of u_0 .

Definition 0.57. A trace is said to be normal if $0 \le x_{\alpha} \nearrow x \Rightarrow \operatorname{tr}(x_{\alpha}) \nearrow \operatorname{tr}(x)$.

0.5. Type II_1 factors.

Theorem 0.58. Any II_1 factor admits a faithful normal positive trace. The converse also holds.

Proposition 0.59. Let M be a II_1 factor. Then given $\epsilon > 0, \exists$ a non-zero projection $p \in P(M)$ such that $tr(p) < \epsilon$.

Proof. Suppose the proposition is false. Let $0 < d = \inf \{ \operatorname{tr}(p) : p \in P(M), p \neq 0 \}$. Let $\epsilon > 0$ be arbitrary. $\exists p \in P(M)$ such that $d \leq \operatorname{tr}(p) < d + \epsilon$. We know that M contains no minimal projection. Hence $\exists q \leq p$ so that $p - q \neq 0$. Then $d \leq \operatorname{tr}(q)$. But $\operatorname{tr}(p - q) < d + \epsilon - \operatorname{tr}(q) \leq \epsilon$. But this is a contradiction as ϵ is arbitrary and can be chosen smaller than d.

Lemma 0.60. Let M be type II_1 and $0 \neq p \in P(M)$. Then pMp is also a type II_1 factor.

Proof. Define $\operatorname{tr}_p(pmp) = \frac{\operatorname{tr}(pmp)}{\operatorname{tr}(p)}, \ m \in M$. Then tr_p is a trace on pMp, hence pMp is II_1 .

Proposition 0.61. Let M be type II_1 . Then $tr: P(M) \to [0,1]$ is onto.

Proof. Let $r \in [0,1]$. We want $p \in P(M)$ such that $\operatorname{tr}(p) = r$. Let $S = \{p \in P(M) : \operatorname{tr}(p) \leq r\}$ with the usual order for self-adjoints. By Zorn's lemma, S has a maximal elements, say q. Claim: $\operatorname{tr}(q) = r$. Suppose not. Then (1-q)M(1-q) is type II by Lemma 0.60. By Proposition 0.59, \exists a projection $p \in (1-q)M(1-q)$ such that $\operatorname{tr}(p) < r - \operatorname{tr}(q)$. Then $p + q \geq q$ and $\operatorname{tr}(p + q) \leq r$, contradicting the maximality of q. □

Corollary 0.62. Let M be a type II_1 factor. Then $tr: P(M)/\sim \to [0,1]$ is an order isomorphism, i.e., it is 1-1, onto and order preserving.

Proof. The map is 1-1 as \leq is a total order on $P(M)/\sim$.

Definition 0.63. (1) $\omega \in H$ is said to be cyclic for M if $[M\omega] = H$, where $[M\omega] = \overline{\{x\omega : x \in M\}}$.

(2) $\omega \in H$ is said to be separating for M if $x \in M, x\omega \Rightarrow x = 0$.

Proposition 0.64. Let $M \subseteq B(H)$ be a von Neumann algebra. Then $\omega \in H$ is cyclic for M iff ω is separating for M'.

Proof. Let ω be cyclic for M and $x'\omega = 0$ for $x' \in M'$. Then $x'x\omega = xx'\omega = 0 \ \forall x \in M$. Hence x' = 0. Next, suppose ω is separating for M'. Let $H_0 = [M\omega]$. Let $p: H \to H_0$. Since p leaves H_0 invariant, $p \in M'$, and so $1 - p \in M'$. Then $(1-p)\omega = 0 \Rightarrow 1 - p = 0$. Hence $H_0 = H$.

Corollary 0.65. Let M be a von Neumann algebra. Then ω is cyclic and separating for M iff it is cyclic and separating for M'.

Definition 0.66. Let $M \subseteq B(H)$ be a II_1 factor with a trace tr. We say that M is in standard form if $\exists \omega \in H$ which is cyclic and separating for M such that $tr(x) = \langle x\omega, \omega \rangle$.

- **Example 0.67.** (1) $\Lambda(G) \subseteq B(l^2(G))$ is in standard form with $\omega = e_1$. Let $x = \sum c_g e_g \in \lambda(G)$. $xe_1 = 0 \Rightarrow \sum c_g e_g = 0$. Hence x = 0. This shows that e_1 is separating. e_1 can be shown to be cyclic by considering finitely supported $l^2(G)$ functions.
 - (2) Let M be a Π_1 factor with a trace tr. Define $\langle x,y\rangle = \operatorname{tr}(y^*x)$ and let $H = l^2(M)$ be the closure of M with respect to this inner product. Let $\omega = 1 \in \overline{M}$ and $\Pi_{\operatorname{tr}} : M \to B(H)$ be the associated representation. Then $\Pi_{\operatorname{tr}}(M)$ is in standard form.

From now, we assume that $M \subseteq B(H)$ is a type II_1 factor in standard form. Define $J_M(x\omega) = x^*\omega$, $x \in M$. Then J_M is antilinear and $J_M^2 = 1$.

Proposition 0.68. J_M extends to H as an anti-unitary.

Proof.
$$\langle J_M x \omega, J_M y \omega \rangle = \langle x^* \omega, y^* \omega \rangle = \operatorname{tr}(y x^*) = \operatorname{tr}(x^* y) = \langle y \omega, x \omega \rangle.$$

Proposition 0.69. $J_M x^* J_M(y\omega) = yx\omega, x, y \in M.$

Hence the operator $J_M x^* J_M$ acts as right multiplication by x.

Proposition 0.70. $J_M M J_M \subseteq M'$.

The proof follows since elements of M act as left multiplication, $J_M x^* J_M$ acts as right multiplication and by associativity. Indeed, equality holds in the above proposition (Tomita-Takesaki theorem).

Proposition 0.71. Let M be in standard form with $\omega \in H$ cyclic and separating. Then $J_M(x'\omega) = x'^*\omega$ and $x' \mapsto \langle x'\omega, \omega \rangle$ is a trace on M'. Hence M' is also in standard form and $J_M = J_{M'}$.

Proof. Let $x \in M, x' \in M'$. Then

$$\langle J_M(x'\omega), x\omega \rangle = \langle J_M x\omega, J_M J_M(x'\omega) \rangle$$

$$= \langle J_M x\omega, x'\omega \rangle$$

$$= \langle x^*\omega, x'\omega \rangle$$

$$= \langle \omega, xx'\omega \rangle$$

$$= \langle \omega, x'x\omega \rangle$$

$$= \langle x'^*\omega, x\omega \rangle.$$

Hence $J_M(x') = x'^*\omega$ and $J_M = J_{M'}$. Further,

$$\langle x'y'\omega,\omega\rangle = \langle y'\omega, x'^*\omega\rangle$$

$$= \langle Jx'^*\omega, Jy'\omega\rangle$$

$$= \langle x'\omega, y'^*\omega\rangle$$

$$= \langle y'x'\omega, \omega\rangle.$$

Hence the tracial property is satisfied.

Corollary 0.72. If M is a II_1 factor in standard form, then $M' \subseteq B(H)$ is a II_1 factor in standard form, and JMJ = M', i.e., M' is anti-isomorphic to M

Proof. Let ϕ be the map that sends x to Jx^*J . Then $\phi(xy) = \phi(y)\phi(x)$.

We can also associate a von Neumann algebra to a group through right multiplication as follows. For a countable group G, define $v_h e_g = e_{gh-1}$, and extend to $l^2(G)$. Let $\rho(G) = \{v_g : g \in G\}''$; we can also define $\rho(G)$ by right convolution operators similar to $\lambda(G)$. Then $\rho(G) \subseteq \rho(G)$ and hence $\rho(G) \subseteq \rho(G)'$.

We have proved $\lambda(G) \subseteq \rho(G)'$; also $\lambda C(G) \subseteq \rho C(G)'$. Now it is easy to verify directly using Tomita-Takesaki theory for Π_1 factors that $\lambda(G)' = \rho(G)$. Hence it follows that $\lambda(G) = \lambda C(G) = \rho C(G)' = \rho(G)'$.

We do not prove the following converse statement, but will be used.

Proposition 0.73. Let M be a finite von Neumann algebra. Then there exists a faithful normal positive trace on M.

0.6. Type II_{∞} factors.

Exercise 0.74. Any projection $p \in M$, p is finite if and only if pMp is finite.

Lemma 0.75. Let p, q are finite projections satisfying $p \perp q$. Then p + q is also finite.

Proof. Since both pMp and qMq are finite, there exists traces on them. Now we can define a trace on (p+q)M(p+q) by 1/2(tr(pxp)+tr(qxq)).

Lemma 0.76. Let M be type II_{∞} and $p \in P(M)$ be finite. Then \exists countably infinite projections p_1, p_2, \cdots such that $p_n \sim p \, \forall n \text{ and } \sum_{n=1}^{\infty} p_n = 1$.

Proof. Let $S=\{p_1,p_2,\cdots\}$ be the maximal family of orthogonal projections such that $p_n\sim p$ and $p_1=p$. Then S has to be infinite since each p_n is a finite projection. Let $q=1-\sum_{n=1}^{\infty}p_n$. Then $q\leq p$, for otherwise, maximality of S is contradicted. Now, $\sum_{n=1}^{\infty}p_n\sim\sum_{n=2}^{\infty}p_n$ (exercise!). Hence $1=q+\sum_{n=1}^{\infty}p_n\leq p_n+\sum_{n=2}^{\infty}p_n\leq 1$. Hence $\sum_{n=1}^{\infty}p_n\sim 1$. If u is the partial isometry (indeed an isometry) implementing this equivalence, then by replacing p_n by u^*p_n we may assume $\sum_{n=1}^{\infty}p_n=1$. \square

Proposition 0.77. Let M be type II_{∞} . Then for any finite projection $p \in M$, pMp is type $II_1 \subseteq B(pH)$ and $pMp \otimes B(l^2(\mathbb{N}))$ is isomorphic to M.

Proof. pMp is a II₁ factor. By Lemma 0.76, \exists countably infinite projections p_1, p_2, \cdots such that $p_n \sim p \,\forall n$ and $\sum_{n=1}^{\infty} p_n = 1$. Then $\exists u_{i1}$ such that $u_{i1}^*u_{i1} = p_1$ and $u_{i1}u_{i1}^* = p_i$. Let $u_{ij} = u_{i1}^*u_{ij}$. The required map from M to $pMp \otimes B(l^2(\mathbb{N}))$ can be defined by $m \mapsto ((u_{i1}mu_{i1}^*))$.

0.7. **Type III factors.** The following is a way to construct type III. Let $M_{2n} = M_{2n}(\mathbb{C})$. Consider the tower of algebras

$$A_1 = M_2 \hookrightarrow A_2 = M_4 \hookrightarrow \cdots \hookrightarrow A_n = M_{2^n} \hookrightarrow M_{2^{n+1}}...$$

via the maps

$$x \mapsto x \otimes 1 \mapsto x \otimes 1 \otimes 1 \cdots$$

Then we can consider $A^0 = \bigcup_{n=1}^{\infty} A_n$ as formal infinite tensors with 1 in all but finitely many places. A trace and norm is well-defined on this 'inductive limit', since that is preserved under the inclusion maps. Let π_{tr} be the associated GNS representation then $M = \pi_{tr}(A^0)''$ is a II₁ factor. (Reason: The vacuum state given by the GNS construction is indeed a trace, since its restriction to $\pi_{tr}(A^0)$ is a trace. It is a factor since this trace is unique, as its restriction is the unique trace on $\pi_{tr}(A^0)$.)

Now, instead of the trace if take our original state on M_2 as

$$\phi\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right)=\frac{1}{1+\lambda}a+\frac{\lambda}{1+\lambda}d,$$

for $\lambda \in (0,1)$, then the same construction leads to type III factors.