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Abstract

This paper is concerned with actions of finite hypergroups on
sets. After introducing the definitions in the first section, we
use the notion of ‘maximal actions’ to characterise those hy-
pergroups which arise from association schemes, introduce the
natural sub-class of *-actions of a hypergroup and introduce a
geometric condition for the existence of *-actions of a Hermi-
tian hypergroup. Following an insightful suggestion of Eiichi
Bannai we obtain an example of the surprising phenomenon of
a 3-element hypergroup with infinitely many pairwise inequiva-
lent irreducible *-actions.



1 Introduction

We begin with a brief bird’s eye overview of this paper.

§1 is devoted to a review of the definition of a hypergroup,
some of its consequences, and some of the better known exam-
ples of hypergroups.

In §2, we introduce the central notion of the paper - that of
an ‘action of a hypergroup’. After a preliminary result, we focus
on what we term ‘maximal actions’, and use these to obtain a
characterisation - see Theorem 2.9 - of those hypergroups which
come from association schemes.

After a brief §3, in which we direct attention to ‘*-actions’,
we show in §4, that these ‘*-actions’, at least in the case of Her-
mitian hypergroups (those hypergroups where the involution is
trivial), admit a pleasant geometric reformulation - see Theorem
4.2.

In the final §5, we use Theorem 4.2 to exhibit an example of
the phenemenon of a finite Hermitian hypergroup possessing an
infinite number of actions which are pairwise inequivalent.

Definition 1.1 A hypergroup1 is a distinguished linear basis
K = {c0, c1, · · · , cn} of a complex unital associative ∗-algebra
CK satisfying the following conditions, for 0 ≤ i, j ≤ n:

(i) cicj =
∑n

k=0 nk
ij ck, where

nk
ij ≥ 0 ∀ k (1.1)

n
∑

k=0

nk
ij = 1 ; (1.2)

(ii) c0 is the multiplicative identity for CK - i.e.,

nj
0i = nj

i0 = δi,j (the ‘Kronecker delta’)

and

1This definition actually only yields finite hypergroups, but we shall

never consider any other kind here.
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(iii) K is a self-adjoint set - i.e., there exists an involutive
mapping i 7→ i∗ of {0, 1, · · · , n} such that ci∗ = c∗i ; and
further,

n0
ij > 0 ⇔ i = j∗. (1.3)

With the foregoing notation, the weight of the element ci is
defined by w(ci) = (n0

i∗i)
−1, and the weight of the hypergroup

K is defined by w(K) =
∑n

i=0 w(ci).

Here are some simple consequences of these axioms. (Some
of these facts have also been discussed in [5].)

Proposition 1.2 Suppose K = {c0, c1, · · · , cn} is as in
Definition 1.1. Fix 0 ≤ i, j, k ≤ n; then, we have

(a)
nk

ij = nk∗

j∗i∗

(b)
nk

ij

w(ck)
=

nj
i∗k

w(cj)

(c)
nk

ij

w(ck∗)
=

ni
kj∗

w(ci∗)
.

Proof: (a) This follows from the equation defining the structure
constants nk

ij (upon taking adjoints and using the fact that the
structure constants are real).

(b) It follows from (a) that ck∗ci =
∑n

l=0 nl
i∗kcl∗ ; hence,

the coefficient of c0 in the product (ck∗ci)cj is seen to be
nj

i∗k(w(cj))
−1. On the other hand, the coefficient of c0 in the

product ck∗(cicj) is clearly nk
ij(w(ck))

−1.
(c) Exactly as in (b), compute the coefficient of c0 in the

product (cicjck∗) in two ways. 2

Given a (finite) hypergroup K as above, its Haar mea-

sure is the element e0 ∈ CK defined by

e0 = w(K)−1

n
∑

i=0

w(ci)ci . (1.4)
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It is well-known (and is a consequence of the following lemma
- for whose explicit statement and proof we thank the referee)
that e0 is a central projection in CK; more precisely,

e0 = e∗0 = e2
0 = cie0 = e0ci ∀ i. (1.5)

Lemma 1.3 With the foregoing notation, we have

w(ci) = w(ci∗) ∀ i .

Proof: Deduce from parts (a) and (b) of Proposition 1.2 that
for all i, j, k,

nk
ij

w(ck)
=

nj∗

k∗i

w(cj)
=

nj∗

k∗i

w(cj∗)

w(cj∗)

w(cj)
=

ni
kj∗

w(ci)

w(cj∗)

w(cj)
. (1.6)

Then,

w(K)e0cj =
∑

i

w(ci)cicj

=
∑

i,k

w(ci)n
k
ijck

=
∑

i,k

w(ci)
nk

ij

w(ck)
w(ck)ck

=
∑

i,k

w(ci)
ni

kj∗

w(ci)

w(cj∗)

w(cj)
w(ck)ck (by eq. (1.6))

=
w(cj∗)

w(cj)

∑

k

(

∑

i

ni
kj∗

)

w(ck)ck

=
w(cj∗)

w(cj)
w(K)e0 .

Hence

e0cj =
w(cj∗)

w(cj)
e0 .

On the other hand,

w(K)cje0 =
∑

i

w(ci)cjci
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=
∑

i,k

w(ci)n
k
jick

=
∑

i,k

w(ci)
nk

ji

w(ck)
w(ck)ck

=
∑

i,k

w(ci)
ni

j∗k

w(ci)
w(ck)ck (by Proposition 1.2(b))

=
∑

k

(

∑

i

ni∗

k∗j

)

w(ck)ck (by Proposition 1.2(a))

= w(K)e0.

Hence, cje0 = e0, and

e2
0 = e0(cje0) = (e0cj)e0 =

w(cj∗)

w(cj)
e2
0.

Now,

e2
0 = w(K)−2

∑

i,j,k

w(ci)w(cj)n
k
ijck

= w(K)−2
∑

k

(

∑

i,j

w(ci)w(cj)n
k
ij

)

ck

6= 0 ,

since the coefficient of c0 is at least

w(K)−2 = w(K)−2w(c0)
2n0

00.

We may hence conclude that w(cj∗) = w(cj) and that e0cj = e0.
This proves the lemma and explicitly demonstrates that e0 is a
central idempotent. 2

We turn next to some examples; in addition to three hyper-
groups which are naturally associated with any finite group, and
those associated with (not necessarily commutative) association
schemes, we mention examples stemming from the theory of sub-
factors - see [2] - which are of a much more general nature than
those coming from groups (in a sense that can be made precise
- see [3]).
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Example 1.4 (a) Let G be a finite group.
(i) Define K = G, with the involutive algebra structure on

the complex group algebra being the natural one.
(ii) Let {C0 = {e}, C1, · · · , Cn} be the set of conjugacy

classes in G. (In the preceding sentence and throughout this
example, we denote the identity element of G by e.) Consider
the elements ci ∈ CG defined by ci = |Ci|−1

∑

g∈Ci
g; then

K(G) = {ci : 0 ≤ i ≤ n} is a basis for the algebra CK(G),
which can be identified with the centre of the group algebra
CG. This set K(G) is a hypergroup, and is called the class

hypergroup of the group G. In this case, it is easy to see that
w(ci) = | Ci|.

(iii) Let {χ0 = 1, χ1, · · · , χn} be an enumeration of the set
of irreducible characters of G, and define ci = (χi(e))

−1χi.
Again, it is seen that K̂(G) = {c0, c1, · · · , cn} is a basis for
the algebra CK̂(G), which can be identified with the algebra
of central functions on G. This is again a hypergroup, and is
called the character hypergroup of G. It is seen that in this
case, w(ci) = χi(e)

2.
(It is a fact - see [8], for instance - that the hypergroups

K(G) and K̂(G) are commutative and are ‘duals’ of one an-
other.)

The preceding examples all had the feature that the weight of
every element of the hypergroup is an integer. The next example
also has this feature, but need have nothing to do with groups.

(b) Suppose {A0, A1, · · · , An} is (the set of 0,1-matrices
corresponding to) an association scheme - see [1] - on a finite
set of k elements. This means (essentially) that each Ai is
a k × k matrix with all entries being 0 or 1, such that (i)
A0 is the k× k identity matrix Ik, (ii) there exist non-negative
integers pl

ij such that AiAj =
∑n

l=0 pl
ijAl, (iii) the collection

{Ai : 0 ≤ i ≤ n} is closed under formation of matrix-transpose,
and (iv)

∑n

i=0 Ai is the matrix Jk, all of whose entries are
equal to 1. If Ai∗ is the transpose of Ai, then the number
wi = (p0

i∗i) is called the ‘valency’ of the ‘i-th class’ of the
association scheme. It is a fact that if we define ci = w−1

i Ai,
then {c0, c1, · · · , cn} is a hypergroup with w(ci) = wi, and we
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shall call this the hypergroup of the given association scheme.
(We will return later to the question of which hypergroups arise
from association schemes in this fashion.)

(c) The next example has to do with tensor-products (or
‘Connes’ fusion’) of bimodules (which are ‘of finite type’), over
von Neumann factors of type II1. Given two such bimodules

P XQ and QYR, where P,Q and R are II1 factors, this costruc-
tion yields a bimodule P (X⊗QY )R, while the ‘contragredient’ of
X is a bimodule QX̄P . It turns out that, analogous to example
(a)(ii), but for an infinite compact group, the collection G(R)
of isomorphism classes of R − R bimodules satisfies all the re-
quirements of a hypergroup with the exception of our finiteness
requirement. However, it turns out - see [6], for instance - that
G(R) has many interesting finite sub-hypergroups.

Thus, if we have an inclusion N ⊂ M of II1 factors, and
let α denote the isomorphism class of L(M, tr) regarded as an
N −N bimodule, then this bimodule is ‘of finite type’ precisely
when the so-called Jones index [M : N ] is finite; and the small-
est subclass K of G(N) which contains α and is ‘closed under
Connes’ fusion’ turns out to be finite in many interesting cases
(the so-called finite depth case). Furthermore, most of the exam-
ples discussed in (a) above, are known to arise in this fashion.
It is to be noted that these examples often exhibit dimension
functions which assume non-integral values. For example, the
hypergroup Kn of the ‘so-called’ An-subfactor has

[

n+1
2

]

ele-
ments (where [m] denotes the integral part of m) and the corre-

sponding weights are given by w(cj) =

(

sin( (2j+1)π
n+1 )

sin( π
n+1)

)2

. (See

[7] for details.)

2 Actions

In the sequel, given a finite set X, we shall write sX for the
simplex based on X, by which we mean the subset of R

X de-
fined by sX = {α ∈ R

X : αx ≥ 0 ∀ x ∈ X,
∑

x∈X αx = 1}.
Let MX(C) denote the set of matrices with rows and columns
indexed by X. We shall denote by Aff(X) the set of affine (or
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convex) maps of sX, and make the natural identification - as in
linear algebra - between Aff(X) and those elements of MX(C)
which are column-stochastic. Thus the map T ∈ Aff(X) is
identified with the column-stochastic matrix (tx,y)x,y∈X pre-
cisely when (Tα)x =

∑

y tx,yαy.

We come now to the central notion of this paper.

Definition 2.1 An action of a hypergroup K on a finite set
X is a mapping K 3 ci 7→ π(ci) ∈ Aff(X) such that

π(c0) = I (2.7)

π(ci)π(cj) =
n

∑

k=1

nk
ijπ(ck) (2.8)

where we think of elements of Aff(X) as column-stochastic
X × X matrices and I denotes the identity matrix.

The action π : K → Aff(X) is called a *-action if, in
addition, the following condition is satisfied:

π(ci∗) = π(ci)
∗ ∀ i .

Observe that if π is a *-action, then each π(ci) is a doubly
stochastic matrix.

Note that if π : K → Aff(X) is an action, we may, by lin-
earity, extend π to a map from the convex hull, co(K), of K in
CK, (which can be identified in a natural manner with sK) to
Aff(X). Thus, for instance, π(e0) = w(K)−1

∑n

i=0 w(ci)π(ci).

Example 2.2 (i) Let K be any finite hypergroup and let
X = K, and define the regular action by π(ci)cj ,ck

= nj
ik.

This is easily seen to be an action of K (because of associativity
of multiplication in CK). It is immediate from the definition
that this left-regular action of K is a *-action if and only
if the following condition is satisfied:

nk
ij = nj

i∗k ∀ i, j, k. (2.9)

On the other hand, it is seen from Proposition 1.2(b) (and the
fact that w(c0) = 1) that a hypergroup will satisfy condition
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2.9 precisely when w(ci) = 1 ∀ i, which, in turn, is seen to
happen precisely when the hypergroup is a group in the sense
of Example 1.4 (a)(i).

(ii) If G is a finite group, then the class hypergroup K(G) ad-
mits a natural action on the set G, which is inherited from the
product in the group algebra CG.

(iii) If we have an inclusion N ⊂ M of II1 factors - see
Example 1.4(c) - such that the Jones index [M : N ] is finite, then
it turns out that the ‘infinite hypergroup’ G(N) of isomorphism
classes of ‘irreducible N −N bimodules acts, by Connes’ fusion,
on the set G(N,M) of isomorphism classes of irreducible N −M
bimodules. As before, if this subfactor turns out to be of ‘finite
depth’, then we can extract a finite sub-hypergroup K of G(N)
and a finite subset X of G(N,M) such that K acts on X.

Proposition 2.3 The following conditions on an action π :
K → Aff(X) are equivalent:

(i) there exists no non-empty proper subset X0 ⊂ X with
the property that the sub-simplex sX0 is stable under π(ci) for
all i;

(ii) there exist strictly positive numbers αx, x ∈ X such that
∑

x∈X αx = 1 and π(e0)x,y = αx ∀ x, y ∈ X;
(iii) for each x, y ∈ X, there exists ci ∈ K such that

π(ci)x,y > 0.

When these equivalent conditions are satisfied, the action is
said to be irreducible.

Proof: (i) ⇒ (ii) : Suppose there are x, y ∈ X with π(e0)x,y =
0. Let u be the |X|-tuple with y-coordinate 1 and all others 0.
Then the vector defined by α = π(e0)u has x-coordinate equal
to 0. If α = 0 then the y-column of π(e0) must be 0; but this
dominates a (strictly) positive multiple of the y-column of π(c0),
which contradicts π(c0)y,y = 1. So α 6= 0. Let X0 = {x ∈ X :
αx > 0}. Since π(ci)α = α for all i, it follows that π(ci)x,y = 0
for all x /∈ X0, y ∈ X0. Hence π(ci)(sX0) ⊂ sX0 for all i,
which contradicts assumption (i). Therefore π(e0)x,y > 0 for
all x, y ∈ X. Now π(e0) is a positive idempotent matrix, and
Perron’s theorem implies that π(e0) has column rank 1. Since all
column sums are 1, the columns must be equal and (ii) follows.
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(ii) ⇒ (iii) : This follows from the strict positivity of the
weights w(ci) and the fact that

0 < αx

= π(e0)x,y

= (w(K)−1

n
∑

i=0

w(ci) π(ci)x,y .

(iii) ⇒ (i) : This is obvious. 2

Remark 2.4 (a) Let G be a finite group and let K = G as
in Example 1.4 (a)(i). It is then an easy matter to verify that
the notion of an action of the hypergroup K on a set X is
exactly the same as the notion of an action of the group G on
the set X, and that further, irreducibility of the action of K is
the same as transitivity of the action of the group G.

(b) There is a notion of a transitivity of an action of a hyper-
group which is strictly stronger than the notion of irreducibil-
ity (at least for a general hypergroup), which has the pleasant
feature that transitive actions of hypergroups are in bijective
correspondence with sub-hypergroups. We shall not say more
about this here. 2

Definition 2.5 Given an irreducible action of a hypergroup
K on a set X as in Proposition 2.3, if the numbers αx, x ∈
X are as in Proposition 2.3 (b), we define weights on the set
X, as well as the weight of the set X by the prescription

w(x) =
αx

miny∈X αy

, (2.10)

w(X) =
∑

x∈X

w(x)

=
1

miny∈X αy

. (2.11)

The next theorem establishes two properties of the weights
on a set underlying an irreducible action of a hypergroup.
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Theorem 2.6 Let π : K → Aff(X) be an irreducible action
of a hypergroup K on a set X. Then,

(i) w(X) ≤ w(K); and

(ii) for any β = ((βx))x∈X , if we define ||β||w =
(

∑

x

|βx|2
w(x)

)
1
2
,

it follows that

||π(c)β||w ≤ ||β||w ∀ β ∈ C
X , c ∈ co(K), (2.12)

where we think of π as being extended by linearity to all of
co(K).

Proof: (i) Note that if αx, x ∈ X are as in Proposition 2.3
(ii), and if x0 ∈ X is such that

αx0 = min
x∈X

αx = w(X)−1,

then,

w(X)−1 = αx0

= π(e0)x0,x0

= w(K)−1

n
∑

i=0

w(ci) π(ci)x0,x0

≥ w(K)−1 w(c0) π(c0)x0,x0

= w(K)−1 ,

as desired.
(ii) With x0 as in the proof of (i) above, notice that w(x) = αx

αx0
.

Let D denote the X ×X matrix defined by dx,y = δx,y
αx

αx0
.

We shall think of X-tuples β = ((βx))x∈X as column vectors,

and write ||β|| = (
∑

x |βx|2)
1
2 . Then, by definition, we have

||β||w = ||D− 1
2 β|| .

Thus, it is seen that we need to show that for arbitrary
c ∈ co(K), if we set T = D− 1

2 π(c)D
1
2 , then ||T || ≤ 1,

where || · || denotes the usual operator norm.
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Observe that the matrix P = D− 1
2 π(e0)D

1
2 is given by

px,y =
√

αxαy, and (since
∑

x αx = 1) represents the orthog-
onal projection onto the one-dimensional subspace spanned by
the vector v = ((

√
αx)).

Notice next that ce0 = e0, so π(c)((αx)) = ((αx)), and
consequently,

Tv = (D− 1
2 π(c)D

1
2 )((

√
αx))

= D− 1
2 π(c)((

αx√
αx0

))

= D− 1
2 ((

αx√
αx0

))

= v.

On the other hand, π(c)∗ is a row-stochastic matrix (since
π(c) is column-stochastic) and hence,

T ∗v = D
1
2 π(c)∗D− 1

2 ((
√

αx))

= D
1
2 π(c)∗((

√
αx0))

= D
1
2 ((

√
αx0))

= v.

Thus T ∗Tv = v. Since T ∗T is a Hermitian matrix, it is
unitarily diagonalisable, and hence its norm equals its spectral
radius. Since T ∗T has non-negative entries, and the positive
vector v is fixed by T ∗T , it follows from the Perron-Frobenius
theorem that the spectral radius, and hence the norm, of T ∗T
must be 1. 2

Remark 2.7 Theorem 2.6(ii), in the special case of the left–
regular action of a commutative hypergroup, appears in [8],
where it is interpreted as an ‘entropy inequality’.

Observe also that, in the notation of Theorem 2.6, the ob-
vious inequality |X| ≤ w(X), together with Theorem 2.6(i),
shows that |X| ≤ w(K). This is the justification for the ter-
minology used in the next definition. 2

Definition 2.8 An irreducible action π : K → Aff(X) is
said to be a maximal action if |X| = w(K).
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Thus, in order for a hypergroup to admit a maximal action,
it is clearly necessary that w(K) is an integer.

Theorem 2.9 (a) Suppose a hypergroup K admits a maximal
action π : K → Aff(X) which is also a *-action. Then the
matrices {Ai = w(ci)π(ci), 0 ≤ i ≤ n} define an association
scheme - see Example 1.4(b) - and in particular, w(ci) ∈ N ∀ i,
and the hypergroup K comes from an association scheme (in
the sense of Example 1.4(b)).

(b) Conversely, if a hypergroup K comes from an associa-
tion scheme in the sense of Example 1.4(b), then K admits a
maximal *-action.

Proof: (a) First observe that since w(x) ≥ 1 ∀ x ∈ X, we have

w(K) = |X| ≤
∑

x∈X

w(x) = w(X) ≤ w(K) .

Hence we necessarily have w(x) = 1 ∀ x ∈ X. In particular,
π(e0)x,y = 1

k
, where k = |X|. Notice next that, for any

x ∈ X, we have

1

k
= π(e0)x,x

= w(K)−1

k
∑

i=0

w(ci)π(ci)x,x

≥ w(K)−1 w(c0) π(c0)x,x

= w(K)−1

=
1

k
,

from which we may deduce that

π(ci)x,x = 0 , ∀ x ∈ X, 0 < i ≤ n . (2.13)

Since π is a *-action, notice that if 0 ≤ i, j ≤ n, then, since
n0

ij∗ = δi,j w(ci)
−1, it follows from equation 2.13 that

(π(ci)π(cj)
∗)

x,x
= π(cicj∗)x,x

12



=
n

∑

l=0

nl
ij∗π(cl)x,x

= δi,j w(ci)
−1 +

n
∑

l=1

nl
ij∗π(cl)x,x

= δi,j w(ci)
−1 . (2.14)

Since π(ci) has non-negative entries, this shows that

i 6= j, π(ci)x,y > 0 ⇒ π(cj)x,y = 0.

On the other hand,

n
∑

i=0

w(ci) π(ci)x,y = w(K) π(e0)x,y = 1 ∀x, y ;

it follows from the last two equations that Ai = w(ci)π(ci) is
a matrix all of whose entries are 0 or 1. Further,

∑n

i=0 Ai is
the k × k matrix Jk (all of whose entries are equal to 1), and
it follows from Lemma 1.3 that Ai∗ = A∗

i . Deduce now from
equation 2.14 that (AiAi∗)x,x = w(ci) ∀i, and in particular,
w(ci) is a positive integer for each i. It follows easily now that
{A0, A1, · · · , An} is an association scheme as in Example 1.4 (b);
further, since the matrices {Ai : 0 ≤ i ≤ n} are clearly linearly
independent - they are actually orthogonal with respect to the
natural inner-product on the set of matrices - it is seen that
the mapping ci 7→ w(ci)

−1Ai induces a linear isomorphism of
CK onto the algebra spanned by the Ai’s and consequently, the
hypergroup K does indeed come from the association scheme
as asserted.

(b) This is easy: simply define π(ci) = w(ci)
−1Ai and verify

that this is an action with all the desired properties.
2

3 *-Actions

In what follows, we shall classify all *-actions of some commu-
tative hypergroups. (Actions πi : K → Aff Xi, i = 1, 2 are
said to be equivalent if there exists a bijection σ : X1 → X2
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such that π1(cj)x,y = π2(cj)σ(x),σ(y) ∀ cj ∈ K, x, y ∈ X1.) Since
every hypergroup admits a unique (necessarily irreducible) *-
action on a singleton set, we only consider non-trivial actions in
what follows.

As a first step, we make the observation that any *-action
breaks up naturally as a direct sum of irreducible *-actions. This
is because any doubly stochastic matrix which is a self-adjoint
projection of rank r is, up to conjugation by permutation ma-
trices, nothing but a direct sum of matrices of the form Pk -
where Pk denotes the k × k matrix all of whose entries are
equal to 1

k
. It follows that in order to classify *-actions, we only

need to classify irreducible *-actions. We shall use the following
terminology and facts in the process.

Suppose K = {c0, c1, · · · , cn} is a finite commutative hy-
pergroup, and suppose K̂ = {χ0 = 1, χ1, · · · , χn} is the
set of characters of K. Thus, each χj is a multiplicative ho-
momorphism from CK into C such that χj(c0) = 1. It is

known that in general, K̂ is a signed hypergroup (with respect
to pointwise products and complex conjugation) meaning that
there exist real, not necessarily non-negative, constants qk

ij such
that

χiχj =
n

∑

k=0

qk
ij χk

n
∑

k=0

qk
ij = 1

∃ unique î such that χî = χi

q0
ij 6= 0 ⇔ j = î

q0
ij > 0 ⇔ j = î

(Most recently, and in the language used in this paper, these
facts can be found in [8]. They may also be found in [1] (Theo-
rems II.5.9 and II.5.10), where the result is credited to Kawada
([4]). Kawada worked with ‘C-algebras’ which are just signed
hypergroups whose basis elements are multiplied by some posi-
tive scalars.)

In many cases, K̂ might turn out to be a bona fide (posi-
tive) hypergroup. For instance, the dual of the class hypergroup
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K(G) of a finite group G - see Example 1.4(a)(ii) - is precisely
the character hypergroup K̂(G) - see Example 1.4(a)(iii).

The positive number (q0
îi
)−1 is called the weight of χi and

denoted by w(χi). For convenience of reference, we list some
facts concerning characters and ‘duals’ of finite commutative
hypergroups. (These facts, in this language, may be found in
[8]; in fact, parts (a), (c), (d) of the next proposition may also
be found in Section II.5 of [1].)

Proposition 3.1 Suppose K = {c0, · · · , cn} is a finite com-
mutative hypergroup and K̂ = {χ0, · · · , χn} is its dual signed
hypergroup as above. Then,

(a) χi(cj∗) = χi(cj) ∀ i, j;
(b) |χi(cj)| ≤ 1, ∀ i, j;
(c) if we let

ei =
w(χi)

w(K)

n
∑

k=0

w(ck)χi(ck∗) ck , (3.15)

then {e0, e1, · · · , en} is a basis of self-adjoint projections for
CK;

(d) ci =
∑n

j=0 χj(ci)ej ∀i. 2

Now suppose π : K → Aff(X) is a *-action of K. Then,
π extends, by linearity, to a *-homomorphism from CK into
MX(C), and consequently there exist well-defined non-negative
integers b0, b1, · · · , bn which are the multiplicities with which
the characters χ0, χ1, · · · , χn feature in the representation π.
Alternatively, using equation 3.15, we see that bi = χ(ei),
where we write χ(x) = Tr (π(x)) for all x ∈ CK.

In the sequel, we shall write b = [b0, · · · , bn] for the multi-
plicity vector for an action.

The following lists some facts concerning actions that we will
use constantly in our subsequent discussion of *-actions.

Proposition 3.2 Suppose π : K → Aff X is an irreducible
*-action of a finite commutative hypergroup K = {c0 · · · , cn}
on a set X with k elements. With the foregoing notation, we
have:
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(a) χ(c0) = k = |X|;
(b) k ≤ w(K);
(c) χ(ci) ≥ 0 ∀i;
(d) b0 = χ(e0) = 1;
(e) bi = χ(ei) ≤ w(χi) ∀ i;
(f) π(e0) is the matrix all of whose entries are equal to 1

k
;

this matrix will henceforth be denoted by the symbol Pk.

Proof: Assertions (a) and (c) are obvious while (b) and (d)
are consequences of Proposition 2.6(i) and Proposition 2.3, re-
spectively; also, (f) is a consequence of Proposition 2.3 and the
obvious fact that Pk is the unique k×k doubly stochastic matrix
which is a projection of rank one.

As for (e), since χ(ck), w(ck) ≥ 0 ∀ k, it follows from Propo-
sition 3.1(c) and (b) that

|bi| = |Tr π(ei)|

≤ w(χi)

w(K)

n
∑

k=0

w(ck)χ(ck)

= w(χi) χ(e0)

= w(χi) ,

and the proof is complete.
2

4 *-Actions of Hermitian hypergroups

In this section, we first describe a reformulation of what it means
to have an irreducible *-action of a Hermitian hypergroup - i.e.,
a hypergroup where ci∗ = ci for all i. We will need some
terminology.

Remark 4.1 What is usually referred to as the standard (k −
1)-simplex is the convex hull of the standard basis - call it
{x1, · · · , xk} - in R

k; the centroid of this simplex is the vec-
tor with all co-ordinates equal to 1

k
. Hence, if we define vj =

xj − 1
k

∑k

l=1 xl, then we see that v1, · · · , vk are k vectors of what
might be called a regular simplex centered at the origin; all these
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vectors lie in the orthogonal complement of the vector
∑k

l=1 xl,
and are easily verified to satisfy the conditions:

〈vl, vj〉 = δlj −
1

k
(4.16)

k
∑

j=1

vj = 0 . (4.17)

It should be observed - as was pointed out to us by the referee
- that condition (4.17) is a consequence of condition (4.16), as
is seen by computing the inner product of

∑k

l=1 vl with itself.
It is clear, on the other hand that if z1, · · · , zk is any collection
of k vectors in R

k−1 which satisfy condition 4.16, then there
exists a unique orthogonal transformation mapping R

k−1 onto
the hyperplane spanned by {v1, · · · , vk} which maps zj onto vj

for 1 ≤ j ≤ k. For this reason, we shall say that a collection
{z1, · · · , zk} ⊂ R

k−1 are the vertices of a regular normalised (k−
1)-simplex in R

k−1 centered at 0 precisely when they satisfy the
condition 4.16. In this case the simplex they span is

∆z = {v ∈ R
k−1 : 〈v, zj〉 +

1

k
≥ 0 ∀ j}.

Theorem 4.2 Let K be a Hermitian hypergroup.

(a) Suppose π is an irreducible *-action of K on a set X
with |X| = k. Suppose the ‘multiplicity vector’ associated with
this action is given by b = [b0 = 1, b1, · · · , bn]. Consider the
sequence

χ1, · · · , χ1; χ2, · · · , χ2; · · · ; χn, · · · , χn (4.18)

where χi is repeated bi times, for 1 ≤ i ≤ n. Let us re-write
the sequence displayed in (4.18) as: φ1, φ2, · · · , φk−1.

For 0 ≤ j ≤ n, consider the (k − 1) × (k − 1) diagonal
matrix defined by

Tj = diag(φ1(cj), · · · , φk−1(cj)).

Then there exist z1, · · · , zk ∈ R
k−1 such that

(i) z1, · · · , zk are the vertices of a regular normalised (k−1)-
simplex in R

k−1 centered at the origin; and
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(ii) each Tj, 0 ≤ j ≤ n maps the convex hull of {zi : 1 ≤
i ≤ k} into itself.

(b) Conversely, if there exists {zi : 1 ≤ i ≤ k} ⊂ R
k−1 sat-

isfying (i) and (ii) above, then there exists an irreducible *-
action of K on a set of k elements with multiplicity vector
b.

(c) Finally, if {z(ε)
i : 1 ≤ i ≤ k}, ε = 1, 2 are two sets

of points satisfying (i) and (ii) above, then the associated *-
actions are equivalent if and only if there exist an orthogonal
transformation S : R

k−1 → R
k−1 which commutes with each

Tj, and a permutation σ ∈ Sk such that Sz
(1)
i = z

(2)
σ(i) ∀i.

Proof: (a) We adopt the convention that the indices i, j, l
always satisfy 0 ≤ i ≤ n, 1 ≤ j, l ≤ k.

Let us write φk(ci) = 1 ∀ i. Since the hypergroup is Hermi-
tian (and hence commutative), it is clear that if we are given an
irreducible *-action π : K → Aff X on a set X = {xj}j with
multiplicity vector b, then {π(ci)}i is a collection of commuting
k × k Hermitian matrices with non-negative entries. We regard
the π(ci)’s as the matrices of linear operators on the real Hilbert
space `2

R
(X) with respect to the standard basis {xj}j. Since

these are pairwise commuting Hermitian operators, we can - by
definition of b - find an orthonormal basis {yj}j of `2

R
(X) such

that
π(ci)yj = φj(ci)yj .

Note that π(e0) = Pk, by the assumed irreducibility of
the *-action. (See Proposition 3.2 for the definition of Pk.) So
we may assume that yk = 1√

k

∑k

j=1 xj. It follows from the
discussion preceding the statement of this proposition that if
we define vj = xj − 1√

k
yk, then {v1, · · · , vk} are the ver-

tices of a regular normalised (k − 1)-simplex in the subspace
{yk}⊥ = span{y1, · · · , yk−1}, which is centered at the origin;
further, the simplex they span is given by ∆v = ∆x − 1√

k
yk =

∆x − π(e0)(∆x), and is consequently mapped into itself by each
π(ci). If we now set zl = [zl1, · · · , zl,k−1], where zlj = 〈vl, yj〉,
the construction implies that the zl’s are the vertices of a reg-
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ular normalised simplex in R
k−1 which is mapped into itself by

each of the matrices Ti, 0 ≤ i ≤ n.

(b) Conversely, if we are given a regular normalised simplex
in R

k−1 with vertices {zl = [zl,1, · · · , zl,k−1] : 1 ≤ l ≤ k} which
is centered at 0, and is left invariant by the matrices Ti for each
i, define the vectors vl in R

k by

vl = [zl,1, · · · , zl,k−1,
1√
k
]

and note that {vl : 1 ≤ l ≤ k} is an orthonormal basis for R
k.

Next consider the (real) diagonal k×k matrices T̃i, 0 ≤ i ≤
n, defined by

T̃i = Ti ⊕ 11 ,

where 11 denotes the 1 × 1 ‘identity matrix’; then we see that
{T̃i : 0 ≤ i ≤ n} is a collection of Hermitian matrices which
satisfy

T̃iT̃m =
n

∑

p=0

np
imT̃p ∀ 0 ≤ i,m ≤ n .

Further, it should be clear that for each i, T̃i maps the convex
hull ∆v of {vj : 1 ≤ j ≤ k} into itself.

It follows that if we write the matrices of the T̃i’s with
respect to the orthonormal basis {vj : 1 ≤ j ≤ k}, i.e., if we
define the matrices {π(ci) : 0 ≤ i ≤ n} by

(π(ci))jl = 〈T̃ivl, vj〉 ,

then π will define a *-action of K with multiplicity vector b.

(c) is an easy exercise in linear algebra. 2

5 An infinity of actions

We would like to acknowledge the suggestion made by E. Bannai
that Theorem 4.2 was likely to produce an example of a finite hy-
pergroup with infinitely many pairwise inequivalent irreducible
*-actions.
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Lemma 5.1 Suppose K = {c0, c1, c2} is a Hermitian 3-element
hypergroup with character table

c0 c1 c2

χ0 1 1 1
χ1 1 x1 x2

χ2 1 y1 y2

,

where x1, x2, y1, y2 ∈ (−1
2
, 1

2
). Then K admits infinitely many

pairwise inequivalent irreducible *-actions on a three element
set, all with the multiplicity vector b = [1, 1, 1].

Proof: Fix θ ∈ [0, 2π], and define

z
(θ)
j =

√

2

3
[cos(θ +

2jπ

3
), sin(θ +

2jπ

3
)] ;

it is clear that z
(θ)
1 , z

(θ)
2 , z

(θ)
3 are the vertices of a regular nor-

malised 2-simplex in R
2 centered at the origin. In the notation

of Theorem 4.2, let

T0 =

[

x0 0
0 y0

]

, T1 =

[

x1 0
0 y1

]

, T2 =

[

x2 0
0 y2

]

.

Let ∆(θ) denote the regular normalised simplex spanned by
the z

(θ)
i ’s; then (see Remark 4.1), we have:

∆(θ) = {v ∈ R
2 : 〈v, z

(θ)
i 〉 ≥ −1

3
} .

Notice then, that for 1 ≤ k, l ≤ 3 and j = 1, 2, we have

|〈Tjz
(θ)
k , z

(θ)
l 〉| ≤ ||Tjz

(θ)
k || ||z(θ)

l ||

<
1

2
||z(θ)

k || ||z(θ)
l ||

=
1

2

√

2

3

√

2

3

=
1

3
,

thereby establishing that ∆(θ) is mapped into its interior by T1

and T2. Hence ∆(θ) is mapped into itself by each Ti.
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Therefore, according to Theorem 4.2, each ∆(θ) accounts for
one irreducible *-action of K on a 3-element set. On the other
hand, since {χj : 0 ≤ j ≤ 2} are the distinct characters of K,
it follows that the Ti’s linearly span the set of all real diag-
onal matrices; consequently only diagonal orthogonal matrices
can commute with all the Ti’s. We may finally conclude from
Theorem 4.2(c) that if 0 < |θ− θ′| < 2π

3
, then the *-actions cor-

responding to ∆(θ) and ∆(θ′) are inequivalent; and the lemma
is proved.

2

On the other hand, the existence of hypergroups satisfying
the conditions of the above lemma has been demonstrated in [9];
in fact, in that example, we have (see the table (7.11) on p. 30)
x1 = 2

15
, y1 = −1

30
, x2 = −1

25
, y1 = 1

125
. We thus see that it can

happen that a finite hypergroup admits a continuum of pairwise
inequivalent irreducible *-actions. It should be remarked that
since the above numbers are all bounded, in absolute value, by 1

7
,

the reasoning in the above lemma can be imitated to construct
a continuum of actions of this hypergroup on an 8-element set.

Acknowledgement: We wish to thank the referee for several
comments and suggestions which have resulted in a much more
readable paper than our first draft.
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