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1 Preface

These are an unedited transcription of lectures I gave at the University of Hous-
ton in the Fall of 2011 and should not be circulated widely. This was my first
time teaching this material and there are a number of mistakes, etc., that need
to be corrected before I show them to a broader audience. The attendees at the
IMSC short course on QC in Chennai are welcome to read these, but I ask that
they not post them to any other websites.

My only hope is that they will give the attendees some supplementary ma-
terial that will inform more than they misinform!

Vern Paulsen, Houston

2 Day - 22/Aug/11

2.1 Computing Overview

Classical (binary) Quantum

Bit - {0,1} = Zs; “on/off” Qubit - unit vector in C?;
electron/photon; 7= (1,0), —= (0, 1),
O= —5(1,4)

N bits - element N qubit - unit vector in

of Z C2">C?2®...®C2 (N times)

Operations - flip, register shifts | Operations - completely positive maps
on Mo~

Information Theory - 2 states; | Information Theory - P 2V x 2V

(Py,...,PN), P, >0, positive; semidefinition matrices

Pi+...+Pnr=1 with ¢tr(P) =1

2.2 Course Overview
I. Basic Math
e Hilbert spaces, matrices, and linear maps

e Positive definite matrices

e Tensor products
IT. Introduction to Quantum Computing

e Axioms of quantum mechanics
e (lassical vs. quantum gates

e Quantum algorithms

Introduction to entanglement

III. Theory of Completely Positive Maps



IV. Entanglement
e Entanglement witnesses
V. Topics

e Quantum error correction
e Quantum coding

e Quanum cryptography

2.3 References

1. Michael Nielsen/Isaac Chuang - “Quantum Computation and Quantum
Information” (Cambridge University Press)

2. S.J Lomonaco (editor) - “Quantum Computation, A Grand Mathematical
Challenge for the 21st Century” (AMS)

3. John Preskill - “Quantum Computation” (Online lecture notes at
http://www.theory.caltech.edu/people/preskill /ph229)

4. P. Kaya, R. Laflamme, M. Mosca - “An Introduction to Quantum Com-
puting” (Oxford University Press)

2.4 Basic Math I
Note. We adopt the notation of physicists.

Example. Let C" be the space of complex n-tuples; i.e.,
C"={z=(x1,...,2n) : z; €C}

and define
ar = (azq,...,qx,),

for any o € C, x € C™. C" has an inner product defined by

=1

(-]-) has the following properties:
e Linear in RHS: (y|z + 2’) = (y|z) + (y|2’) and (y|az) = a(y|z);

e Conjugate linear in LHS (called “sesquilinear”): (y+y'|z) = (y|z)+ (¢'|x)
and (ay|z) = afy|z);

e Positive definite : (z|z) > 0 and (z|z) =0 < z = 0;



e Euclidean length: Define ||z|| = /(z|z) for all z € C". Then || -|| is
a norm satisfying ||z + y|| < ||z|| + |lyl], [lez|| = |a|||z|| for all « € C,
z,y € C™.
Definition. A Hilbert space is a complex vector space H equipped with a map
(Y HxH—-C

that is sesquilinear, positive definite, and H is complete with respect to the

norm ||z|| = /(z|z).

Examples. (1) C", as above.

(2) The space of matrices M, = {(ti;) : t;j € C,1 <i <n,1 < j <k},
where n is the number of rows and k is the number of columns. M, j is equipped
with the inner product defined by

(i) (ziz)) = Z > T

We note that M, , = Cnk,

3 Day - 24/Aug/11

3.1 Examples of Hilbert Spaces

Example. C" is a Hilbert space with inner product

n
<y|x> = Zyle7
=1

where y = (y1,...,Yn), & = (€1,...,2,) € C". C™ has an orthonormal basis
defined by
e = (1,0,...,0),. . en=(0,...,0,1),

and for all z € C™,

n

n
T = ZIiei = Z<67;|17>6i.
i=1

=1

Example. The n x m matrices, My, ., is a Hilbert space with inner product
(Wij)l (i) = Tijis.
4,J
M, , has as an orthonormal basis the set of matrix units defined by

E. — ]-7 (iaj)th entry,
Y1 0, otherwise.

For all X € My, p,
X = ZXZ-JEZ-]- = Z<Eij|X>Eij.
4,7

2,9



3.2 Matrices
Definition. Let X = (z;;) € M,,_,. We define the following:
1. Conjugate matrix: X = (T;;).
2. Transpose matrix: X' = (z;5)" = (z;:).
—t

3. Conjugate Transpose or Adjoint matrix: X* = X = (z;;)". (Note that
physicist denote this by XT = X*.)

Matrix Multiplication. Let X = (2;;) € My, and Y = (y;5) € My, p. Then,

XY = (Z xikykj> € My,

k

If we write
R

R,
as matrices of row and column vectors, then
XY = (R - Cy),

W

where is the usual dot product.

Definition. Define the mapping Tr : M, ,, — C by Tr(X) = >0 | z;;. Tris
called the trace of X. We sometimes write 7'r,, for the trace of M, .

3.3 Physicists Bra-Ket Notation
Notation. Let x,y € C". Define

il
|z) =
Ty
and
Wl=1w"= @ Fn)
Then,
T
T



and
€1

Ty
In addition, physicists prefer to number by 0,1,...,n—1instead of 1,2, ..., n.

In this numbering scheme, the canonical orthonormal basis of C™ is eq, ..., €,_1.
We can also write this bases by

lei) = 14)
for all 5. So, the canonical orthonormal basis is |0}, ..., |n — 1).
Note also that
n—1
@) =Y (eile) - fes)
=0
n—1
= [Z lei) <6i|} |z)
i=0
= I,|z).

3.4 Matrices and Linear Maps

Definition. 7' : CF — C™ is linear if
T(x+y)=T(x)+T(y)

and
T(azx) = oT(x).
We denote by L£(CF,C") to be the space of all linear maps from C* to C™.

Remark. Each n x k matrix A = (a;;) defines a linear map from C* to C" by
matrix multiplication:

k
x1 Zizl 15T
A = :
k
Tk Zi:l aniwi
Rl T
R, -z

Every linear map T is multiplication by the matrix

{eiTe;) = (i[T17)-



3.5 Matrix Theory
Orthogonal Projections. Let V' C C" be a subspace with dim(V) =k < n.
Pick an orthonormal basis {v1,...,v;} for V. Let P = Zle |v;) (v;]. Then,

k

Px = Z<v1|m>’ul eV

i=1

Also,

(vjlz = Px)

(vj]a) — <UJ|ZUI|:C >

= (vjlz) — (vj|z)

= 0.
So, v;L(z — Pz) for all j. This implies that (x — Px)LV. Therefore, z =
Px + (x — Px), where Pz € V and (z — Px) € V+. Hence, we have shown that
any = € C" can be written as = v +w, where v € V and w € V+.

We claim that this decomposition is unique. Suppose x can also be written
as ¢ = v1 + wq, where v1 € V and wq € V. Then,

v+w=v1+w = UV—v =W —
= v—vy=w—w=0~0
= U =71,W =wW;.
Thus, Px and x — Px is the unique decomposition of writing x.

Now, suppose we picked a different orthonormal basis for V', say {o1,..., 0}
and formed

el
I

By uniqueness, P = P. Note also that if v € V, then by uniqueness, Pv = v.
We summarize: Given V' C C™, pick any orthonormal basis. Then

k
Pz = Z |vi) (v;| x
i=1

is the unique orthonormal projection onto V.

Parseval. If v € V and {vy,...,v;} is an orthonormal basis, then v =
k

> i1 (vilv)v;. Then,

k

> (e

i=1

k

ST

llv]* =

11



If we take V' = C™, this says that if {v1,...,v,} is any orthonormal basis, then
n
1ol = (wilv)]*.
i=1

Other Properties of P.

1. P2=P.

2. P = P*. This is because P = Zle |v;) (v;| and, for any vector z,

|z) (2| = (2:7;) = (z:T;)"

Theorem. If P € M, such that P2 = P and P = P*, and if we let V =
range(P), then P is the orthogonal projection onto V.

Proof. For v € V, then v = Pz. So, Pv = P(Px) = P?x = Px = v. If
wlV, then

| Pwll”

(Pw|Pw)
(w|P* Pw)
(w| Pw)

= 0.

Therefore, P is the orthogonal projection onto V.

4 Day - 31/Aug/11

4.1 Unitary Matrices

Definition. U € M, is unitary if U*U =1
Theorem. For U € M,,, the following are equivalent:
(a) U is unitary.

(b) U is invertible and U~! = U*.

(c) UU* =1.

(d) U* is unitary.

e) The columns of U are orthonormal.
)

)

)

f

(
(f) The rows of U are orthonormal.
(g) (Isometry) ||Uz|| = ||z|| for all x € C™.
(h) (Inner product preserving) (Ux|Uy) = (z|y) for all z,y € C™.

12



Proof. ((a) = (b)): U* is a left inverse implies U is one-to-one. So,
dim(rg(U)) = n, and so, U is onto. Hence, U is invertible and U* is the
inverse.

((b) = (¢)): Obvious.

((c) = (d): (U*)*=U. So, (U*)*U* = I. Hence, U* is unitary.

((d) = (a)): Since U* is unitary and (U*)* = U, we have that (U*)* =U is
unitary.

((a) = (e)): Recall that if

U* =

and I = U*U = (¢ - ¢;). However,

N 1, =7,
¢ e = <Ci|0j>={ ’ J

0, i+#j.
Hence, ¢4, ..., ¢, are orthonormal.
((e) = (a)): Since the columns are orthonormal, we have that U*U =
(cf-cj)=1.
((d) = (f)): Let
1
U= JU* = [yl
T

Since U* is unitary, we know that r},...,r) are orthonormal. Hence, ri,
are orthonormal.

((f) = (d)): Similar to ((d) = (f)).

((a) = (9)): lU2]|* = (Uz|Uz) = (2|U*Vz) = (z|x)|||[.

((9) = (e)): this implies that ||[Ue;|| = ||es]| = 1. However, Ue; is the i*!
column. Therefore, the columns all have length one. Let Ue; = ¢;. For i # j,

ey T

llaves + Bej[* = laf® + 18]

13



and
U (ae; + Bej)|P = |af® + 8.
However,
U (e + Bep)||? = (U(ae; + Be;)|U(ae; + fej))
= (ae; + Bejlae; + Bey)
|a\2£0i\ci> +aB(cilc;)
+af(ejle) + 1817 (¢jles)
= |a]® + |8 + 2Re(@B(cilc;)).
This implies 2Re(af(c;|c;)) = 0 for all «, 3. Hence,
(cilej) = 0.

Therefore, the columns are orthonormal.
(a) = (h)): (U|Uy) = (x|U"Vy) = (x]y). o
((h) = (9)): (Uz|Ux) = (z|z) implies ||Uz||* = ||z[|* implies ||Uz|| = ||z|.
X

4.2 Householder Unitaries

Definition. Given w € C"™ with ||w|| = 1, recall that |w)(w| = (w;W;) = Py,-
projection onto span{w}. Set U, = I — 2P,,. Then,

UiUy = (z_zp (I —2P,)
= (I -2P,)(I - 2Py)
= [—2P, 2P, +4P,
= 1.

So, U, is unitary. We call U,, the Householder unitary given by w.
Remark. Geometrically, U, is equal to the reflection through the hyperplane

{w}i.
Lemma (Schur). Given z,y € C* Wlth [lz]| = |ly||, there exists w € C™ with
|[w|| = 1 and ¥ so that U, (z) = ¢y.

Theorem (Schur). Let A € M,,. Then there exists a unitary U so that U* AU
is upper triangular.

Proof. Pick an eigenvector x; with ||z1|] = 1 and eigenvalue A; of A4; i.e.,
Azy = Mzp. (We can always normalize 1, so we may assume ||z1||;.) By
Schur’s lemma, there exists w, e such that U, (z1) = e®®e;. Then,

(UwAU;)(e1) = UyA(e"zy)
= U 1
_ )\1671‘961-9

= /\61.

14



. This implies

* )\1 *
=%
where Ay is (n —1) x (n—1).
Pick 7o € C"~! with ||z2|| = 1 and A such that Ajz; = A\gwa. By Schur’s
lemma, there exists wy with
% )\2 *
Vin i, = { 0 A ] ’

where As is (n —2) x (n — 2).
Now consider

Then
~ - A1 * * *
(U’UUI Uw)A(Uwal)* = 0 )\2 * *
0 0 A

Now proceed by induction.
X

Recall. The characteristic polynomial of A is defined by p,(t) = det(t — A) =
nt™ degree polynomial.

Corollary. Tr(A) = A\ + ...+ A, where the A; are the eigenvalues of A.
Proof. Apply Schur’s theorem to U* AU = T, where

tll *
0 too
T =
*
0 ton

Then, t11 + ... + tpn = Tr(T) = Tr(U*AU) = Tr(AUU*) = Tr(A). Since
pr(t) =det(tI = T) = (t —t11)...(t — tun), the roots are t11,...,tn,. Since

det(tI — U*AU) = det(U*(tI — a)U)
= det(t] — A)
pa(t),

we have that pa(t) = pr(t).

5 Day 4 - 2/Sep/11

5.1 Hermitian Matrices
Definition. H € M,, is Hermitian, or self-adjoint, if H = H*.

Theorem. The following are equivalent:

15



(a) H is Hermitian.

(b) There exists a unitary U such that U*HU = D, where D is a diagonal
matrix with real entries.

(¢) H has an orthonormal basis with real eigenvectors.
(d) (x|Xx) is real for all z € C™.

Proof. We need a lemma:
Lemma. For T € M,, if (z|Tz) =0 for all z € C", then T = 0.

Remark. Let
0 1
()

and z € R%. Write z = (z122)". Then,

(@Tz) = ((z122)"|(z2 — z1)")
= T1T2 — T2
0

but T # 0.
Proof of Lemma. Given z,y € C", we have

0 = (z+ylT(x+y)
(@|Tz) + (y|Tx) + (z|Ty) + (y|Ty)
(y|Tx) + (2|Ty).

and

0 = (z+wyT(z+1iy))
(1y|Tz) + (z[Tiy)
= —i(y|Tz) +i(z|Ty).

Hence, (y|Tz) = (z|Ty) and (y|Tz) = —(x|Ty). So, (y|Tz) =0 for all z,y € C".
Take © = e; and y = e;. This implies ¢;; = 0, and so, T' = 0.
&
We now prove the theorem.
((a) = (b)): By Schur, there exists a unitary U such that U*HU = T, with
T upper triangular. Then,

T = (U'HU)*
= U*HU
= T.

This implies T is diagonal. Let T = D. Then D* = D, which implies D has
real entries.

16



((b) = (c¢)): Let U"HU = D and Dej = Mje; be the eigenvectors and
eigenvalues. Then HU = U D, which implies

H(U@j) = UDej = U()‘jej) = )\jU@j.

So, Ue; is an eigenvector of H for all j. However, Ue; is the j®® column of U.
Therefore, u; = Ue; is an orthonormal basis of eigenvectors.

((¢) = (a)) Let {uq,...,u,} be an orthonormal basis of eigenvectors with
real eigenvalues; i.e., Hu; = A\juy, for all j. Let D = diag{\y,...,\,} and

Then U is unitary and
HU@j = HU]‘ = )\j’u]‘ = /\jU(’/]‘ = UDej

for all j. So, HU and UD agree in column j, for all j. This implies HU = UD
and H = UDU*. Hence,

H*=U"D*U*=UDU* = H.
((a) = (d)) (z|Hz) = (H*z|x) = (Hz|x) = (z|Hz) implies (x|Hz) € R for
all z.
((d) = (a)) {x|Hz) = (x|Hz) = (Hz|x) = (x|H*x) implies (z|(H — H*)x) =
0 for all . By the lemma, H — H* = 0 implies H = H*.

X

5.2 Positive Definite and Semidefinite

Definition. P € M,, is positive semidefinite, denoted P > 0, if (x|Pxz) > 0 for
all x € C™. It is called positive definite, denoted P > 0, if (z|Px) > 0 for all
x e C".

Note that, by part (d) above, P positive semidefinite implies P = P*.

Theorem. P > (if and only if P = P* and all the eigenvalues are non-negative.
Proof. (=) (z|Px —> 0 implies (z|Pz) € R implies P = P*. Let Pz = \x.
Then,
0 < (z|Px) = (x| \z) = Mz|z) = N ||

Hence, 0 > .
(<) Let {uq,...,u,} be an orthonormal basis of eigenvectors, Pu; = Aju;

17



with A; > 0. Given x € C", write * = oyu1 + ... + apuy. Then,
@lPz) = 3 = 1"l Plajuy))
i,
= Z = 1"q;a; (u;| Pu;)
i,j
= D = U@mah{uily)
i,

n
= > Alayl?
j=1

0.

v

X

Corollary. P > 0 if and only if P = P* and all the eigenvalues are strictly
positive.
Proof. (=) We know that P = P* has eigenvalues greater than or equal to
0. If Pu; = Ou;, then 0 = (u;j|Pu;). Therefore, A; > 0 for all j.
(<) Write © = aqus + ... + ayu, as before. Then (z[Pz) = 377, Ajlay[®.
Since x # 0, some «ay, # 0. Hence, (z|Px) > 0.
X

Theorem. P > 0 if and only if P =" |v;)(v;| for some set of vectors.
Proof. (=) Take an orthonormal basis of eigenvectors {u,...,u,} with
Aj >0, If o =371 aguy, then Pr =370 | a;Prj = 30| ajAju;. However,
(lug)(ujz = (ujle)u; = aju;.

Therefore, Pz = (E?Zl |uj><u]|) x implies

pP= Z)\|u7 uj\_zw/z. A ).

(<) I P =371 |vi)(vi, then

Pz = i(vl\x)vz
i=1
Therefore,
(x| Px) = (x| i (vi|x)v;) = i(vz|w><w|vl> = i |(v;]x)|? > 0.
i=1 i=1
So, P > 0.

18



Key: P =1, [v;)(vi]. Then (z[Px) = 3|, (v:])[*

Theorem. Let P,,x,, = Y v, |v;){v;|. Then P > 0if and only if span{vi, ..., v, } =
cn.

Proof. (<) If ¢ # 0, since the v;’s span C", (v;|x) # 0 for some i. So,
(z|Px) = 3| _ (v;])[2 > 0. Hence, P > 0.

(=) Suppose {v1,...,v,} do not span C". Then there exists  # 0 such
that zLv; for all j. then (z|Pz) = ZL:1<vi|x>\2 = 0, contradicting P > 0.
Therefore, spanf{vy,...,v,} = C".

X

6 Day - 7/Sep/11
6.1 Aside

Given an n x n matrix P such that P = P*, how do we tell P > 0 or P > 0.

Practical Tests

1. If P = P*, then P > 0 if and only if

P11 - D1k
det >0
Pkl --- DPkk
for k =1,...,n. Note that
P11 - Pk
det >0
Pka1 .-+ Pkk

for k =1,...,n does not imply P > 0.

2. The best method is Cholesky’s algorithm:
Theorem. If P = (p; ;) is n x n and P = P*, then P > 0 if and only if
P — (pq‘,,l'pl,j) > 0.

P11
Note that
P11 Pi2 ... Din
(pz‘,l 'Pl,j) : .
— | = P21 : ;
P11 ] .
. : *
DPn,1
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i.e., it is equal to P in the first row and column. Therefore, P — (%)
is really an (n — 1) x (n — 1) matrix.

Then we repeat the process.

Example. Let

Then,
R — <Pi,1 'Pl,j)
P11
1 1\"
= - 2 2
3 3
1 2 3
= 2 4 6
3 6 9
Hence,
0 O 0
P—-—R= 0o 0 -1
0 -1 -2
So, P *# 0.
Example. Let
4 2 3
P = 2 5 6
3 6 8
Then
R — <Pi,1 'Pl,j)
P11
4 4\"
1
3 3
1 16 8 12
= 1 8 4 6
12 6 9
Hence,
0 O 0
P—-—R= 0 4 9/2
0 9/2 23/4



Repeating, we obtain

(94/12 293//24>_111(94/12>.<94/12 )*:<8 ”916)

Therefore, P is positive semidefinite.

Remark. The other advantage of Cholesky is when P > 0, this writes P as a
sum of rank one matrices.

6.2 Direct Sums of Vector Spaces, Partitioned Matrices

Definition. Given vector spaces V, W, their direct sum is defined by
VeW={(v,w)veV,we W}
It is a vector space with operations
(v1,w1) + (v2, w2) = (v1 + Vo, w1 + wa), (v, w) = (v, aw).
It is a Hilbert space with inner product

((v1, w1)|(v2, w2))vew = (vi|va)v + (wi|wa)w.

Proposition. If vy,...,v, is a basis for V and ws,...,wy is a basis for W,
then (v1,0),..., (vp,0),(0,w1),...,(0,wy) is a basis for V@& W.

Proof. For v € V, write v = ayvy + ... + a,v,. Similarly, for w € W, write
w = frwy + ...+ Brwg. Then,

(v,w) = a1(v1,0) 4+ ...+ Br(0,wy)

(v,0) + (0, w)
= (v+0,04+w)
(

v, w).

Therefore, they span V & W. A similar calculation shows that they are linearly
independent.
X

Corollary. dim(V & W) = dim(V) + dim(W).

Note. Note that V = {(v,0) : v e V} C V & W. Similarly for W = {(0,w) :
w € W}. Hence, (v,0)L(0,w), making V' and W perpendicular to each other
nVeoW.

Key Examples

1. Cn+k = {(ala..-7an7an+17"'7an+k) Pap € (C} = {(’va) v E (Cn7w €
Ck} =C" e C*,
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2. Given T : C™+k+1l — C2*+k2 T can be represented by an (ng + ko) x
(n1 + k1) matrix:

t11 e t1,n, T, +1 cor Utk
T — na1 s tnang tno,ng+1 s tngni+h _ T1;1
[ZPEE IS EPRR N bngtimi+1 - bngdlng+k T
. 2,1
tnotka,l -+ tnotkons  Tnotkama+l oo bngtkanith
where
T171 : (Cnl — an,
TLQ : (Ckl — (Cng,
Tg’l : (Cnl — (Ck2,
Tgyg : (Ckl — (Ckz.
So,
ay
. v ni k1
T G,y = T w , where v e C" we C™,
a”ﬂlJrl
WAy +ky
o T171 . T172 ( v )
. w
To 1 : Topo
_ T171’U —+ TLQ’[U
T2’1’U + T272'w

where, T1 1v + T ow € C"2, T 1o+ Thow € CF2.

7 Day - 9/Sep/11

7.1 Tensor Products

Definition. Given vector spaces X,Y,Z, amap B: X xY — Z, B(z,y) € Z,
is called bilinear provided:

(1) B(x1+ z2,y) = B(x1,y) + B(x2,9),
(2) B(w,y1 +y2) = B(x,y1) + B(z,y2), and,
(3) for all A € C, B(Az,y) = B(z, \y) = AB(z,y).
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Notes. (1) AB(z,0) = B(z, A - 0) = B(z,0), for all A € C. Hence, B(z,0) = 0.
Similarly, B(0,y) = 0.

(2) B(x1 + 22,91 + y2) = B(w1 + x2,51) + B(x1 + 22,92) = B(w1,y1) +
B(x1,y2) + B(xa,y1) + B(xa,y2). Hence, these are like products.

Motivation of Tensor Products: In the new space, bilinear becomes linear.

Axiom. We form the vector space X ® Y, which is the span of “elementary
tensors” x®y, for all x € X,y € Y, satisfying the universal property: Whenever
B : X xY — Z is bilinear, there exists a corresponding linear map Lp : XQY —
Z with B(z,y) = Lp(z ®v).

Key: XY =span{zx @y : z € X,y € Y} and has the following relations:
o (11 +22)RY=01QYy+ 12,
e r® (Y1 +y2) =Ry + 2 Yo,
e Nz®y) =)@y =2® (\y).

Theorem. If {ey,...,ex},{f1,..., fm} are bases for XY, respectively, then
{ei@fj:1<i<kl<j<m}

is a basis for X ® Y. Hence, dim(X ® Y) = dim(X) - dim(Y).
Proof. We first show that {e; ® f;} is spanning. Given z € X, y € Y, write

r = o1e] + ...+ ek,

y=0ifi+...+ Bmfm-
Then,

xRy = (e +...+aper) @ (Brfi+ ...+ Bimfm)

k m
= ZZ(aiei) ® (B f5)

k m

= ZZ(aiﬂj)(ei ® f3)-

i=1 j=1

Hence, they span the set.
To show linear independence, define B : X x Y — My, ,,, by

B(oner + ...+ ager, Bifi + ...+ B fm) = (i85) € My .

Then, B is bilinear, and by the universal property, there exists Lg : X ® Y —
Mk,rru LB(J:@)y) = B(JZ, y) However, LB(6i®fj) = E@j. So, ifZaij(ei®fj) =

0, then
0=1Lp (Z aije; ® fj)) = ZaijEi,j'
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Hence, a;; = 0 for all 4, j.
X

Proposition. Let {ey,...,ex},{f1,..., fm} be bases for X,Y, respectively, and
u€ X ®Y. Then:

(1) there exists unique z1,...,z,, € X such that u =21 ® f1 + ... + Ts, ® fin;
(2) there exists unique y1,...,yx € Y such that u =e3 @ y1 + ... + e ® yYg.

Proof. Since {e; ® f;} is a basis for X ® Y, there exists unique a;; € C such
that u = 3% | Yoy (e ® fy). Let ;= S aije;. Then,

Jj=1

Similarly, let y; = >, a;;fj. Then,

k
u = Z € & Y;.
i=1
Uniqueness follows from the fact that {e; ® f;} is a basis.

Corollary. If dim(X) = k and dim(Y’) = m, then

XY X®...8X (mtimes)

Y®...0Y (ktimes).

o~
~

Key. In these last identifications, we needed to choose a basis!
Remark. Let u € X ® Y. There exists many ways to write v as a sum of
elementary tensors. For example,
u = (2e1+3e2) @ (f1+ f2) +e2®(Bf1+4f2)
2e1 ® fi+2e1® fa+3e2® f1 +3e2® fo +3e2 ® fi1 +4ea ® fo
= 201 ® f1+2e1® fa+6e2® f1+ Tea @ fo.

Definition. Given u € X @ Y, the Schmidt rank of u, denoted rankg(u) is the
least number of elementary tensors in an expression for u.

8 Day - 12/Sep/11

8.1 Tensor Produts of Hilbert Spaces
Remark. Let H, K be Hilbert spaces. Then we set

(h1 @ k1lho @ ko) = (halho)m - (k1lk2) k. (%)
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Theorem. (k) extends to define a sesquilinear form on H® K satisfying (u|u) =
0 if and only if uw = 0. Therefore, this defines an inner product on H ® K. In
finite dimensions, we call H® K with this inner product the Hilbert space tensor
product.

When H, K are infinite dimensional, the vector space H ® K will not be
complete in the norm coming from this inner product. In this case, the Hilbert
space tensor product means the completion.

Proposition. If {h;};,c; is an orthonormal basis for H and {k;};cs is an
orthonormal basis for K, then

{hi®kj :iel jeJ}

is an orthonormal basis for H ® K.
Proof. (Finite Dimensional Case) We see that

<hi1 ® kjl |hl2 ® kj2> = <h11 |hi2><kj1 |kj2>
B 1, i1 =12 and j1 = jo
a 0, otherwise.

Therefore, they are orthonormal. Since this set has |I|-|J| = dim(H)dim(K) =
dim(H ® K) elements, it is a basis.
(Sketch of Infinite Dimensional Case) We still have that

{hi®kj :iel,jeJ}
is an orthonormal set. Then show that the linear span is dense.
X

Summary. Given the Hilbert spaces C", C* and canonical orthonormal bases
{e; 1 1<i<n} {e; : 1 <5<k},

C™ ® C* has an orthonormal basis {e; ® e;}. In physics notation, we write
e; = |Z> and e; @ €; = |’L]>
If we have C", C¥, CP with canonical orthonormal bases {e;}, {e;}, {e;}, then

{ei®@e;j@er}
is an orthonormal basis for C* ® C* @ CP and dim(C" ® C* ® CP) = nkp. In
physics notation, e; ® e; ® e; = |ijl).

Example. For C2®...® C? (N copies), we have the orthonormal basis {e;, ®
...®e;y = |i1...in)}. In mathematical notation, I = (i1,...,iy) is called a
multi-index and we write ey = €;, ® ... @ e;, .

A basis for C2? is {ep,e;}. Then, the multi-index I = (iy,...,in) € (Zo)V
for C2®...® C? (N copies).
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8.2 Postulates of Quantum Mechanics

Postulate 1. To each isolated physical system, there corresponds a Hilbert
space, called the state space, and the state of the system is completely described
by a unit vector in H called the state vector.

Example. The system of a single photon with the state equal to the polar-
ization described by a unit vector in C2.

Postulate 2. The time evolution from time t; to ts, t;1 < to, of a closed
quantum system is described by a unitary U : H — H so that if the system
is in state ¢ at time ¢, then it is in state Uy at time to. (Often, we have a
continuous time and then we have U(t) and U(s +t) = U(s)U(t)).

By closed, we mean “not interacting with anything outside the system.” By
open, we mean it is a piece of a larger system.

Quantum Measurements. When we want to observe a system, i.e., connect
to the “outside world,” the system is no longer closed because we interact with
it. This leads to nonunitary changes.

Postulate 3. Quantum measurements are described by a collection of operators
{ M} m=measurements on H, called measurement operators. If the system is in
state 1) before we measure, then the probability that we observe m is

= (Y|M;, M)
= ||Mm3]|*.

(Since 1= Zmper(¢) = Z<¢|M;;1Mm¢> = <’¢)|Zm M:;LMmW» = <¢|f¢>,
we have that (p|(I=)", My M,y,)y) = 0 for allp. Therefore, I =3 = M M,,.)
M'V'L’Lp

(

Also, after we observe m, then the system changes to the state (NI

9 Day - 14/Sep/11

9.1 Quantum Game

Alice has two states {¢1,12}. Bob knows that they are {i1,13}. Alice picks
one and sends to Bob. Can Bob create a measurement system {M,, } that, with
certainty, decides which one he is given?

Formally, we want My, My such that ||[Myis|| = 0, ||[My1||?> = p1(¢1) = 1,
|[Ma41]| = 0, and [[Ma¢s|]* = 1.

Case I (11 L1)o): Let

My = [¢1) (],
the projection onto the span of 1, and let
Ms = [2) (.
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Note that M2 = My M, = My, M2 = Mj My = My. Let
Mz =1— M;— M,

which is the projection onto the span of {¢1,¢2}+. Note that Mj;M; =
M3 = Mj3. Then,

[[Myyn]]* = (Myoy|Mygy)
= (Y1ln)
= 1,
and
[|[Mis|| = (Mythe|Mitpe) =0,
[[Mar]| = 0,
[[Marpa|| =

Therefore, we can distinguish with certainty.

Case IT (¢ A)s): Suppose we had any measurement system {M,,, } such that
[|M111]| = 1. This implies || M;1|| = 1 for all I # 1. Now, 1 = a1 + 37,
where 11 Ly and ||y|| = 1. So, ||¢)2]|? = 1 implies |a|? + |3]?> = 1. Hence,
a #0.

Now,

1 = Zmpm(%) = Zm<me2|me2>
= > M (atpy + By)| P = [|Mi(aypr + 8NP + 22,4 [[Mi(agps + By)| 2
= [[Mi(a + BY)* + X0 [IM(BY* < My (92) P + 32, 11BMa (7))

= 1My (42) |7 + 18]

This implies 1 — |32 = |a|?> < |[Mi(2)||?>. So, with probability |a|?,
Measurement 1 will “light up” when ), is sent.

In spite of this problem we do have:

Theorem. Given states {t1,...,¥,} which are linearly independent, there
exists a measurement system Mo, . .., M,, such that if the i*" occurs, then v; is
received.

Remark. Given P > 0,

A1 0

where \; > 0, denote

A2 0
P2 =y - U*.
0 A2
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So, P'/2 >0 and (P'/?)? = P.

Proof. Let V; = span{t¢; : j # i}. Let E; be the projection onto V;t.
Since ¢; € V; for j # i, we have that E;(¢;) = 0 for all ¢ # j. However, ¢; € V;
implies F;(1;) # 0. For each i, 0 < E; < I implies

0<E, +..+E,<nl.
So,
1 1
0<—-E1+...+—F, <nl.
n n

Let M, = ﬁEZ Then, M; = M, M;M; = %Ei, and Z?:l M} M; < I. Hence,

P:I—zn:Mi*Mi > 0.
i=1

Let My = P'/2. Then, MMy = P, and therefore,

zn: MM; =1.
1=0

Thus, {My, ..., M,} is a measurement system.
If fori =1,...,n, M; occurs, then

|1M; ()] = || fraclvnE;(4;)| =0,

for j # i. So, if the " occurs, then ; is received.
X

Remark. Suppose we send ¥;. Then, M;(¢1) =0 for i = 2,...,n. However,
1

n

M@l = ClIE WP <

With probablity

we get 0 for a measurement.

9.2 Projective Measurements, Expected Values, and Self-
Adjoints

Recall the example from probablity: Roll a die, which has six outcomes, {1,...,6},
each with probablity %. Now roll the die a large number of times, say n times.
Add up the numbers obtained and divide by n:

on+...+0,  F-l+...+5%-6

n n

1 1
= —--14+...+--6
6 * +6

= prob(l)-1+...4 prob(6) - 6.
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Let
EX)= Zprob(X =a;) - a;,
i
which we call the expected value of X.
If we have measurements {M,,}, measurement outcomes are real numbers

{Am}. If ¢ is the state, the probability that the outcome occurs is p,, () =
[|M,,9||?. Hence, the expected value is

= Z >\m<Mm¢|me>

S A [, M)

= (@I Am M My ))
= (Y|HY),

where H = Y A\, M} M,, and H* = H. Therefore, (¢)|Hy) is equal to the
expected value of the outcome when 1) passes through the system.

10 Day - 16/Sep/11

10.1 Positive Operator-Valued Measures
Let {M,,}, {M,,} be measurement operators. If

M M, = M} M,,
for all m, then

pm(Y) = ||me||2
(M )| M 1))
(Y| My, My 1))
([N M)
= ﬁm(w)

Hence, we cannot distinguish these systems. Thus, only M, M,, matters and
Yo M My, = 1.

Now suppose that we have P,, > 0 and Zm P, =1. If we set M,, = P]%/[/Q,
then {M,,} is a measurement system.

Definition. A positive operator-valued measure is a set { Py, } of positive oper-
ators such that > P, = 1.
Note that some books and researchers focus on these as “measurements.”
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10.2 Composite System
Suppose we have two or more distinct physical systems. How do we describe it?

Postulate 4: The state space of a composite system is the tensor product of
the state spaces of each component; that is, if these spaces are Hy, ..., H, and
te i*™® component is in state 1;, thent he system is in state 1 @ ... ® 1.

Example. Suppose we have two photons in a lab, the first given by %|O> +

10)+4[1)
7

f|1> and the second given by The pair is then described by a vector

in C? ® C? = C* given by

|0) +|1) B |0) ®10) +4|0) @ |1) +|1) ® 1) +i|1) @ |1)
(f'0> f>> ( NG ) - 2
00) +i[01) +[10) +4[11)

2
Note that this is a vector of Schmidt rank 1.

Remark. Suppose one just has two photons. They will be represented by a
unit vector 9 in C2®C?. Are there two subsystems so that these can be thought
of as two separate photons, one in each subsystem?

The answer is yes if and only if ) = 1)1 ® 99 if and only if ranks(v) = 1.
When rankg() > 1, this is a phenomenon known as entanglement.

Note that entanglement does happen in nature!

10.3 Measurements in Composite Systems

Tensor Products of Operators: Given R: H — H, T : K — K, there exists
a unique operator

RT-HK - H®K
given by

(R®T) (Zhl@@kl) = (Rh) ® (Thy).

l

Proof. Define B: Hx K — H® K by B(h,k) = (Rh) ® (Tk). This is
obviously bilinear. So, there exists a unique linear map Lp: H@ K — H ® K.
Now set R®QT = Lp.

X

Properties: (1) If R,: H — H,T;: K — K, for i = 1,2, then
(R @ Th)(Ry ® To) = (R1R2) ® (T113).

2) (ReT) = R*®T".
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Proof of (2). We have that

(M @k |(RRT)" (ha ®k2)) = ((RRT)(h1 @ ky)|he ® k)
(Rhy ® Tki|hs ® k)
= (Rhilh2)pg - (Tkilke)k
(h1|R ha) g - (k1T ko) k
(h1 @ k1[(R* @ T*)(he ® k2)).
X

Remark. If lab A has measurement system {M,,} and state space H, and if
lab B has state space K, let H ® K be the state space of the composite system.
Then the measurement system for A is {M,,, ® I.}. So, if we had states ¢ in A
and ¢ in B, then

PaB (v ® )

M, ® Ii) (¥ @ ¢)|?
M) ® ¢|?
M) @ ¢|(Mmy)) ® @)

|

|
((

= (Mpn @ DY @ ¢)|(Mpn @ I)(Y @ $))
(
(

(
(

Y& ¢|(Mp @ 1) (Mm@ 1) (Y ® ¢))
Y @ ¢|(My, My, @ I)(Y @ )

= (Y|My,Mntp) n{9|6) k

= || Mp3||?

= ph(¥).

10.4 Two Applications of Entanglement

Example 1 - Simultaneous transfer of information; Eavesdropping: A
and B share two entangled photons. Suppose the state is

~100) 4 |11)
A prepares the experiment
Mg Mo = [0)(0], My My = My = [1)(1].
Then,

po(v) = (Mo ®I)y)
<€0 ®eg+er@er (Mpeg) ®eg + (Mper) ® eq >
V2 ’ V2
<eo®eg+el®el eo®eo+0>
V2 V2

= 1/2+0
= 1/2.
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So, p(v) =1/
If we get outcome 0, v changes to

epReg
My® I ;
( v )’)/: f =e9 ® ey
po(7) V2

If we get outcome 1, v changes to e; ® e;.

Suppose lab B does measurements I ® My, I ® M;. If A obtained outcome
0, then in Lab B, we get outcome 0 with probability 1. If A obtained outcome
1, then in lab B, we get outcome 1 with probability 1.

11 Day - 19/Sep/11

11.1 Example from Last Session

Example: “Super Dense Coding.” Given two entangled qubits and state

~]00) 4 |11)
\/i )
suppose that the first qubit is in Lab A and the second in Lab B.

Lab A Send to Lab B

Does Nothing - _ l00)+]11)

Multiply by (§ %) — ~= {
Multiply by (94) — _ [10)+]o1)

T \10\{3\01>
Multiply by (_01 %) — ==
Hence, the surprise is that Lab A can send one qubit but can communicate four
possible pieces of information.
Similarly, if they share 2m entangled qubits, Lab A keeping m and Lab B
keeping the other m, if Lab A does something to its m and then sends to Lab
B, it can communicate 4™ possible pieces of information.

|00>\[2\11>

11.2 Some Binary and Quantum Gates

G. Boole (1854): Set 0 = F = “not in set” and 1 =T = “in set.”
1 Bit Gates
NOT : 0—1,1—0
1 Qubit Gates

NOT : X = (9}), which is unitary.
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Others :

Z = ((1391) = ey —ep, €1 — —€1
Y = (?’OZ) = ey — iei,e; — —ieg
no- &)
S (69):(gei)

H is called the Hadamard gate and has the property H?> = X. S has the
property that the two matrices generate all 2 x 2 unitaries.

2 Bit Gates
AND or N :
Input Output
0,0 — 0
0,1 — 0
1,0 — 0
1,1 — 1
OR or U :
Input Output
0,0 — 0
0,1 — 1
1,0 — 1
1,1 — 1
XOR or A6B :
Input Output
0,0 — 0
0,1 — 1
1,0 — 1
1,1 — 0
NAND or AU B¢ :
Input Output
0,0 — 1
0,1 — 1
1,0 — 1
1,1 — 0
NOR or A°N B¢ :
Input Output
0,0 — 1
0,1 — 0
1,0 — 0
1,1 — 0

b

Notes (1) C.S. Pierce (1880): Proved that NAND alone generates all other
Boolean operations. In 1886, he wrote to N. Tesla and explained how Boolean
operations could be done via circuits. Tesla built and patented the idea.

(2) Sheffer (1913): Proved that NOR generates all other Boolean operations.
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2 Qubit Gates

No 2 bit gate is an allowable quantum gate because they have the property
2dim — 1dim, which are not unitary. They are also known as irreversible.

CNOT :

Input Output
0,0 — 0,0
0,1 — 0,1
1,0 — 1,1
1,1 — 1,0
As a matrix, we have that
1 0 00
01 00
CNOT = 00 0 1
0010
which is unitary.
3 Bit Gates

Tommaso Toffoli (1980): Proved that there existed a reversible binary gate
that generates all Boolean operations, called the Toffoli gate or CCNOT.

CCNOT :
Input Output

0

=== O O OO
= —_ 0 O = OO

O == OO

Ll el

As a matrix, we have that

which is unitary.

12 Day - 21/Sep/11

12.1 Correction from Last Time

Define
NOTX = (94),
1
H = — (11
\/5(1 1)
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Then,

Xeog= (1) = e,
which is a 90 degree rotation,
Xey = ((1)) )
which rotates 90 degrees, and,
1
Heq, = 2
1 V2 ( 1)

Hence, X is a reflection about 45°. Since H? = I, H is also a reflection about
45° _ w

2 8"

12.2 Correction from Last Time
CNOT is described as

Input || Output
00 00
01 01
10 11
11 10

Hence, when a = 0, do nothing and save a. When a = 1, do NOT on b and save
a.
CCNOT is described as

Input || Output
000 000
001 001
010 010
011 011
100 100
101 101
110 111
111 110

Hence, when a = 0, do nothing to b, ¢ and save a. When a = 1, do CNOT to
b, c.
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12.3 Circuit Diagrams, Modular Arithmetic
We identify Zo 22 {0,1}. Then,

0—1
NOT = { 150
What we really mean is a — a + 1. With CNOT, we have
CNOT: |a,b) = |a) ® |b) = eq @ ep, a,b € Zy.

The operation is then |a,b) — |a,b + a). This tells what the math does on the
basis. Here, we used the notation

€q & €p = |0,, b>
Circuit Diagrams:
a . a
b— a+b
The diagram
a @ a+b
b . b

corresponds to the description and matrix:

Input || Output 100 0
00 00
0 0 01
01 |
0 010
10 10 010 0
11 01
The diagram
a a+ (a+0b) b
a . &) . b
b @ o ® a
a+b a+b (a+b)+D
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corresponds to the permutation matrix

10 0 0 1 0 0 0 10 0 0 1 0 00
0 01 0] (01 O0O0 0 0 01 01 0 0
010 0] (0001 0 01 0 0 0 01
00 01 0 010 01 0 0 001 0

The Toffoli operation CCNOT is given by the diagram:

a [ ] a
b . b
c @ ¢+ (ab)

12.4 Cloning and No Cloning

For 1 bit, we have

0 — 00
1 — 11

and
@) — |aa).

In other words, if we take the unitary CNOT, call it U, then
Uea ® €9) = €4 ® €.
On the computational basis, CNOT can “clone:”
i1, in) =€, ®...0¢, €EC*°®...0 C%
Then there exists a unitary U such that
Uity yin) @10,...,0)) = li1, oo yin) @ i1, -y in);
i.e., the computational basis can be cloned.

What does “no cloning” mean? Take
¥ = aeg + fer = al0) + B[1).
Apply the CNOT unitary to ¥ ® eg:
Uy ®eo)

U((aeg + PBer) ® ep)
U(OZGQ ® €o =+ 661 [ 60)

YRY
a’ey @ eg + af(eg @ e1 +e1 @ eg) + Bler @ ey.

I~ 1l
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When af # 0, then they are not equal. The only case for U(v ® eg) = ¢ ® ¥)
is®=egory=ej.

No Cloning Theorem. To “clone,” we want a state ¥ and a unitary U on
H ® H such that

Uyed) =¢y@y

for all ¥» € H. We show that this is impossible.
Proof. If U (¢ ® ¢) = @ ¢ for all p € H, then

U(=)®@¢) =(-¥) @ (-¢) =¢v @y
for all ¥» € H. On the other hand,
U(-¢)®¢)=U(-(¥®¢) =-U[®¢) =—(¢ @)

for all ¢ € H, which is a contradiction.
X

Remark. This proves that you cannot “clone” everything, but can “clone” the
computational basis.

13 Day - 23/Sep/11

13.1 Quantum Parallelism

Recall that

1
H:ﬁﬁ—ll)
and 0 )
Heq €0+61:|>+|>
V2 V2
Also,
H(ep®...®@e0) = (Hep)®...® (Hep)
_ €0+61 €0+61
When N = 2,
eo+el®eo+el e ®eyte®e+e1®e)+e1 e
vz YT (V2)?
(%)
- (&) =o
\/5 Jez2
In general,

H®N(ep®...®e) = (é)N > es= (%)QZA



Application. Suppose we have a function with two outcomes, say f : ZY — Z,.
We want to count how many of each outcome; i.e., we want

M =#{JeZy : f(J)=0}.
Now suppose we have e; ® e; — €5 ® €;4 (). Then,

(en, @ e ypunlen @eirrm)) = (enlen) it runl€itrin))

o 1, Jy=Ja, 0 =iy,
o 0, otherwise.

We conclude that
{es ® Citpy) - JE Zév}

is an orthonormal basis for (C2)®" @ C2. So, there exists a unitary
Uy : (CHPWNHD)  (2)20+D
such that
Uf(eJ ® 61') =eJ X €i1f(J)-
This unitary Uy is called an oracle for f.

Proposition. Given v € H with ||y|| = 1, measurements Py = Mj My = |v) {7/,
P = MfMl =1— P, and w € H, then

po(¥) = [(VI) 2, o1 (9) = 1 = [(v[) .
Proof. We have

po(¥) = (Y| Mg Moyp) = || Mol [?,

Mol) = ) (ylv) - [|1Mov||?
= [Pl
(v

Take N
X = (Heo) ®...® (Heg) = (%) e

J
Input = ® eg into Uy to get the output

Uz ® o) = (%)N Z]:Uf(ej @ eo) = (%)N%:eJ ® er0).
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Now, prepare measurements with v = z ® eg. For input x ® e,
1\V
po(Up(z @ eo)) = (z®e <> D er®es)
v2) 5

- (&) Sekateatero)

J
_ <\}§>N¥<\2>N<eo|€fw>
= o #UIFD) =0)
_ M
- ¥

This implies that p (Us(z @ ep)) = 1 — 2. po(Us (z @ e9)) = 3.
X

Remark. Note that this is a Bernoulli trial. Outcome 0 has probablity p = T—;
and outcome 1 has probablity ¢ = 1 — p. Repeat K times, and we get outcome

0 L of those times. Then, % is an estimator for p.
2N

The cost is that we used K (N +1) qubits. Take K << {5 and we can get
an estimate for M. We only want
M? L
4N K
in some confidence interval. Hence, we can take K to be quite small when
N
compared t0 57

14 Day - 26/Sep/11

14.1 Ensembles or Mixed States

Motivation: (1) Start with a state ¢ = a|0) +b|1) such that |a|' + [b|> = 1 and
measurements My = [0)(0], My = |1)(1]. Recall, after measurement, po(y)) =
la|? and after state becomes

M(ﬂ/) a
oul] ~ Tl

similarly, p;(¢)) = |b|?> and after state becomes

My b

= —|1).
e~ o

Later, we want to do measurements { M, }. What will be the expected outcomes?
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Outcome a: po = [af*[[Ma(1%(0))[1* + [b[[Ma (1))
Definition. An ensemble {p;,¥;} £, is a set of states {1;} together with prob-
abilities p; > 0, Zle p; = 1.

Given a measurement system { M, }, the probability of outcome « given this
ensemble is

Pa({pi, ¥i}) = ZPiHMa(%)Hz-

(2) Suppose Lab A has state space Hy4. In reality, A is seldom truly isolated
from the outside world. Imagine the environment described by a state space
Hpg. Our state really lives in Hy ® Hg. When we form measurements in Lab
A, {M, : Hy — Hy}, they really act as My, @ Ipy,,.

Let ¢ € Hs ® Hg such that ||¢|| = 1. Pick an orthonormal basis {f;} for
Hpg. Write

b= $®fi,
l

1l = O_ai® 1> ¢k fr)
I o
= D Ah®fiidn® fr)

1k

= Z<¢l|¢k><fl|fk>
Lk

= >l
l

Therefore, >, ||¢||* = 1. Also,

Pa(¥) (Mo @ I)(9)]?

1Y~ (Matn) ® (1f1)]]?
l

1Y Ma(d) @ fil?
l
= Y [[Ma(e)l*-
l
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Form an ensemble {p;, H%H}’ pr = ||#i]|? >0, and > p1 = > ||¢n]|> = 1. Then,
) - 2
pa({pl’qulH}) Zpl” H(bH ||
= ) m Mo (o0)]?

l

> IIMa(céz)H2
l

= DPa (¢)
So, ¥ € Hy ® Hp behaves like the ensemble {p;, Hz—ill}

14.2 Von Neumann’s Density Matrix Approach

Von Neumann noticed (1) dealing with ensembles is messy from this viewpoint,
and (2) state are not really vectors but functionals.
Given a state ¢ € H4, then €4 is also a state. For any measurement M,,

Pa(¥) = [|Ma|* = [|Ma(e®9)II* = pa(es).

Hence, measurements really identify 1) ~ e'%4).
Note that

) (0] = le ) (e

ay
In coordinates, if ) = ( ), then

Qn

1) (] = (),
)] = (e ai)(eay)) = (aia).

Hence, we really think of the projection determined by ¥ and not the vector.

1
Given any vector v = ( : ),
be
Iyl = (BiB;) =",

and

I = Zlﬁzl2 Tr(m -

Therefore, if we start with a state v, and M, is some measurement,

pa(¥) = |IMatll?
= TT(\M V) (Mar)|)

= Tr((Maw)(Mat)")
- Tr(M, ww M)
= Tr((M ML) ($6"):
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This implies
Pa(¥) = |[Mat|[? = Tr((MyMa) ("))
For an ensemble {p;, ¥;},

pa({p1;¥1}) Zpl‘|Ma¢l||2
l

> o Tr((MEM) (7))
l

— Tr((M;Ma)(szW/)f))~
l

So, for any measurement { M, },
pPa({p1, 1}) = Tr(MyMa(P)),

where P =3, pi|r) ().
Definition. P = )", pi|[¢1) (4] is called the density matriz of the ensemble.

15 Day - 28/Sep/11

15.1 Continuation

Recall: For an ensemble {p;,1; }, we associate the density matrix p = >, p;|w;) (¢i].
For measurements {M,},

pal{pivi}) = ) pil [ Matsi]|?
= Tr((MaMa)p)
= (MaMalp)ra-

Question: Which matrices are density matrices of an ensemble?

Proposition. For p € L(H4), then there exists an ensemble {p;,;} such that
p is the density matrix of the ensemble if and only if p > 0 and Tr(p) = 1.
Proof. (=) Write p =3 pi|1;)(3;|. This implies p > 0. Also,

Tr(p) =Y pTr(f)(il) =Y pi=1.

(<) Since p = p*, p has an orthonormal basis of eigenvectors. Let 1,
i = 1,...,n, be an orthonormal basis such that pi; = A\jip;. p > 0 implies
Ai > 0. Recall that Tr(p) = >_A; = 1. Finally, we know p = Y \;|1;) ().
Therefore, p is the density matrix of the ensemble {\;,v;}.

Definition. p € L(H ) is called a density matriz when p > 0 and Tr(p) = 1.
We call the ensemble {\;, ¥; }, consisting of eigenvalues and an orthonormal basis
of eigenvectors, the spectral ensemble.
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Remark. Given p such that p > 0, Tr(p) = 1, in general, there are many
ensembles that it is the density matrix of. Write

€1
p:XX*z[cl....fcn =cicf 4+ ... +epc.
Cn
Let ¢; = ¢y, which is a unit vector, and p; = [|ci||?. This implies

p=D Pt =) pilv)(Wil.
Then,
1=Tr(p) = ZpiTT(|¢i><¢z‘|) = Zpi-

Therefore, {p;,1;} is an ensemble and p is the density matrix of this ensemble.
Hence, the map {ensemble} — {density matriz} is a many-to-one mapping.
No uniqueness in general.

Question. Suppose we start with a standard state . We get the density
matrix

p = ).
What ensemble represents it?
Suppose {p;, i}, so that p = > p;|v;) (¢|. Then,

1 = rank(p) = rank(ZpiWi)Wi\)

i=1

If we take a vector L, then

“Ylpy)

I
=3
2
)
£

Therefore,

0 = <7|Zpi|¢i><¢z‘|7>
> pla) (Wily)
= Y pil(win

This implies y11;, and so, ; is parallel to . Therefore, ; = B;¢, with
|beta;| = 1. Hence,

[Vi) (il = [9) (Y]

The density matrices (or states ©) are called the pure states.
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15.2 Composite Ensembles

Suppose we have for Lab A and Lab B the state spaces Ha, Hp. Let {p;,1;}
be an ensemble in A and {q;, ¢;} an ensemble in B. The composite should be
represented by a density matrix on Hy ® Hp.

Recall that if we just have ¢ in A and ¢ in B, then it is in state ) ® ¢. If
we had a measurement system {M,} on H4 ® Hp, then

Pa(¥i @ 1) = (Yi @ pi|MgMo (i @ ).

But, ¥; ® ¢; will appear with probablity p;q;. Hence,

Pa(composite) = > piqi(thi @ ¢i| M Ma|1h; @ )
il

= pa({pigi, i ® ¢i}).

the density matrix is

p=> Pl @ g (Wi @ &l =D piar (i) (Wi]) @ (1) ().

il

To see this, we only need to verify that if ©» € Hy, ¢ € Hp, then

¥ ® O) (W © ¢ = ([¥)(W]) @ (|6)(o])-

Note that any vector in Hs ® Hpg is a sum of vectors of the form h ® k. To see
if two linear maps on H4 ® Hp are the same, it is enough to check on h ® k:

Y @ ¢)(Y @ o|(h@ k) = [¢ @ ) (bl (Plk) sy,

()W) @ (o) eh(h@k) = (1) {WIh)a.) © (18){(Slk) ms)
- <¢‘h>HA<¢|k>HB|w®¢>

Hence, they are the same.

15.3 Partial Traces

Motivation: Suppose we have Lab A, Lab B. So a general mixed state is
given by a density matrix p € L(H4 ® Hg) such that p > 0 and Tr(p) = 1.
Measurements { M, } in Lab A in the composite act as the operators { M,®1I, }.
So,

Palp) = Tr(Ma @ I)* (Mo © T)p) = Tr((MZM,  I)p).

The question is how do we compute? We will show that there exists a density
matrix p? € L(H4) such that for any {M,},

Tri o, (MiMo ®I)p) = Trig, (M;Ms)p™).
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16 Day - 30/Sep/11

16.1 More on Traces
Identify £(C™) = M,, and let A = (a;;). Then

n

tr(A) = ai = > (eilAe;).
i=1

=1

Proposition. Let {uj,...,u,} be any orthonormal basis for C™. Then,

n

tr(A) = (uilAu;).

i=1

Proof. Let

Then U is unitary and Ue; = u; for all i. So,

n

> (wil Aus)

i=1

<U€i|AU€Z‘>

M-

o
Il
s

NE

<61|U*AU61>

= tr(U*AD)
r(AUU™)
(4).

©
I
—

([
-+ =+

r

X

Recall. For R € L(H,), T € L(Hp), there exists R®T € L(Hy ® Hp) such
that
(RT)(h®k)=(Rh)® (Tk).

Proposition. tr(R® T) = tr(R)tr(T).
Proof. Pick orthonormal bases {e1,...,en} for Ha and {fi,..., fp} for
Hpg. Then,
{e;®@f; :1<i<m,1<j<p}

46



is an orthonormal basis for H4 ® Hp. Therefore,

tr(ROT) = > 3 (6@ fI(ROT)(e; ® f;))

i=1 j=1

- Z Z(ei ® fil(Rei) @ (T f;))
= Zz<ei|Rei><fj|Tfj>

= (R (AT
= tr(R)tr(T).

X
What we really have is a mapping ' : L(H4) ® L(Hp) — L(Ha ® Hp),
R®T— R®T.

Proposition. If dim(Hy),dim(Hp) < +oo, then I" is a vector space isomor-
phism.

Proof. Let dim(Ha) = m, dim(Hg) = p. Then, dim(L(Ha)) = m?,
dim(L(Hg)) = p?. Hence,

dim((L(Ha)) ® (L(Hp))) = m*p®.
Also, dim(H s ® Hg) = mp. Hence,
dim(L(Ha ® Hg)) = (mp)(mp) = m?p>.
So, the dimensions are the same.

To show that I' is an isomorphism, it is enough to show that it is one-
to-one; i.e., show ker(I') = {0}. Identify L(Hp) = M,, which has a basis
{E;; : 1 <14,j <p}. Pick an orthonormal basis {fi,..., f,} for Hp such that

. _ fi, .7 = ka
EZ]fk_{ 07 J#k

Given X € L(Ha) ® L(Hp), there exists a unique X;; € L(Hy4) such that

P
X = Z Xij @ Eij.
i,j=1
Then, X = 0 if and only if X;; = 0 for all 4,5. So, we want to show that
I'(X) = 0 implies X;; = 0 for all 4, j. Now,
P
I(X):Ha® Hp » Ha® Hp, T(X)(h®k) = > (Xy®Ey)(h®k)
i,j=1

|
IM.@

(Xijh) @ (Eijk)

i,j=1

— |

= *
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So, T'(X) = 0 implies (x) = 0 for all h, k. Pick k = f;. Then,
)(h® fi)

(Xijh) ® (Eij fi)

0 =

s

<
Il
N

I |
M@ :M_d ,Eq\

(Xah) ® (fi);

1

-
Il

i.e., X;h = 0 for all 4, h. This implies X;; = 0 for all . Now repeat for all [ and
we obtain X; = 0 for all ¢,{. Therefore, X = 0.
X

16.2 Partial Trace
Define the mapping trp : L(Ha @ Hp) — L(H,) as follows: identify £L(H ®
HB) = E(HA) ®£(HB) Given X = El R; ® T;, then
trp(X) = tr(T)Ri.
l

This map is well-defined since, L(H4) X L(Hg) — L(H4), (R, T) — tr(T)R, is
bilinear and by the universal property of tensor products. We also denote this
by

XA = tTB(X) S E(HA)

Similarly, we have try : L(Ha @ Hp) — L(Hp),

tra(X)=>_ tr(R)T,
1
and we write XB = tr,(X) € L(Hp).

16.3 Partial Traces and Measurements

Suppose we have Lab A, B with respective spaces H 4, Hg. Then the composite
space is Ha ® Hp. Then the density matrix is given by p € L(Ha ® Hp) such
that p > 0, tr(p) = 1.

Suppose that we can only do measurements in Lab A: {M,, > MM, = 1.
Then the measurements really look like M, ® I, .
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Write p =), R; ® Tj. Then,
pa(p) = tr((Moz & I)*(Ma b2 I)p)
= tr((MsMs ® I)p)
= (MM (Y Ri®T))
1

= Ztr((M;Ma(@I)(Rl@ﬂ))
l

= > tr(MIM.R) @ T))
l

= Y tr(Mi My R)tr(T))
l

= > tr(MiM(tr(T)R))
l

= tr(MiMa(t5(p)))
= tr(MM.p?).
Therefore,

Pa(p) = pa(p?).

Similarly, when Lab B does measurements, we only see p?; i.e., all measure-
ments of p are the same as of pZ.

Check. For p > 0,tr(p) =1, write p = > R; ® T;. Then
pt = Ztr(Tl)Rl

and

tr(p?) = Y _tr(tr(T)R)
l

> tr(T)tr(Ry)
l

Ztr(Rz ® 1)

l
= tr(p)
1.

Also, we need p > 0 implies p? > 0 (which happens to be true; i.e., see below).

17 Day - 3/0ct/11

17.1 More on Partial Traces
Last time, we saw that L(Ha) ® L(Hp) = L(Ha ® Hp) by the mapping
R&T < ReT(h®k) = (Rh) @ (Tk).
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We also defined the partial traces:
trg: L(HA® Hg) — L(Ha),trg(RRT) =tr(T)R € L(H,),

tra:L(Ha® Hg) — L(Hp),trg(RRT) =tr(R)T € L(Hp).

17.2 Another View

Let dim(Ha) = n with basis {e1, ..., e, } and dim(Hg) = p with basis { f1,..., fp}-
Then on Hpg, we have the operator

Cf f’iv l= Js

Bah={ 0 177

where we call the F;; the matrix units. We know that
{Eij + 1<4,5 <p}

is a basis for £L(Hp). Hence, every X € L(H4)® L(Hp) has a unique represen-
tation

P
X = Z Xij ® Eij,
ij=1

where X;; € L(H4). Then, we can write the partial traces as

t’I"B Z XZJtT 1] ZX” S ﬁ(HA)
7,7=1 =1
p p
tT’A(X) = tT’A( Z Xij ® Eij) = Z tr(Xij)Eij € L(HB)
ij=1 ij—1

If we identify £L(Hp) = M,, then
r4(X) = (r(X,y))
Similarly, if we write X = Fi; ® Yy, with the Yy, € L(Hp), then

trA Zt’f‘ Ekl Y = ZYkk S ,C(HB)
k,l k

trp(X) =Y Ewtr(Yi) = (tr(Ya)) € My, 2 L(Hy).
k,l

Finally, what happens to R ® T" when we choose bases? Pick a basis for Hp
and write in matrix units T = Z t;;E;;. Then,

1,7=1
p P
R®T = Z R®(tijEij) = Z(tuR)@E
i,j=1 1,5=1
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So far, we have seen the case of L(H4)® L(Hp) = L(H4 ® Hp). When we
pick a basis {f1,..., fp} for Hp, then every vector v € H4 ® Hp has a unique
representation

’U:h1®f1+...+hp®fp,

where hi,...,f, € Hy and [[v]|> = ||h1]|*> + ... + ||hp|[*. This creates an
isomorphism
HAQHp 2 HA®...D Hy (p copies)

by the mappings
P ha
v=>3 hi® fi o (b, hp) o |
i=1 hp
Then, L(Hy ® Hp) = E(HX))), where we denoted
Ha®..®Hs=HY.

Here, it is natural to think of X € E(Hl(f)) as X = (Xi;)j =1, where the
Xij € ﬁ(HA) and

hy hy o1 Xjh;

Xl =&) | )= :
hp hp Z?:l Xp'hj

So, X = (X,;) € L(HA ® Hp) = LHP).
On the other hand,

L(HA® Hp) >~ L(Ha)® L(Hp).

So, if X = (X;;) is written in block matrix notation, we also have X as a sum
of elementary tensors, X = Zf,j:l X;; ® E;;. Hence, we can write the partial
traces in block notation:

tTB((Xij» =Xu1+...+ pr S E(HA)7

tra((Xiz)) = (#r(Xis))pxp-

17.3 Reformulate Postulates

Postulate 1’: Given a quantum system, there exists a Hilbert space H 4 such
that the state of the system is completely described by a density matrix p €
L(Hya); ie., p>0and tr(p) = 1.

Postulate 2’: Evolution of a closed system from ¢; to ty is described by a
unitary U € L(H4) so that if at time t; we have the state given by p, then at
ta, the state is given by UpU*.
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Postulate 3’: Measurement systems are given by {M,} on H,4 satisfying
> M:M, = I and the probability of outcome « given by density p is pa(p) =
tr(M:M,p).

Postulate 4’: Given systems H 4, Hp with densities py, p2, then the composite
system is given by H4 ® Hp and density p1 @ pa.

18 Day - 5/0ct/11

18.1 Measurement Maps

Suppose we have a measurement { My}, > M*M, = I, on H,. Given a state

1, the probability p, (1) = ||Ma||? and the after state is H%Tifb We can then

build an ensemble with density matrix

B My Mo
P 2 mld) ||Ma¢><|Maw
ZHM w||2 Mop)(Mai)*

= ZMQ 1/”#

If we had an ensemble {p;,1;} and density matrix p; = > p;|1hi) (4], after
measurement, we would have a new density matrix

sz |wz 1/%) = ZMa(sz|wl><¢l‘)M

= > Mapi M,

Hence, if we start with an ensemble with density matrix p;, then after measure-
ment, it behaves like the density matrix

M(p1) =Y Mapi M;

i.e., we have a linear map M : L(Ha) — L(Ha), M(X) = > M XM,
recalhng that > MXM, =1.

18.2 Noise and Quantum Noise

For the classical bit {0, 1}, because of the environment (i.e., static, background
magnetic field, etc.), after a period of time, 0 could flip to 1, and 1 could flip to
0:

0—>0

1><_p
q

1——1
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If we start with py being the probablity we are in state 0 and p; = 1 — pg being
the probability of being in state 1, then after this time elapses, the probability
we are in state 0 is qo = ppo + (1 — ¢)p1 and the probability we are in state 1 is
q1 = (1 — p)po + gpa; i-e., we have

()=, )G

Definition. A matrix such that all entries are non-negative and each column
sums to 1 is called a stochastic matriz (in the above, set p = ¢). If, in addition,
each row sums to 1, then the matrix is called a doubly stochastic matriz.

Long Time Behavior: Markov chains.

18.3 Model for Quantum Noise

Suppose you have a state space H4 with density matrix p € L(H,4). Also, we
have an outside environment Hg in some state |¢). Then, we are really in the

state p @ (|¢)(¢1)-

After some time goes by, there exists a unitary U on H4 ® Hg such that
p @ (|¢)(4|) evolves to
Ulp @ (Io){s))U™.

But, in Lab A, we only see the partial trace
tre(U(p @ (19)(¢]))U7).

Now, assume that dim(Hg) = p < +o0, ¢ = (a1,...,0q,)T, and |¢)(¢] =
(Oéiaj)pxp. Then,

p®(ai§j) G,C(HA®HE) :,C(HA@...@HA),
and the tensor is written in block matrix form:

p® (aia;) = (p(@it))pxp-
For the unitary U € L(H4 ® Hg), then U = [U;;] with each U;; € £L(H4) and
U ... U
ur=1|: .. =0,
Ui, ... U,
This implies

U(pOQaJ)U* = (Z Uik (Pakal)U;l)i,j
k.l

and
trp(U(poia;)U™) = > Uik (pasan) Uy
ikl
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Let W; = >, Uiray. Then,
W =Y Ujpar =Y Uja, =Y WipW;.
k l i
So, noise, or interaction with the environment, transforms p to
E(p) = WpW;.
i

Observe the
SwWrwi = ) UsaUspoy
i ikl

= Zalak(z U;Ulk)
Kl i

= ZalOLZI
1.

Hence, if a hostile person sneaks into the lab and does a measurement, or an
outside environment introduces noise, both alter p via maps of the same form;
that is,

P Y XapXi Y XiXa=1.

18.4 Third Way: Axiomatic

Given H, and a density matrix p, after some “quantum event,” p transforms
to a new density ®(p). Assume that ®(p) : L(H4) — L(H,) is linear.

Proposition. Let ®(p) : L(Ha) — L(H4). Then ®(p) is a density matrix for
all density matrices p if and only if both

1. p > 0 implies ®(p) > 0; i.e., P is a positive linear map; and,
2. for all X, tr(®(X)) = tr(X); i.e., @ is trace-preserving,
hold. In addition, given any Hpg, then
Q@ Iphy : L(Ha® Hp) — L(Hs ® Hp)

send density matrices to density matrices.

Definition. A map @ : L(H4) — L(H,) satisfying the condition: for all Hp
such that dim(Hp) < +00, ® ® I (p,) : L(Ha ® Hg) — L(HA ® Hp) sends
positives to positives, is called a completely positive map.

Theorem (Choi-Kraus). A map ¢ : L(H4) — L(Ha) is completely positive
and trace-preserving if and only if there exists matrices {E;} with > EfE; =1
such that ®(X) = 3 E, X E7.
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19 Day - 7/Oct/11

19.1 Theory of CP Maps

Proposition. Let X € M,, = L(C"). Then, X = (P, — P») + (P — Py), where
each P; > 0; i.e., span(M,F) = M,

Proof. H = *£X° and K = £5%°. Then, H = H*,

and X = H+iK. Then, the spectral decomposition of H is H = > | ;[ ) (¢,
where each F; = |[¢;){(1;| is a rank one projection and each A; is an eigenvalue.

Set
Pr=Y MNE,P,=-Y X\E;.
Ai>0 A <0

Then, Pl,szOandH:Pl—Pg.
Similarly, we decompose K = P3 — Py.
X

Definition. We call a linear map & : M, — My positive if P > 0, then
o(P) > 0.

Proposition. If ® : M,, — M, is linear, then ®(P) is a density matrix, for
every density matrix P, if and only if ® is positive and trace-preserving; i.e.,
tr(®(X)) = tr(X).

Proof. (<) Obvious.

(=) Given a non-zero P > 0, tr(P) # 0. Therefore, p = ﬁP is a density

matrix. Therefore,
1
| ——P
(77”)

is positive semidefinite. This implies
B(P) = tr(P)D(p) 2 0.
Therefore, ® is positive. Also,

(@) = tr(tr(P)D(p))
= tr(P)tr(2(p))
= tr(P).

Now, given any X = P, — P, +i(P; — Py),

tr(@(X)) = tr(e(P1) — 2(P) +i((Ps) — 2(Fa)))
(@(P1)) — tr(@(F)) +i(tr(R(F3)) — tr(P(Fs)))
= tr(P) —tr(Py) +i(tr(Ps) — tr(Py))
(
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Definition. A linear map ® : M,, — M, is called p-positive if
® ®idpcry 1 L(C" @ CP) — L(C @ CP)
is positive. @ is completely positive if it is p-positive for all p.
Remark. In block matrix form,
C"eCP=C"®...5C" (p times)
and
M,®M, = L(C")®L(CP)
C"®CP)
C'e...eoC")

R IR
DD
ESA/—\/-\
D
£3
=

Hence, in block matrices,

@@idﬁ((cz?) : M, oM, — M;® M,,

My(My) My, (Ma)

(@ @ id)(X) = (® @ id)((Xi;)) = (P(Xi;))-
Definition. ® : M,, — My is p-positive if and only if for every (X;;) € M,(M,)
that is positive semidefinite, we have that (®(X;;)) € M,(My) is positive
semidefinite. ® is completely positive if and only if it is p-positive for every

.
Given ® : M,, — Mg, we write ®®) : M, (M,) — M, (My),

o) ((X35)) = ((X45))-
Example. Let ® : My — M; be defined by ®(A) = A'. Now, (‘pl Z) > 0if
and only if ¢ = b, a,d > 0. hence, it has two real eigenvalues A;, Ay such that

M2 = ad — |b|?. In addition, A and A have the same eigenvalues! Therefore,
A > 0 if and only if A* > 0. So, ® is 1-positive.

1Let M, be the set of positive semidefinite matrices. We show that P € M, implies
Pt e M;T. Write P = (pij) and P* = (pj;). Let -,z € C", written as columns. Then,

i —
(z|P'z)y = E T Pjix;
4]
= E Ejpijl‘i
0,J
E Iipijfj
4,3

= (z|Pz)
> 0.
This implies ® : M, — M,, ®(X) = X! is a positive map.
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Y — (Eu E12) _ <(é§) (§ )

Eo Ea (16) (879

Then, X = X* and X2 = 2X. Therefore, X2 — 2X = 0 implies X(2 — X) =0
and A(A — 2) = 0. Thus, spec(X) C {0,2} and X > 0. However,

- (1 )

and det(®®) (X)) = —1. So, ®?)(X) is not positive semidefinite, in general.
Therefore, ® is not 2-positive.

0
0
0
1

20 Day - 10/Oct/11

20.1 Continuation

Theorem (Choi, 1975). Let ® : M,, — My be linear. The following are
equivalent:

1) ® is completely positive.

(1)

(2) @ is n-positive.
(3) Po = (®(Eij)) = 0 in My (Ma).
(4)

4) There exists n X d matrices B; such that

K
X)=> BiXBj.
1=1

Proof. (1) = (2): Obvious.
(2) = (3): Consider P = (E;;) € M,,(M,,). Then, P = P* and

(Z EikEkj> (nE”) =nkP.
k=1

This implies P2 —nP = P(P —nlI) = 0. Hence, A\(A —n) = 0 for all eigenvalues
A of P. So, the eigenvalues of P are {0,n}, and by definition, P > 0. So,
P € M, (M,)*. Since ® is n-positive, (" (P) = (®(E;;)) > 0 in M, (My,).

(3) = (4): Since Py > 0 and of size nd x nd, we have that

K
P‘1> = E ’UkU;:,
k=1
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for v, € C™. Write each

wf
Vi = )
w;
where w € C?. Then,
wy
vk = | [ (@) i (wn)) = () (wr)*) € My(Ma).
Wk
This implies Y77, (wh)(wh)* = ®(Ey;).
Let B, = (w’f e fwﬁ)dxn. Then,
(w)*
By =
(wg)* nxd
Also,
0
0
BrEiBi = Bi | (wh)* | = ((w})(wF)*)axa)-
0
0

Therefore, S, BBy B = (40, (wh) (wh)*) = 0(Eyy),
Take any X € M,, and write X = )" z;;F;;. By linearity,

B(X)

n K
Z x”@(EZ]) = Z xij Z BkEijBZ
k=1

ij=1 i

K
> Bp | Y wiEi; | Bi =) BuXBj.
k=1 ij k
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(4) = (1): We have ®(X) = 22{21 B, XBj. We need to show that ® is
p-positive for all p. Recall that if P > 0 then Y PY™* > 0 since

(RY PY*R) = (Y*R)|P(Y*]h)) > 0.

Therefore, if P > 0, ByPB} > 0, implying Zlfle ByPB; > 0. So, ® is 1-
positive.

To show that ® is r-positive, let P = (py;)j ;= € M,(M,)" with each
Dij € My. Then,

eCI(P) = (‘P(pn))=<ZBkPiiB'z>

k=1
0

k=1 \ 0 By, 0 B;

Therefore, ® is r-positive for all .
X

Notes. (1) When @ is completely positive, writing ®(X) = Zfil B;XB;} is
called a Choi-Krauss representation of .
(2) The matrix Py (®(E;;)) is called the Choi-Jamliokowska matriz.
(3) Let CP(M,,, My) be the set of completely positive maps from M, to M.
Then
CP(M,,My) 'S M,(My)*+
P — P<I>

(4) What about characterizing ® such that ® is trace-preserving or so that
O(I,) = I;?7 We need to check that ¢tr(®(X)) = tr(X) for all X if and only if
tr(®(E;;)) = tr(E;;). So, Ps = (R;;) is completely positive and trace-preserving
if and only if P@ > 0 and tT(Rij) = (Sij.

(56) Pp = (R;;) is unital (i.e., unit preserving) and CP(UCP) (i.e., unital
completely positive) if and only if Z?Zl R;; = I; and Pg > 0.

21 Day - 12/0ct/11

21.1 Continuation

Proposition. Let ¢ : M,, — C be linear. The following are equivalent:
(1) ¢ is positive.

(2) ¢ is completely positive.

(3) Py = (¢(Eij)) € M,
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Proof. (2) < (3): By Choi’s theorem with d = 1.
(2) = (1): Obvious.
(1) = (2): Take P = (P;;) € M,(M,). Then,
o)« My (M) — M, (C) = My, ") (P) = (4(Py;)-
We need to show that if P > 0, then (¢(P;;)) € M. Let v = (a;) € C". Then,

T

(Wl(@(Py))v) = Y @e(P, Z a;P (%)

4,5=1 4,j=1

We claim that > ) @5 P € M. Let

Then, Y*PY > 0. However,
011] r
Y*PY = (51[7...,6741)(13”) = aiOéjPij.
0.

By the claim, ¢ positive implies (%) >

Recall that if M,,, M, are Hilbert spaces, then

(Y| X))y, =tr(Y"X).

Proposition. Let ® : M,, — M, and ®* : My — M,,.

(D) I P(X) = ZZ'L:1 A; X A¥, where the A; are d x n matrices, then ®*(Y) =
Y ATV A,

(2) @ is completely positive if and only if ®* is completely positive.

(3) @ is completely positive and unital if and only if ®* is completely positive

and trace-preserving.
Proof. (1) Let X € M, and Y € My. Then,

(V) X)m, = Y[R(X)n, =tr(Y"O(X))

L L

= Y tr(Y'AXAD) =) tr(AjY*A;X)
i=1 =1

= Ztr (AYA)"X) =) L{A;Y Ai|X)
i ll/ i=1

= O AVAX).
i=1

60



This implies ®*(Y) = Y7 | A*Y A,.

(2)If @ is completely positive, then ®(X) = > A; X A¥. This implies &*(Y') =
> AYY A;, but we saw that all such maps are completely positive.

Conversely, if ®* is completely positive, then (®*)* = & is completely posi-
tive by the above.

(3) Let &(X) = Zle A; X A?. Then ® is completely positive and unital if
and only if ®(I,,) = I if and only if Y% | A;,TA* = I'if and only if Y25 | A, A% =
I. On the other hand, ®*(Y) = Zle AYY A;. So, ®* is completely positive
and trace-preserving if and only if tr(®*(Y)) = tr(Y) for all Y if and only if
tr(Y) = tr(ziLzl ArY A;) if and only if ¢r(Y) = tr((ziLzl A;AD)Y) for all Y.

We claim that if B € My and tr(BY) = tr(Y) for all Y, then B =1I. In
fact,
for all 4, and

bji = t’/’(BEij) = t’/’(Eij) =0
for all j # 4. Hence, B = 1.

By the claim, ®* is completely positive and trace-preserving if and only if
Ele A; A =1 if and only if ® is unital and completely positive.

X

Definition. Let ® : M,, — M, be completely positive. Then the Choi rank of
® is defined to be

L
cr(®) =min{L : ®(X)=> BXBj}.
=1

Theorem (Choi). cr(®) = rank(Ps).

Proof. By the (3) = (4) part of Choi’s main theorem, we showed that when
Py = ZzL:1 v}, then that gave rise to an expression for ®(X) = ZLL:1 A XAf
(with the same L). When we use the spectral decomposition of Py to write as
a sum of “rank ones,” this decomposition gives us Py = >_,_, vv]., where r
is the number of non-zero eigenvalues of Pg; i.e., r = rank(Pg). Therefore,
er(®) < rank(Ps).

We now need a lemma:

Lemma. Let P = (E;;) € M,(M,)". Then rank(P) = 1.

Proof of Lemma. We have

P? = () EiEyj) = (nEj;) = nP.
k=1

So, o(P) C {0,n}. Thus, at least one eigenvalue of P is equal to n. Let
A1, ..., A2 be the eigenvalues with \; = n. Then,

Mt...+ X2 = tr(En)+...+tr(Enn)

= n.

61



So, A\; = 0 for all j # 1. Therefore, rank(P) = 1.
®
Now, if rank(B) = 1, then rank(ABC) < 1 because

rank(ABC) = dim(range(ABC)) = dim(Arange(BC)) < dim(range(BC)).
However, range(BC) C range(B). This implies
dim(range(BC)) < dim(range(B)) = rank(B) = 1.

Suppose cr(®) = L and write ®(X) = Zle A; X Af. Therefore,

. (A 0 Af 0
Py = (B(Ey) = (Eij) .
=1\ 0 Ay 0 Af
Hence,
L . (A 0 Ay 0
rank(Pgp) < Zmnk Z (Eij) < L =cr(®).
=1 =1\ 0 Ay 0 A}

22 Day - 14/0ct/11

22.1 Continuation

Corollary. If & : M,, — M, is completely positive, then ®(X) = Z{il A X AL,
where K < nd.
Proof. cr(®) = rank(Ps) and Py € M,,(My) = My4. Therefore, rank(Ps) <
nd.
X

Conjecture. Suppose ® : M,, — My is completely positive. Does there ex-
ists unital completely positive {®1,...,®,} such that cr(®;) < d and ¢ =

% Z?:l D7
This is equivalent to both of the following:

(i) Suppose ¢ : M,, — My is completely positive and trace-preserving. Does
there exists completely positive and trace-preserving {1,...,%,} such
that cr(¢y) <dand ¢ = L 3°0" 4y?

(ii) Suppose P € M, (M,)* such that ¢tr (P) = I;. Does there exists positive
{Pi,...,P,} such that rank(P,) < d, trq(P,) =14, and P = 1 31" | P?
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Lemma. Suppose T : C" — C™ is one-to-one. Then T : C"™ — C" is onto.
Proof. The range of T* is closed. So, it is enough to show that if h Lrange(T*),
this implies h = 0. Suppose (T*k|h) = 0 for all k. This implies (k|Th) = 0 for
all k, which means Th = 0. Since T is one-to-one, h = 0.
X

Proposition. If {vy,...,v,} C C* is linearly independent, then {v;v} : 1 <
i,j <1} C My is linearly independent.
Proof. Let T : C" — CF. Write

U1
L
U.:.
is onto. For h € C*,
vy (v1|h)
T*h=|: | =
oh]  Lln)

Suppose Z;;j:l aijvivy = 0. This implies, for all h € CF,

Z Qijvivih = Z a;j(vilh) | v; = 0.
1

ij=1 i=1 \j=
So, for all 4, 7%, aj(v;|h) = 0. Hence

So, if T*h is any vector, then (e;;) = 0; i.e., a;; = 0 for all ¢,j. Therefore,
{vivj} is linearly independent.
X

Lemma. If 0 < ww* < P, then w € rangle(P).
Proof. If
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then,

. (* 0

This implies w = (wy, ..., w,,0,...,0)" and
/\1_11111
A Lw,

w=P 0

0

Now use that P is unitary equivalent to such a matrix.
X

Notation. We write R(P) = range(P).

Proposition. If P > 0 and P = )", wyw], then R(P) = span{w1, ..., wm}.
Proof. Ph = >7", wi{w|h). Therefore, R(P) C {ws,...,wy}. By the

lemma above, span{wi, ..., wn} C R(P).
X

Theorem. Suppose P > 0 and
T m
P=3 vw) =) wwj,
j=1 1=1

where rank(P) = r. Then, there exists U = (@;;)mxr such that w; = Z;:1 QU5
and U*U = I,.
Proof. We have that

span{vy, ..., v }R(P) = span{wy, ..., wn}.

Since dim(R(P)) = r, it implies vy, ..., v, is a basis, and in particular, linearly
independent. Therefore, there exists unique cy;; such that w; = Z;:1 oyv; and

s
Zvjv;-‘ = P
j=1
m
= Zwsz
k=1

m

= > QO anu) (Y arw)’

k=1 j=1 i=1

T
— *
= E m E E Qg OV,

k=1 j=1i=1

roor
— .. . *
- § :2 :5U’UJU1'7

j=1i=1
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where §;; is the (i, j)-entry of U*U. Therefore,
T T
Z 5¢jvjv;‘ = Z’Uj’l);f.
ij=1 j=1

Since the v;vf are linearly independent,

_ ) 1L o=y
o = { 0. i#:
e, UU =1I,.
X
Theorem 2 (Choi). If & : M,, — M, is completely positive, c¢r(®) = r, and
O(X) =D ViXVy =) WXW,
j=1 1=1

then there exist unique a;; such that

Wi = i Oéij‘/j
j=1

and if U = (o;), then U*U = I,.

Proof. Given V = [hy:. .. fhn]dxn, then write

hy
v=| : ecm.
ha,

1xnd

In the proof of Choi’s theorem 1, we saw that ® written as above form vectors
Viyeooy Up, W, ..., Wy € C™, then

T m
Py = g Ujv;f = E wwy .
j=1 =1

Therefore, there exists unique «;; such that w; = Z;Zl a;;v; and U = (g )
such that U*U = I,. This implies

Wi = Z OéijVj.
j=1
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23.1 Continuation

Proposition. Suppose that ® : M,, — M, is completely positive, cr(®) = r,
and ®(X) =>""_, V;*XV,. Then, {Vi,...,V,} are linearly independent.

Proof. Since rank(Pg) = r, R(Ps) = span{vi,...,v,}. Since dim(R(Ps)) =
r, v1,...,0, are linearly independent. This implies {V1,...,V;} are linearly in-
dependent since, for example,

and

v =

U1

23.2 Convex Sets in Vector Spaces

Definition. Let V be a vector space. A set C C V is convex provided whenever
v1,v9 € C implies tvy + (1 —t)vg € C for all 0 < ¢ < 1.

A point v in a convex set C'is called extreme of v1,v9 € C and v = %(vl +v9)
implies v = v; = vs.

Examples. (1) If C is a closed squared area, then C' is convex and the extreme
points are the corners of the square.

(2) If C is a closed disc, then C is convex and the boundary points are
extreme points.

Theorem (Krein-Milman). If V' is a real vector space with dim (V') < 400,
and C' C V is convex and compact, then C is the convex hull of its extreme
points.

Definition. Given a set F, a convex combination of points in F is any point
of the form v = t1ey + ... + t,nem, where eq,...,e, € E and t; > 0 such that
t1+...4+t, = 1. the set of all convex combinations of points in F is called the
convex hull.

Definition. Let C; C V; and Cy C V5 both be convex. A map T : C; — Cy is
called affine if T'(tvy + (1 —t)ve) = tT(vy) + (1 — )T (ve) for all vy, ve € Cy, for
all0 <t < 1.

Two convex sets are called affinely isomorphic if there exists a bijective affine
T :Cy — Cy such that 771 : Cy — O is affine.

Examples. (1) Let

UCP(M,,Mz) ={®: M, — My : ®unital, completely positive} C L(M,, My).
This is a convex set. In fact, let &1, P9 € UCP(M,,, M), 0 <t <1, and define
P(X) =tD1(X) + (1 — )P (X).
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Then,

O(I) = t@1(I)+ (1 -1)Po(I)
= tI+(1-t)I
1.
So, ® is unital. Also,
Py = (O(Ey))

= (t®1(Eij) + (1 — t)P2(Ey))
tPgp, + (1 —t) Py,
0.

Y

Therefore, it is convex.

This set is also compact. It is easy to see that it is closed. To see bounded,
observe that ®(I) = I implies > ®(E;;) = I implies 0 < ®(E;) < I. If
0 < (7;) < I implies

1-— T11 —T12 e —T1in
0 1-— 29 *

0 1—rp,

Hence, r;; < 1. Look at any 2 x 2 (% ;%) > 0. This implies |r;;|* < ryr;; < 1.
Therefore, |r;;| < 1.

(2) Let
CPTP(Mgy,M,) ={®: My — M, : ®completely positive, trace preserving}.

This set is also compact and convex. In fact, recall that ® : M,, — M, is unital
and completely positive if and only if ®* : My; — M, is completely positive
and trace-preserving. The map I" : UCP(M,,, My) — CPTP(My, M,), given
by I'(®) = ®*, satisfies

PP+ (1—6)P3) = (P +(1—1t)Ps)"
— 1B+ (1—1)D
(D7) + (1 — )T(Dy).

Theorem 3 (Choi). If & : M,, — M, is unital and completely positive, ®(X) =
S VFXV;, and r = cr(®), then @ is an extreme point of UCP(M,,, M) if
and only if

ViV 0 1<d,j <r} C My

are linearly independent.
Corollary. If ® is extreme, then cr(®) < d.
Proof. #{V;V; : 1 <i,j <r}=r?<dim(My)=d*. So,r <d.
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X
Corollary. If ® : M; — M, is completely positive and trace-preserving,
®(X)=>._,ViXV*, and r = cr(®), then ® is extreme in CPTP(My, M,) if
and only if
V7V, s 1<ij<r}C M,

is linearly independent.
Proof. If (X) = > V*XV;, then v*(YV) =Y V;YV*.
X
Proof of Theorem 3 (Choi). (=) Suppose that Z;:j:l Aij ViV = 0.
This implies
> NVivi=o.
ij=1

This implies 2jiVi*V; = 0. So,

s
ij=1
T

> g+ X))V =0,

i,5=1

Note that g = (A\ij + Aji) = A+ A*. Hence, u is self-adjoint. Suppose that we
know that

> niViV; =0

ij=1
for all 4 = p* implies p = 0. Given Y A;;V;*V; = 0 and A = (A;;), we would
know that A + A* = 0. Also,

is also self-adjoint. Therefore,

implies A = 0.

So, to show that {V;*V;} is linearly independent, it is enough to show that
> i Vi¥V; =0 for all 4 = p* implies g = 0.

Let Z;j:l 1i; V'V = 0, where y = p*. It is enough to assume that —I <
@ < I. This implies I +p > 0and I —p > 0.

Let ¢ (X) = Y7, Vi XVi £ 57 piy Vi XV;. Then,

.

S0+ )

(finish next time ...)
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24.1 Continuation

Theorem 3 (Choi). If & : M,, — My, cr(®) =7, and ®(X) =>_, VXV,
then @ is extreme in UCP(M,,, M) if and only if

{V'V; 1<, j <r} C My

is linearly independent.

Proof. (=): Last time we had shown that it is enough to show that if
> je1 Vi Vi =0 and p = (pi;) = p*, then p = 0. We scaled —1 < pu < +1
and let

wi(X) = Z Vz*XVzi Z MZJV;*XVJ

1,j=1 ,j=1
Write (I+ /.L) = (ozij)*(aij). Let
Wi = Z Oéij‘/lvj.
j=1

Then,

WiXW, = Z(Zakivi*)X(Z ai; V)
j=1

k=1 k=1 i=1
= D) O @kiaw) Vi XV,
i=1 j=1 k=1
= > U+ uwa) Vi XVi+ Y p Vi XV,
i=1 i#£]
= D VIXVi+ > Vi XV
i=1 ij
= P (X).
Therefore, 14 is a completely positive map. Also,
bp(l) = Y VILVi+ Y ViV
i=1 i,j=1
= &(,)+0
1.

Similarly, 0 < I — pu = (8:;)*(8i;). Set Wi = 3 6i;V;, and we get

SOWIXW; = v (X).
k=1
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Therefore, 1_ is completely positive and

Now,

SOV Y VXV S VXV Y VX))
i=1 ij=1 i=1 ij=1

= B(X).

S04 (X) (X))

Since ¢ is extreme, ® = 1), = 1_. However,
P (X) =) W XW = (X).
k=1

By Choi’s earlier theorem, there exists unique U = (u;;) such that

W= uyV
j=1
and U*U = I. We also know that {V7,...,V,.} are linearly independent.
Earlier, we had W; = >77_, a;;V;. Therefore, aj; = u;; and
1= U*U = (aij)*(a,;j) = I+,u

This implies ¢ = 0 and p;; = 0 for all ¢,5j. Therefore, the V;*V; are linearly
independent.

(«<): Note that if {V;*V;} are linearly independent, we claim that the
{V1,...,V.} are linearly independent. In fact, suppose that

Vi + ...+ 6. V. =0.
Then,

(Z @»V»*(Z B;V;) = 0.

This implies Z;j:l B,8;V*V; = 0. Hence, (,3; = 0 for all i, j, which implies
B; = 0 for all 4.

Now, suppose that ®(X) = 1 (¢1(X) 4+ ¥2(X)), where the 1; are unital and
completely positive. Let

mi mi+ma
i (X) =Y WrXW, a(X) = Y W;XW,.
p=1 p=mi+1
Then,
mi+mo 1 1
(X)) = —W,) X (—=W,
(X) p; ( 7 »)" X( 7 »)



Therefore, there exists unique a,; so that
1 T
—=Wp = Z ap;Vj
V2 =

and U = (Qpj) (my +ms)xr Satisfies U*U = .
By the above,

I = Y ViVi=tu(l)
i=1
my
- ZW;WZ’?
p=1

my T r
= 2> O @mVi)(OanVy)
p=1 i=1 j=1

T my
= 2 Z (Zapiapj)vi*vj'

ij=1 p=1

Therefore,

Therefore, if we set

we have

. Ul
= (U1:02)
Us
= UTU1+U;U2

The above sums are the entries of U;U;. This implies 2U;U; = I,.. So, UfU; =
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%IT. Similarly, UsUs = %IT. Thus,
mq

Pi(X) = ZW;XWP
p=1

- DAY EIXVEY et

p=1 i=1

T miy

= 2 Z (Zapiam’)vi*XVj

i,7=1 p=1

=1
= B(X).

Similarly, ¢2(X) = ®(X). By definition, ® is extreme.
X

Examples. (1) Let U be an n x n unitary and ® : M,, — M,, € UCP(M,,, M,,).
Suppose ®(X) = U*XU. Then r = 1 and {U*U} is linearly independent. So,
® is extreme.

(2) Suppose that Uy, Us are unitaries. Then

1
b: M, - M, ®X)= g(UfXUl + U XUs),
is not extreme because if we let V; = %Ul, Vo = %UQ, then,

{‘/z*‘/] 01 SZ?] S2}:{EUlUlv§U1U27§U2U17§U2U2}

is not linearly independent since %Uf U, = %UQ* Us = %I.

(3) Let @ : M,, — Mgy be given by ®(X) = tr(X)I;. Then, ®(E;;) =
t’I“(Eij)Id = 0;;14. So,

Py = (®(Ei;)) = (0ij1a) € Mn(Ma).

So, cr(®) = nd > d. This implies ® is not extreme.

(4) Let ® : M,, — M, be given by

T11 0
O(X) = diag(X) =
0 Tnn

Ei1 0

Then rank(Ps) = rank ( ) =n and n = d. However,

0 Epn
(X) =) EiXEj,
=1

and if we set V; = E;;, {V;*V;} is not linearly independent.
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25 Day - 24/0Oct/11
25.1 Operator Systems, Arveson’s Correspondence, Arve-
son’s Extension Theorem

Overview. Recall that Choi showed that
O : M, - My Pp € M,(My)
and his work also showed
® completely positive < Pn-positive.

Arverson’s correspondence will show that

®: M, — My« S¢ : My(M,) — C,
CP(M,, M,) < positive linear functionals,
and
® completely positive < ®d-positive.

Definition. A subspace S C B(H) of the bounded linear functionals on H is
called an operator system provided I € S and X € S implies X* € S.
Given an operator system S C B(H), we identify

M,(S)CBH®...¢H)
by letting (X;;) € M,(S) be identified with the operator
(Xiyj):He..H—-H&...&H,
hy 351 Xk
(Xi) ( : > = :

hp 301 Xpihy
In particular, this allows us to define M,,(S)" as the elements that define positive
operators.

Note. M,(S) is an operator system in B(H @ ... ® H) because the identity is
I 0
0 I

and X = (X;;) € Mp(9) implies X* = (X7;) € M,(S).

Definition. If S is an operator system, then ® : S — My is completely positive

provided (X;;) € M,(S)" implies (®(X;;)) € M,(My) for all p. Similarly, we
define k-positive when this is true for p = k.

Proposition. Let S be an operator system and X € S. Then there exists
Pl,P27P3,P4 S S+ such that X = (P1 —PQ) —I—Z(Pg —P4).
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Proof. Since X € S, X* € S. This implies

X = H +iK,

where H = XX and K = XX Since H = H*, K = K*, H,K € S. Now,

H = H* ¢S C B(H) and we know that ||H||[I — H > 0 and ||H||I + H > 0.
Let

H||I+H H||I - H

Plzll 17+ ,p2:|| I .

2 2
Then, P;,P, € ST and H = P, — P,. We similarly do this for K.

25.2 Arveson’s Extension Theorem

Theorem (Arveson’s Extension, 1969). If S C M, is an operator system
and @ : S — M, is completely positive, then there exists ¢ : M,, — M, that is
completely positive and (X) = ®(X) for all X € S.

Corollary. If & : S — M, is completely positive, then there exists n x d
Aq,..., A, so that

(X)) =) A;XA;
i=1

Proof. Extend ® to v and use the Choi-Krauss representation of 1.

25.3 Arveson’s Correspondence
Definition. Given ® : S — M and an orthonormal basis eq, ..., eq on C¢, let

fij 5= C
be defined by

fii(X) = (ei|®(X)e;).
Hence, ®(X) = (fij(X))axa- Now define
Se : My(S) — C

by

d
So((Xi5)) = é > Fi(X).

ij=1

Theorem (Arveson). If S is an operator system and ® : S — M, is linear,
then the following are equivalent:

(1) @ is completely positive;

(2) ® is d-positive;
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(3) Sg is a positive linear functional.

Proof. (1) = (2): Obvious.

(2) = (3): Let (Xi;);—; € Mg(S)*. Then, (®(Xy;)) € Mg(Mg)*. Consider

e
v=|:]eC's...mC%
€d
Hence,
(Xi5) € Ma(S)*
implies

I
><
&
\/

<61‘(I)( Xij)e;)

= Zzldfij(Xij)
— dSe((Xi).

Therefore, Sg is a positive linear functional.

(3) = (1): We must show that for any ¢, when (X,s)} _; € M,(S)",

(®(X,s)) € My(Mg)*. To do this, let vs € C?, for 1 < s < g. Then,

v(;)@cd@...@cd.

Then,

q
Z 7}7‘(1) rs 'Us

r,s=1

= ()

()

then



. d
If we write vy = zj:1 vgj€j, then

M=
IM&

(x) = Trivsj (€| ®(Xrs)es)
r,s=114,j=1
q d
= DD Trivg fii(Xi5)
rs=11i,j=1
d q
Y (Y T
i,j=1 rs=1
Let
q
Yij = D UrivsjXps € 8.
r,s=1
Then,
Y = (Y321 € Ma(S)
and

(%) =dSs(Y).
Hence, it is enough to show that Y € My(S)*. Let

Then a calculation shows that Y = A*X A. Since X >0,Y > 0.

26 Day - 26/0Oct/11

26.1 Arveson Correspondence
£(S, My) L(M(S),C)
®(X) = (f5(X)) — Sa((Xi))) =330, fis(Xiy)

If we start with f : M4(S) — C, define f;; : S — C by fi;(X) = f(E;; @ X).
Then we define @ : § — Mg by ©4(X) = d(fi;(X)).

L(M4(S),C) L(S, Mg)
f — D

We want to check that these operations are mutual inverses.
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If we begin with f : My(S) — C, we obtain &y : S — My and Sy, :
Mq4(S) — C. We need to show that Sp, = f. Given (Xy;) € My(S), then
(Xij) = Zi,j Eij ® X” Therefore,

f((Xi5)) = Zf(Eij ® Xij) = Zfij(Xij)~
4, 4,J
However,
1 J
So, (Xij)(Xij) = p Z dfij(Xij)-
i,j=1
The other direction is an exercise.

Definition. Let P(My(S),C) denote the set of positive linear functionals from
M4(S) to C and UP(M4(S),C) the unital positive linear functionals, which are
also called states.

Theorem (Arveson Correspondence). The map ® — S defines an affine
isomorphism from CP(S, My) onto P(Mg4(S),C). If ® is also unital, then S¢ €
UP(My(S),C).

Proof. Last time we showed that ® € CP(S,My) if and only if Sg €
P(My4(S),C). Given f € (My(S),C), form ®; : S — My and Sg, = f because
of mutual inverses. Therefore, Sp, € P(M4(S),C) implies &y € CP(S, Mg).
Hence, ® — S¢ maps CP(S, My) onto P(My(S),C).

Let ® = (f;;) and ¥ = (g,5). Then

So,
1
Sera-nu((Xiy)) = > (tfij + (1= 1)gi;) (X))
‘7j
= tSe + (1 — t)S\p
Suppose ® : S — My is unital and ® = (f;;). Then, I = ®(I) implies

1 0 Jull) ... fia(D)

0 1 a fa(I) .. faaD)
So, fij(I) = 0;;. Therefore, S¢ : My — C satisfies

1 0 L
Se == ful)=1.
0 1 =1
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Note: If f: Mg(S) — C, then f unital does not imply ®; : S — My unital.
Observe that f unital implies

1 0
f =1
0 1
Since fij (X) f(EU & X)a
I 0 d
f = f(ZEu' ®1)
0 I i=1

[
M=~

fii(I)

I
= e
R

However,

ful) ... fuall)
®f(I) =d(fi;(I)) =d
Jar (D) ... faa(D)
All we get is tr(®s(I)) = 1.

26.2 Hahn-Banach Theorem

Definition. Let W be a normed space. A linear functional f : W — C is called
bounded if there exists a constant C' such that |f(W)| < C||w||. When f is
bounded, the least such C'is called the norm of f, denoted ||f]||, and is given by

1l = sup{[f(w)] : [fw]] <1}.

Theorem (Hahn-Banach). Let W be a normed space and V' C W a subspace.
Let g : V — C be a bounded linear functional. Then there exists a bounded
linear functional f: W — C with || f|| = ||g|] and f(v) = g(v) for all v € V.

26.3 Arveson’s Extension Theorem

Theorem (Arveson’s Extension Theorem). Let S C M,, be an operator
system and ® : S — M, a completely postive map. Then there exists ¥ : M,, —
M, that is completely positive and U(X) = ®(X) for all X € S.

To prove this, we need lemmas:

Proposition. Let S be an operator system and f : S — C be linear such that
f(I) =1. Then f is positive if and only if || f|| = 1.
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Proof. (<): Let P € S*. Suppose f(P) = A is not positive. Recall that
o(P) C [0,]|p]l]. Pick @ € C and r > 0 so that |A —a| > r but 0 < ¢t < ||p||
implies |t — a|] < r. Look at P — al, which is diagonalizable. Then,

oP—al)C{t—a:0<t<||pl|}

||P —all| =maz{|A—a : A€ o(P—al)}
implies ||P — al|| < r. However,
f(P—al)=f(P)—af(I)=A~a
and
|f(P—al)|=|X\—a|>r>||P—all

This contradicts || f|| = 1. Therefore, f(P) € [0, ||p||] and f(P) > 0.
(=): Given H = H* € S, we proved that H = P, — P, such that Py, P, € S*.
This implies
fH) = f(P) - f(P2) € R.

Also,
—|IH|[I < H < +|[H||I;

ie.,

|[H||T — H, H — ||H||I € $*.

This implies
[H|| = f(H) = f([H||I — H) = 0.

So, f(H) < ||H||. Using the other inequality, we get
—[|H|| < f(H).
So, [f(H)| < ||H||.
Now, let X € S such that || X|| < 1. We need to show that |f(X)| < 1. Let
f(X) =\ = e, where r = |\|. This implies
fle™®X)=r>0.
Write e" X = H + iK. Then,

e—ieX + (e—i9X>*
2

H =
and ||H|| < 1. So,
0<r=fH+iK)=f(H)+if(K).

This implies r = f(H) and |r| = |f(H)| < [|H|| < 1. Therefore, |f(X)] =7 < 1.
X
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27 Day - 28/0Oct/11

27.1 Continuation

Proposition. If & : S — M, is completely positive such that ®(I) = P, then
there exists a unital completely positive map ¢ : S — M, and a d X r matrix V'
such that ®(X) = V*¢(X)V.

Proof. First suppose that P is invertible. Let

Y(X) =P 2e(X)P~1/2,
Then 1 is completely positive and
() =P Y2e(n)P~Y2 = 1.
When P is not invertible, after a unitary conjugation, we can assume
)\1 0
P - ( A ' ) O
0 Ar
0 0
Take any H = H* € S. Then
—|[H|II < H < +[|HJ|I.

This implies
—[[H||®(I) < ®(H) < +|[H||®(I).

A1 0 A1 0
1) ( ) | <o) < +H) ( ) !
0 Ar - - 0 Ar ’

0 0 0 0

Hence,

which implies

A1 0
I1H]|| ( A) Ol Lo >0

0

* 0
= (; )
Since X € 5, we write X = H +iK. So,

Thus,

&
>
i
iy
=
_|_
&
=
i
N\
*
(an)
N———

So,



where @ : S — M(r) is given by

Now let ¢ : § — M, be defined by
AL 0 AL 0
»(X) = (X) .
0 ASY/2 0 ASY/2
Then 9 is a unital completely positive map. Let
A2 0

0 . AL/2

Then,

veuov = (P09 0) - e

X

Proposition. Let & : M,, — M, be a completely positive map. Then there
exists r > 0, a r X n matrix V, and a completely positive and trace-preserving
map v : M, — M, such that

(X)) = p(VXV™).

Proof. Consider a completely positive map ®* : My — M,. Then there
exists a unital completely positive map @ : My — M, and a d X r matrix V'
such that

(YY) =V*p(Y)V.

Therefore, if X € M,,,Y € My,

tr(Y*®(X)) = tr(®*(Y*)X)
(V*(Y")VX)
(Y VXV
= (Y (VXVY)).

~+

r

~

Therefore, ®(X) = ¥*(VXV*). Since ¢ : My — M, is unital and com-
pletely positive, we have that ¢* : M, — My is completely positive and trace-
preserving.

X

Theorem (Arveson Extension). Let S C M, be an operator system and
® : S — My be a completely positive map. Then there exists a completely
positive map 1 : M,, — My such that ¢(X) = ®(X) for all X € S.
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Proof. We only do the case when ®(I) = I. Consider Sg : My(S) — C,
which is a unital positive linear functional. We write ®(X) = (f;;(X)) and

d
Sa((Xiy) = 5 3 i (Xey)

i,j=1

Last time we saw that Sg unital and positive implies ||S3|| = 1. Since My(S) C
M4(M,), we apply the Hahn-Banach theorem to obtain f : My(M,) — C such
that ||f|| = 1. Then,

1 0

Sq; =1

implies

f —1.
0 I

Therefore, f is unital and ||f|| = 1. This implies f is positive.

Now consider ®; : M,, — My which is unital and completely positive. By
Arveson’s Correspondence, ®; extends ® because for any X € S, &4(X) =
(fi;(X)) and fij : M,, — C extends f;; : S — C.

When @ is not unital, write ®(X) = V*¢(X)V with ¢) unital and completely
positive. The apply the above casse to 1.

X

Corollary. If & : S — M, is completely positive, then there exists n x d
matrices A; such that ®(X) =>""_| A X A,.
Proof. Extend ® to ¢ : My — My, then 9 has this form by Choi-Krauss.
X

27.2 Entanglement Revisited

Recall that given H 4, Hp in states 1, ¢, respectively, then H4 ® Hp is in state
¥ ® ¢. The matrix identification of states as rank one density matrices gives

[ @ @) (Y @ o = [) (Y| @ |9) (0] € LIHA) © L(Hp) = L(HA @ Hp).
If we have ensembles (or mixed states), {¢;, p;} on Hy and {¢;,q;} on Hp,

with p;,q; > 0 such that Y p; =1 = >"¢; and ||¢;]| = ||¢;]| = 1, then this is
represented by

{0 © 65 mias} = > pias|va) (Wil © |65,

which is a positive matrix of trace one; i.e., a density matrix.
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Definition. A density matrix P € L(H4 ® Hp) is called separable if it has the
form

P = Zpl|¢l><pl| ® |éu) (@l

where |[¢]| = ||| =1, ¥y € Ha, ¢ € Hp, pr >0, > pr = 1.
A density matrix P € L(Ha ® Hp) is entangled if it is not separable.

Issues. (1) Are there any entangled density matrices?
(2) How can we tell? (Detection/Witnesses)

28 Day - 31/0ct/11

28.1 Continuation

Last time we saw that, for ensembles {¢;,p;} on Hy and {¢;,q;} on Hp, we
obtain

D pigili) (il @ (6,5

In matrix form, we have

Y PeQieL(Ha® Hp)",
z

where P € L(HA)",Q € L(Hp)". We defined such a matrix ), P, ® Q; to
be separable. Also, P € L(H4 ® Hp)" is not separable if and only if P is
entangled.

Proposition. If & : M,, — M, is positive and
Re M.(M,)" =L(C"®C")"

is separable, then ®(")(R) € M,.(My)*.
Proof 1. First suppose that R = P ® Q, where P € M}, Q € M. Recall
that
") =id, ® ®: M, ® M,, — M, ® Mj.

Therefore,
d"(R) = (id, D) (PR Q) = P ®(Q) € M, ® M.
Proof 2. If P = (p;j)rxr, then
R=P®Q=(p;Q) € M,(M,).

So,
o) (pi;Q) = (pi; ®(Q)) € M, (Ma).

Hence, we want to show that this is positive.
First suppose that P is rank one; i.e., P = (o;@;). Therefore,

0 (i@;Q)) = (@ ®(Q)) € My (Mg) = L(C? & ... & CY).
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Take hi,...,h, € C% Then,

h1 h1 r
<< : ) |(ia; ®(Q)) ( : >> = Y (hila; 2(Q)hy)

B B ij=1

= (2(Q)h),

where h = 37" @;h;.

Now, P, in general, is a sum of rank one positive matrices. Decomposing
P as a sum of rank one matrices decomposes (p;;®(Q)) as a sum of positive
matrices. This shows that if R = P ® Q, then ®)(R) > 0.

For a general separable R, write R = 3", P,®Q;. Then, ®")(R) =", ®(P,®
Q1), where each term is the sum is positive. So, ®(")(R) is positive.

X
Corollary. If R € M,(M,)* and ® : M,, — My is positive, then ®()(R) not
positive implies R entangled.
(En‘ Eij)
Eji Ejj

is a positive matrix. Also, (E;;) € M,,(M,)*. Both of these are entangled. For
example, take ® : M,, — M,,, ®(X) = X, which is positive. However,

FNe) ((En Ezg)) _ <En Eji) '
Eji Ejj Ly Ejj
Take h = (2. ). Then,

(g )

Examples. If i # j, then

(L)1)

—(ejle;) — (eileq)
—2.

Similarly, ®(n)((E;;)) = (E;i), which was previously shown to not be positive.
X

Our goal is to prove the following two theorems:

Theorem. Let R € M,(M,). Then R is separable if and only if ®")(R) > 0
for all positive maps ® : M,, — M,.

Corollary. If R € M,(M,)" is entangled, then there exists a positive map
® : M,, — M, such that ®()(R) is not positive.

Notation. Let Sep C M, (M,) be the set of separable matrices: Sep = {>°, P®
Qu}-

Proposition. Let f: M,.(M,,) — C be a linear functional. Then f(Sep) > 0 if
and only if ®¢ : M,, — M, is positive.
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o
Proof. (=): Let P € M;} and v = ( : ) € C". We must show that
Qe

(0] (P)v) > 0:

W@p(Py) = Y @ialei|®s(P)e;)
= Y @a;fy(P)
= aiajf(Eij & P)
= f((zaiajEij) ® P)

>

o

since (3, ; @i Eij) ® P € Sep.

(«<): Let P € M,f and Q = (¢;5) € M,". We want to show f(Q ® P) > 0.
It is enought to do the case when @ is a rank one positive matrix. In this case,
write Q = (aiaj) = ZaiajEij. Therefore,

f(Q® P) = > @ja;f(Ei; @ P)
ij=1
=T7300 =1 ®icj{ei| @5 (P)ey)
= (v|®f(P)v)
0.

Y

28.2 Theory of Convex Sets and Linear Functionals

Definition. Let V be a finite dimensional real vector space. A subset C C V
is a cone provided if x,y € C and 0 < ¢, s, then tx + sy € C.

Alternatively, C is a cone if C is convex and x € C implies tz € C for all
t>0.

Theorem. Let V be a real vector space, K C V a closed convex subspace, and
y ¢ K. Then there exists a linear functional f : V — R and a € R so that

fly) <a < f(K).

Corollary. Let V be a real vector space, C C V a closed cone, and y ¢ C.
Then there exists a linear functional f: V — R such that f(y) <0 < f(C).
Proof. Take the f given by the theorem. Then there exists a such that
y) < a < f(C). Since 0 € C, @ > 0. Suppose there was € C such that
x) < 0. Then ta € C for all ¢ > 0. This implies & < f(tx) = tf(x). By taking
arge enough, we get tf(z) < a, a contradiction. So, 0 < f(z) for all z € C.
X

I
i
t1
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29 Day - 2/Nov/11

29.1 Continuation

Theorem. Let V be a real finite dimensional vector space, C' C V a closed
cone, and w ¢ C. Then there exists a real linear functional f : V' — R such
that f(w) <0 < f(O).

Note. Let M, (M,); be the set of Hermitian (or self-adjoint) matrices, which
is a real vector space. Let

C={>_P®Q : PeM QelM}
l

Then C is a closed cone.

R € M,(M,)" entangled means that R ¢ C. So, there exists a real linear
functional f : M, (M,) — R such that f(R) <0< f(C).
_ Given X € M,(M,), write X = H + iK with H, K self-adjoint. Define
f: My(M,) — C by

fH+iK)=f(H)+if(K).

We show that f is complex linear:

F(a+ib)(H+iK)) = f((aH —bK) +i(bH + aK))
= f(aH —bK) +if(bH + aK)
= af(H) = bf(K)+ibf(H) + af(K)
= (a+ad)(f(H)+if(K))

= (a+ib)f(H +iK).
Note. We have that f(R) = f(R) and f(C) = f(C). So, f(R) < 0 < f(C). By
Arveson correspondence,

f e ®;: M, — M,.
f

We also proved that f > 0 on separable matrices if and only if ® 7 Is a positive
map.
Theorem. Let R € M,(M,)". Then R is separable if and only if @) (R) > 0
for all positive maps ® : M,, — M,..

Proof. (=): We have already shown that R separable implies ®(")(R) > 0.

(«<): We show the contrapositive; i.e., if R is entangled, then there exists a
positive map ® : M,, — M, such that ®()(R) is not positive.

We know that there exists a linear functional f : M,(M,) — C such that
f(Sep) >0, f(R) < 0, and corresponds to a positive map

& M, — M,.

We want to show that <I>§f)(R) is not positive.
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Recall that ®¢(X) = d(fi;(X)), 1 < i,j < r and f;;(X) = f(Ei; ® X).
Write
R = (Rij) S M,-(Mn), Rij e M,

and

R=> E;®RjeM @M,

2,j=1
e1
e = . 5
€r

where eq,..., e, is a basis for C". We compute:

(e|@(R)e) = << : ) (@5 (Riz)) ( : ))

Let

So, <I>§f) (R) is not positive.

29.2 Universal Entanglement Witnesses

Question: Does there exists a positive map ® : M, — M, so that for any
R e M,(M,)*, R is entangle if and only if ®")(R) is not positive?

Answer: Sadly, no for most n,r.
Theorem (Horodecki-Peres). Let ® : My — M be defined by ®(X) = X*.
Let v € C2 ® C2. Then v is separable if and only if ®)(jv){(v|) > 0; i.e., if v is
entangled, then ®)(Jv)(v|) is not positive.

Proof. Write v=a® f, Wherea:(gi),ﬂ:(é).Inblockforrm
v= (1) = (W) e =C?aC?
= \azp) = (o2 = :

Now, v is separable if and only if vy, vs are parallel. Hence, v is entangled if
and only if vy, vy are linearly independent.
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Observe that

[uh o] = vo* = () (v, v5) = (Led 220F ) € Ma(Ma).

* *
V2V V2Vgy

Therefore,

<I>(2)(|v><v|) — (‘b(vlvf) ‘I’(vWS)) - ((vle)t (vlvé)t) )

B (vav]) P(v2v}) (vav})? (vavi)t

Write v; = (z;,y;)%, j = 1,2. Then,

implies
ot _ [T1T1 Y1T1\ _ ( ) _
vy’ = )= 1, =T10
(v1v1) (9612/1 ylyl) 7 (z1,91) 1Yy
Similarly,
_ t
vt = (T2 1Y
(v123) (ylxz Y17
_ (561132 y1$2)
T1Ys  Y1Y2
= (%) (z1,91)
= 5251(.
Therefore,

&) (|0) (u]) = ( ) .

V1Ug @253

We apply this to the vector w = (152 ):

vy
% VIV U2l ( —w _ (-7 —71(01[02)+2 (1 [01)
<( E12) | (UIUS U2’U§> ( 512)> - <( 512) ‘ (—51(52|§2)+§2<52\?1>)>
= (Da2|v1)(1[D2) — 2|[v2]?| |01 ]?
+(01[v2) (V2[01)

= 2[(T2[v1)|* - 2/[72] |7 ||

< 0,

unless v, vy are parallel and by Cauchy-Schwarz theorem.

30 Day - 7/Nov/11

30.1 Error Detection/Correction - Classic Binary

We start with a binary n-tuple; i.e., v € Z3. We want to transmit v, but there
is a possibility of 0 being switched to 1 or 1 to 0. Note that this corresponds

88



to adding +1. This could be caused by static, stray magnetism, or any other
interaction with the environment. The question is how to fix it.
The idea is as follows:

¢
vezp —2 5 zptk
encoding

transmit
—_—

@(v) + error

decode
—_— V.

Example (“Repetition”). Define v € Z} — (v,v) € Z3". In the n = 3 case,
we have
v = (a,b,c) — (a,b,¢,a,b,c) — (a,b,c,a,b,c) + error.

This method and detect one error, but two errors may go undetected. Correction
of errors is unknown and the cost rises from n to 2n.
X

Example (“Parity Check”). Define
v="(a1,...,a,) €LY+ (a1,...,an;a1 + ... +a,) € Zy

This map can detect one error but misses every pair of errors, and cannot correct
even one error. However, the cost is much better than the repetition method.

X
Example (Hamming [7,1,3]). Define
(a1,...,a7) — (a1,...ar;a1 +as +az +aq;a1 + as + as + ag; a1 + az + as + ar).
This is equivalent to the matrix
a
< ] ) |
1111000 .
1100110 :
1010101 ar
This method can detect and correct one error.
X
Remark. What we seek are one-to-one maps Z5 % ZSHC , where range(¢) =
encoawng

S C zZy+k. Since |Z3| = 2" = | S|, we want the points in S to be “far apart.”
Definition. Given w € Z3', its Hamming weight is defined as
[lw|| = # of non-zero entries of w.

For ¢(v1) to be mistaken for ¢(vs), we would need a vector of errors e added to
¢(v1) so that
p(v1) + € = P(v2).
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The number of errors that must occur is

llel] = llp(v2) — @(v1)l]-
So, given S C ZJ* with |S| = 2", the Hamming weight of S is defined as
min{||lv — w|| : v,w € S,v # w},

which is equivalent to the minimum number of errors to go from one point in S
to another point in S.

Remark. For S C Z7", |S| = 2", the best Hamming weight we can hope for is
when S is a subspace. In this case, for v,w € S, (v —w) € S. So the Hamming
weight of S is equal to

main{||v|| : v € S,v # 0}

and S a subspace implies dimgz, (S) = n. Hence, there exists a linear map
@7y — S CLY

given by a matrix of ones and zeroes. Also, decoding amounts to choosing a left
inverse for the matrix of ¢.

Example. Suppose we have
(a,b,c) = (a,b,c;a+b+c).

This is equivalent to the mapping

1 00
0 1 0
=10 0 1 L 73 — 7.
1 1 1
One left inverse for ¢ is
1000 ) a
=10 1 0 0],y ol = b
0 010 d c
Another left inverse is given as
a
b b+c+d 01 11
’?C:a+c+d<—>1011
d a+b+d 1 1 0 1
Note that, start with (é), and observed the error

o(1)=(4)+(})-(3):
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~ would produce the correction <§> and 4 would produce the correction (i)
X

Remarks. Some of the best binary codes use Galois theory and Number theory,
which are called “cyclic codes.” The idea is to identity

75 = P(x)/{z™ —1).

Instead of vector subspaces, they look for ideals in P(x)/{z™ — 1). These are
generated by a divisor g of 2™ — 1.

Suppose g(z)|(™—1) in P(x) over Zy and deg(g) = m—n. Givenp,q € P(x)
with deg(p) <n —1, deg(q) <n — 1, we have

deg(gp), deg(gq) < m.

Therefore, if p # ¢, we have gp Z gq.
For encoding, we have

v="(ag,...,0n_1) €LY = p(x) =ap+ ...+ ap_12""" 2, gp.
To decode, suppose we have
(bo, R bm—l) — b(l‘) =byg+...+ bm_lxm_l.

We then do synthetic division by g, writing b(z) = gp + r. Here, no remainder
is good, else, we keep p as the “decoded” part.
In addition, a great deal known is about detection and correction.

31 Day - 9/Nov/11

31.1 Binary: Errors and Probability

Assume that a bit changes i — ¢ + 1 with probability p. Then no change has
probability ¢ = 1 — p. Recall that, for independent events, we multipy the
probabilities.

Example (Repetition on 3 Bits). Let (a,b,¢) — (a,b,c,a,b,c). Then,
undetected errors may look like:

(a,b,c,a,b,c)*>(a—|—1,b,c,a+1,b,c)7

(a,b+1,¢c,a,b+1,¢)

etc.
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The probability for two undetected errors is 3p?(1 — p)*, for four undetected
errors is 3p*(1 — p)?, and for six undetected errors is pS. So, the probability of
an undetected error is

3p*(1—p)* +3p* (1 — p)® + p°.

Example (Parity on 3 Bits). Let (a,b,¢) — (a,b,¢,a + b+ ¢). Then, unde-
tected errors happen when any two bits are switched. Hence, the probability of
an undetected error is

(3)p°(1 —p)* +p".
When we compare with the previous example,
3p*(1—p)* +3p' (1 —p)* +p° < (3)p*(1 —p)* +p

whenever p < %

31.2 Error Detecting/Correcting Code
Majority Rule Code. We encode as follows:
0~ 000,1 + 111.
Suppose that there was one error; e.g.,
0 — 100,010, or, 001.

Since the majority are still 0’s, we decode as a 0.
Whenever two or three errors occur, the majority changes, and we have an
“incorrectly corrected” vector. For example,

0+~ 110,101,011

would decode as a 1.
The probability of uncorrected errors is 3p?(1 — p) + p®.

31.3 Quantum Error Detection/Correction

Note that we cannot clone, in general, but we can clone basis vectors. In
addition, measurements destroy information and can also be used for decoding.

Examples (Analogue of Bit Switch, Majority Rule). Let

0 1
X = (1 0) .
Recall that Xey = e;, Xe; = eg. Observe the cases where

Y1 ® ... ® Py, 1p; € C2
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The only errors allowed are “qubit flips:” for one error, X @ I®...01, I® X ®
I®..®I..,I®...®® X, for two errors, we have two X’s in the tensor
product; for three errors, three X’s in the tensor product; etc.

For a general qubit ¢ = a|0) + b|1), X+ = b|0) + a|1).

Three Qubit Bit Flip Code: We encode by

al0) + b|1) — a|000) + b|111),

which is an analogue of majority rule code. The diagram is as follows:

P ° °
|0)
|0> 5>

After we encode a|0) + b|1) — a|000) + b|111), possible errors are as follows:

a|100) + b|011)
lerror:  al010) 4 b/101)

a|001) + b|110)
2error : etc.
3error : etc.

Decoding is done in two steps:

1. Error Detection/Syndrome Diagnosis We create a measurement sys-

tem:
Py, = 1]000){000| + |111)(111] Noerrors
P, = ]100)(100| + |011)(011] lerrors
P, = 1010)(010| + |101)(101] 2errors
Py = ]001)(001| + |110)(110] 3errors
Note that

P+ P+ P} +P?+Py+P +Py+ P3=Ics.

If ¢» = a|000) + b|111), then (p|Pyyp) = 1. After measurement, the new
state becomes

Pop
=,
[ Poy)|
If ’ll)l = a\100> + b‘011>, then <’(/J1|.P()1b1> = 0 but <'(/J1|P11b1> = 1. After
measurement,
Py "
[ Prpa]|
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Similarly, if the second or third error occurs, the vectors are left alone by
P, P5, respectively.

Now, what if two errors occurred, say 1 — a|011) + b|100) = v? Then it
will be detected by Py, Piy = 7. So, when zero or one error occurs, the
measurements show us where the error occurred.

2. Recovery Define R : My ® My ® My — My @ My ® My by

RY) = PYPR+(X®101)PYP(X®1®1)
+1X@DPRYPL10X0X)+ (1912 X)PYP(1®1® X).

Note that
M) =P)YPy+ PLYP, + PYPs + PsY Py

is a measurement map. Also, R is a completely positive map. Recall that
O(Y) => A YA} is trace-preserving if and only if > AfA; = I. Since

(2 )

PyPy+P (X®1®1)(X®1e1)Pi+P (19X ®1) (10 X®1) P+ P (1010 X) (1010 X ) Ps

and X% =1,

can be reduced to
P+ PP+ P+ P =1

Therefore, R is completely positive and trace-preserving, and hence, is
physically realizable.

Lastly, if Y is the outcome of 1) = a|000) 4 b|111) after zero or one errors,
then R(Y') = |¢)(¢|. If ¢, is the outcome witht he ith error, then

RA>|p){nl) = 1) {1,

for all ¢ = 1,2, 3. Therefore, R recovers ¢ if no or one error occurred.

32 Day - 11/Nov/11
32.1 Three Qubit Bit Flip Code: Operator Viewpoint
Let X = (§}) with probability p. If we do nothing to ¢ = a|0) + b|1), then
¥ {(1-p), b {pX Y = al0) +al1)}
(1 =p)[¥) (| + pl X ) (XY].

Density
—_—
Matriz
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The error map is

E(l) W) = (1 = p)[) (W] + pl X} (XY,
and for a general Y, the error map is
EY)=(1-pY +pXYX™,

which is completely positive and trace-preserving.
If we do the three bit encoding,

al0) + b|1) — v = a|000) + b|111),
then,

g 2L (1= ) ) {p(1 - )% (X @ T @ Iy},

Ensemble
(P —p?*, I XDy} {p(l-p)*, (@1 X))},
{P’A-p), (I @X X))} {p’(1-p), X @I X))},
{P*Q-p), (XX Dy} {p’, (XX e X)p}
The error map is
EY) = 1-pY +p1-p?X@I)Y(X®IxI)*
+p(1=pPIXNYI@XRI)* +...
P XX X)Y(X®X e X)".
We had the recovery/decoding mapping
RY) = PYP+(X@I)PYP(X®IRI)
IX@DNPRYP(I®X®)+(IRI®X)PRYP(I®I®X).

So the errors followed by the recovery, for i, obey

Ro&(lp) (W) = ((1—p)*+3p(1—p)?)|) (¥
+(Bp*(1—p) +p° + ") (X © X @ X)(|9) (¥)(X @ X @ X),

and for a general Y,
Ro&(lw)(@l) = (1—-p)®+3p(1 —p)*)Y
+3BPPA-p)+ PP+ )X X X)Y(X @ X ® X).
In summary, if we do nothing,

()@l = (1= p)|[) (0] + p| X)X,

and if we use code recovery,
[9) (] = (1=p)*+3p(1=p)*) D) (D1+Bp* (1-p)+p°) (X @ X 0 X)) (X0 X @ X)),

where ¢ = a|0) + b/1) and ¢ = a|000) 4 b[111). The code recovery “looks
better” because (1 — p)? + 3p(1 — p)? “looks bigger” than (1 — p). In addition,
the code recovery is “better” when (1 — p)3 + 3p(1 — p)? > (1 — p) if and only
if (1 —p)%2+3p(1 —p) > 1if and only if p < 1/2.

A better measurement of how well a code behavior is fidelity.
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32.2 Introduce and Motivate Fidelity

Recall that a state is equal to some unit vector.

Start with a state v, perturbed to v’ = a®) + byp;. How close a is to 1
measures how “little” 1)’ is perturbed. Since e'%4, 1) are the same state, so we
only need |a| = |[(¢'|¥)|. So, fidelity for states is defined F = [(¢'[1))].

For density matrices ¢ — [1)) (4] = p, ¥/ = [¢/)(¢/| = p/,

Tr(pp')
= Tr(l) @l ) (')
= Tr((@R) (W' )
(@' 1))
So, fidelity is defined F' = +/Tr(pp’).

The measure used for comparing error correction is fidelity:

(plp")

F = /Tr($) (IR o (1) (@) = v/ (IR o E([v)(Ipsil)¥).

Then we are interested in either

ming (v/ (R o E(J) (Y])¥))

or some type of average fidelity, say

/ IR E(NDIY)ds ().

Example. We compare the minimum fidelities for “do nothing” and “three-
qubit error/recovery code.” For the “do nothing*

[0} (] = E([)(]) = (1 = p)[¥) (W] + p| X)) (X Y],
the fidelity is

F o= V@I - p))(+plXe) (Xy[l¢)
VI = p){19) + p(XP[9) (P X))
= V(1 —p)+pl(X¢[)>.
Since X|0)L|0), minF = /1 —p.
For the “recovery”
DY@ — RoE(PNW) o i i
= ((1=p>+3p(1 =) (@] + Bp*(1 —p) + P)(X @ X @ X)P)(X ® X @ X)),
the fidelity is
F o= (@R e(0)(0)9)
= [(1=p)*+3p(1 —p)*)(D|)* + Bp*(1 — p) + P*)|(Y|(X ® X @ X)) [*]'/2.
Pick 9 = [000). Then (X ® X ® X)t) = [111) L4). So,
minF = /(1 — p)3 + 3p(1 — p)2.
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33 Day - 14/Nov/11
33.1 Three Qubit Phase Flip Code
Let Z = (§ % ). Then Z|0) = |0) and Z|1) = —|1). Set

_o+n
I+) = ¢§7|>—

0) = )
1

Note that

(1) [4)L]-).

) Z14) = |-), Z21-) = |4).

So, this is completely analogous to the bit flip X = (9}).
We encode by

0) = [+++) =[P @[+) @ |+),
1) ===

This behaves exactly like the bit flip code, only now for detecting/correcting
phase flips.
We similarly define for Y = (% §). Set [+) as above. Then

o) =) 10) [ _
Y|+) = V2 Z< V2 )6

Observe that |[+)L3, Y|+) = 3, and Y3 = |[+). We encode as

0) — |+ ++),
1) — |8B86) = B [ 6.

33.2 The Shor Code
The encoding is as follows:

|O> N |OL> _ (|000>+|111))®(|000>y111>)®(|000)+\111)) c ng
2v/2 ’

— — — 9

|0) — |1L) = (1900) |111>)®(|000;\/\§111>)®(\000> [111) ¢ ¢2°,

Theorem (Shor). There exists a completely positive and trace-preserving map
R : Mys — Moy such that, for all 2 x 2 unitaries U, for all 4,

U=1®..0IU®I®...®l,

and for all ¢ = a|0;) + b|1.), we have
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In other words, the recovery operation R corrects all single errors, but for arbi-
trary U € M.

Proposition. Let V C C" be a subspace and let {Uy,...,U;} C M,, be uni-
taries. If U;VLU;V for all i # j, then there exists a completely positive and
trace-preserving R : M,, — M, such that

R(U$)(@[U]) = [$) (]

for all ¢ € V, for all i.
Proof. Let P; be the orthogonal projection onto U;V. Let

Py=I—-P —...—P,.

These will be teh syndrome. Set Uy = I. Define

t
R(X) =Y U;PXPU;
=0

We know that R is completely positive. Since

t t t

=0 =0 =0

we have that R is trace-preserving.

For ¢ € V,
Nilee NP — 0, i# 7,
PATTNE ={ i 12
Now,
[U) (U = U; ([9) (U
Therefore,
R(UpU¥|) = U Pi(|Up)Ujab|) PiU;

[9) (-

Recall the Pauli matrices I, X,Y, Z as above. A tensor of the form
I®..IURI®...Ql,

where U is a Pauli matrix, is called a I-Pauli. The set of all 1-Pauli in C? ®
...® C? (nine copies) is a finite set of unitaries. In fact, 3% + 1.

Proposition. Let V = span{|0.),|1.)} € C?’. Let U,V be 1-Pauli such that
U +#V. Then UVLVV.
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Proof (Sketch). We check a few to convince us of the proof. First off,
suppose U,V occur in the ith, jth tensor, ¢ # j, involving one of X,Y, Z. For
example,

U=X®I®..0LLV=IX®I®...®l

Then,
Ul0r) = (J100) 4 |011))(|000) + |111))(]000) + |111}),
Ullz) = (]100) — 011))(000) — [111))(]000) — [111)),
V00r) = (|010) +]101))(|000) + |111))(|000) + |111)),
V1) = (|010) —|101))(]000) — |111))(]000) — |111)).

All of these are perpendicular. It is pretty easy to see that when U,V occur in
the ith,jth tensor with i # j, then UV LVV. The harder case to see is why, say

U=(X®I®...0)VLV =(Z81®...0 ).
We saw what U|0.),U|1y) are. Since,

V00L) = (|100) —]011))(|000) + |111))(|000) + |111)),
Vi1r) = (|000) +|111))(|100) —|011))(|100) — |011)),

they are perpendicular.

33.3 “Pauli Magic”

Proposition. I, X,Y, Z are orthogonal in M, and all have 2-norm /2.
Proof. We need to compute (U, V) = Tr(U*V) = Tr(UV), for Pauli U, V.
Obviously, /1L X, I LY. Since (I,Z) =12 — 12 =0, I LZ. Again, we clearly see
X1Z,Y1Z. Lastly, (X,Y)=i—14=0. Hence, X LY.
They all have norm /2.
X

Proposition. If U € M, unitary and U = agl + a1 X + a2Y + asZ, then

laol® + |a1|* + |az]? + |as|* = 1.

34 Day - 16/Nov/11

34.1 Fixes from Last Time
Set X =(98), Y =(2%¢),and Z = (§ % ). Now define

X1 =X®I®..0I,.. ,Xe=I®...]®X,
Vi=Y®I®...QI,..,.Y%0=I®...I9Y,
2 =20I®..01,... . Z¢=1®...1® 7.
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So, there are 3 -9 + 1 tensors.
Let V = span{|0.), 1)}, where

_ (]000)+[111))(]000) +]111))(|000)+]111))
0z) = 2v2

‘1L> _ (]000)—]111))(]000)—|111))(]000) —|111))
2v2

7

Proposition. (1) V, XiV,..., XoV, 1V, ..., YoV, 21V, Z,V, Z;V are orthog-
onal subspaces.
(2) Forv eV,

Z1U = ZQU = Z3,
Z41] = Z5U = Z6,
Z7’U = ZS’U = Zg.

Proof (Sketch). (1) This involves a lot of checking and we did a few cases
last time.
(2) This involves a lot of checking. For example,

Z10L) = (]000) — [111))(|000) + [111))(|000) + [111})
= |0g) + [0613) + |031303) + [031¢)
—[1306) — [130313) — [1603) — [19)

= Z5|0r)
= Z3|0)
and
Zi[1L) = (]000) + [111))(]000) — [111))(]000) — [111))
= Zo|lp)
Zs3|1L).
Compare this to
Z40z) = (]000) +[111))(|000) — [111))(|000) - [111))

= |0g) + [0613) — |031303) — [0316)
+[1306) + [130313) — [1603) — [19).

In addition, (Z1|0)|Z4|0L)) = 0.

34.2 Continuation from Last Time

Let
Py, PX,...,PS PY, ... Py, P, PE, P,

be the projection onto these subspaces of C?’ and
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@ = I— sum of the projections.
Define
R(W) = Py(W)Py+ X;PEWPEXX) +...+ X3P WP Xy
+Y P (W)P Y1 + ...+ Yy Py (W)Py Yy
+Z{PL(W)P Zy + Zy P (W)P{ Zy + Z7 PY (W) P Z7 + QWQ.

Then, R is completely positive and trace-preserving, and if ¢» € ¥V and is changed
by any 1-Pauli U to U, then

RAUPYUP]) = RU (1)@ NUT) = ) (]

Recall the following propositions:
(i) Proposition. I, XY, Z are orthogonal in the Hilbert space M and they
all have 2-norm /2.

Proposition. If U € M; is unitary and we write
U = a()I + alX + CLQY —|— ag,Z,

then
laol® + la1[* + |az|? + Jas|* = 1.

Proof. Observe that
1 X Y Z
V2 V2 V2 V2
is an expression of U with respect to an orthonormal basis. Therefore,

2 = ||U||2 = 2|ag|? + 2|a1|* + 2|az|? + 2|as|?.

U= (\/iao) + (\/5(11) + (\/iag) + (\/iag)

Theorem. Let ¢y € V and U € M be unitary. Let
Ui=1®..0IU®I®...0I¢c My (jthtensor).
Then,
RU;o)U91) = [1) (4.

Proof. Write
U=agl +a1X +aY +a3”Z.

This implies
Uj = a0[+ alXj + CLQY]‘ + ang.

Therefore,
Uw) (Ul = Us([0)()UF
= a060|’(/J><’(/1| + a051|¢><1/}Xj
+.Faza@s Zi) (Y| Z;.
So
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R(Uj|v) (¥|UF) = sum of these 16 terms.

However, for example, |¢)(¥|X; = [¢)(X;v|. When we do a projection to this,
they all annihilate it, even ). The only terms not annihilated are the “diagonal
terms:”

|aol [} (], lax [P|X90) (X901, laal *YV50) (Y3901, |as|?| Z;0)(Z;4).
Note that

R(|ao 1) (1)) = |ao|*|v) (],
R(|a *| X;54)(X;0) = a1 [*[) (W]
R(laz*|Y1h)(Yie]) = laz|?[1) (],
Rlas*1Zj)(Zj]) = las?[¥)(¥].

So,
R(Sum) = (|aol* + |a1]? + [az|* + |as|*) ) (¥| = [4) (|-

35 Day - 18/Nov/11

35.1 Continuation

Proposition. For V C C", let £ : M,, — M, be the error map and R : M,, —
M, be the recovery map, which are completely positive, trace-preserving. Then,

RoE([9){¢]) = [¥){¢]

for all v € V if and only if R o E(PXP) = PXP for all X € M, where
P:Cr—V.

Theorem 1. Let V C C" and € : M,, — M,, £&(X) = >|_, E,XE}, be a
completely positive and trace-preserving map. Then there exists a completely
positive and trace-preserving map R : M,, — M, such that RE(PXP) = PXP
for all X € M, if and only if there exists a;; € C such that PEIE; P = o P.

Theorem 2. Let £, R be as in Theorem 1. Let G; € span{F;};_; such that
S GEGi=1. Let G(X) =>'_, G;XG%. Then,

RoG(PXP)=PXP,

for all X.

Proof of Proposition. (<): Let v € V with Py = . Then P(|¢)(¥|)P =
[1)(x)]. Therefore,

Ro&([¢)(W]) = R o E(PY){Y|P) = Plp) (4| P = [$) (Y]
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(=): If X >0, then PXP > 0, (PXP)Y C V, and (PXP)V+ = 0. So,
non-zero eigenvectors of PXP are all in V. This implies PXP = Y i) (¢i],
for ¢; € V. Therefore,

RoE(PXP) = Ro&(Y i) wil)

> ) (e

PXP.

Given any X € M,,, write

X = (P, — P) +i(Ps— Py).

Then,
Ro&(PXP) = Ro&(PPP—PP,P+iPPsP —iPP,P)
= PP,P-PP,P+iPP;P—iPP,P
PXP.

X
Proof of Theorem 1. (=): Let R(W) =5 AWA] and ) AfA; = I. Then,

Ro&(PXP) = Y AEPX(PE;A})
1,

= Y (AEP)X(AEP)
1,

= PXP.

So, we have two ways to write the map X — PXP. Note that the right-hand
side is clearly minimal Choi rank.

By Choi’s theorem, there exists 3;; € C so that A;E;P = (3; P, which we
note is a row vector. This implies 3 |3;|> = 1, meaning the same matrix was
an “isometry.” Hence,

(PEAY)(AE; P) = (By P)(BjuP) = BB P,
> PE;(A;A))E;P = PE;E,P.
l

Therefore,
PE;E;P = (> B.B81)P = ay;P.
1

(«<): Note that

PET
(aijP) = (PE;E;P) = ( ) (E\P,...,E.P)>0.

PE?
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This implies (c;;) > 0. Also,

> aiP =) PE/EP=P

implying Y o;; = 1. So, Tr((as5)) = 1; ie., (a4;) is a density matrix.

diagonalize by picking a unitary U = (u;;) such that
Ulaiz)U" = D = (ds),

where D is diagonal, d;; > 0, and > d;; = 1. Let

T
F;, = ZﬂzkEku 1< <r.
k=1

By Choi’s theorem, Y. _, F;XF} = £(X). Also,

P winEn) (Y ujEn) P
k l

PE;F;P
= Y uyti PE{EP

k,l
= (O uwinowm;)P
k.l
= dy,P.
Therefore,
- 0, t#7,
PREE= { dqP, i=)
When i # j, and for 91,19 € V, we have
(FiPyn|FiPo) = (1 |PE]FjPis) = 0,

which implies
(Fith1|Fjip) = 0.
Therefore, F;V LF;V.

We

Now, when d;; = 0, PF;F; P = 0, which implies F;V = (0). When d;; # 0,

%PF;‘FiP - P,
and for 1,19 € V, we have
1 1 «
K(Epﬂfﬂﬂpi/}l) = I<¢2|PFZ- F;Pyy)

= <122|1/)1>~
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Therefore,

dii

is an isometry.

Let R, = LPF;k when d;; # 0, and R; = 0 otherwise.

Vidii

R=Y RiRi=)Y_ %FiPFi*

and
2 1 1 *
R CTLT (F,PF})(F;PF})
i F;(d;; P)F,

Hence, R is a projection. Let @ = I — R. Define

=Y RXR; +QXQ.
i
This is completely positive and trace-preserving since

YRR +QQ=R+Q=1
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