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1 Preface

These are an unedited transcription of lectures I gave at the University of Hous-
ton in the Fall of 2011 and should not be circulated widely. This was my first
time teaching this material and there are a number of mistakes, etc., that need
to be corrected before I show them to a broader audience. The attendees at the
IMSC short course on QC in Chennai are welcome to read these, but I ask that
they not post them to any other websites.

My only hope is that they will give the attendees some supplementary ma-
terial that will inform more than they misinform!

Vern Paulsen, Houston

2 Day - 22/Aug/11

2.1 Computing Overview

Classical (binary) Quantum
Bit - {0, 1} = Z2; “on/off” Qubit - unit vector in C2;

electron/photon; ↑= (1, 0), →= (0, 1),
	= 1√

2
(1, i)

N bits - element N qubit - unit vector in
of ZN2 C2N ∼= C2 ⊗ . . .⊗ C2 (N times)
Operations - flip, register shifts Operations - completely positive maps

on M2N

Information Theory - 2N states; Information Theory - P 2N × 2N

(P1, . . . , PN ), Pi ≥ 0, positive; semidefinition matrices
P1 + . . .+ P2N = 1 with tr(P ) = 1

2.2 Course Overview

I. Basic Math

• Hilbert spaces, matrices, and linear maps

• Positive definite matrices

• Tensor products

II. Introduction to Quantum Computing

• Axioms of quantum mechanics

• Classical vs. quantum gates

• Quantum algorithms

• Introduction to entanglement

III. Theory of Completely Positive Maps
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IV. Entanglement

• Entanglement witnesses

V. Topics

• Quantum error correction

• Quantum coding

• Quanum cryptography

2.3 References

1. Michael Nielsen/Isaac Chuang - “Quantum Computation and Quantum
Information” (Cambridge University Press)

2. S.J Lomonaco (editor) - “Quantum Computation, A Grand Mathematical
Challenge for the 21st Century” (AMS)

3. John Preskill - “Quantum Computation” (Online lecture notes at
http://www.theory.caltech.edu/people/preskill/ph229)

4. P. Kaya, R. Laflamme, M. Mosca - “An Introduction to Quantum Com-
puting” (Oxford University Press)

2.4 Basic Math I

Note. We adopt the notation of physicists.

Example. Let Cn be the space of complex n-tuples; i.e.,

Cn = {x = (x1, . . . , xn) : xi ∈ C}

and define
αx = (αx1, . . . , αxn),

for any α ∈ C, x ∈ Cn. Cn has an inner product defined by

〈y|x〉 =
n∑
i=1

yixi.

〈·|·〉 has the following properties:

• Linear in RHS: 〈y|x+ x′〉 = 〈y|x〉+ 〈y|x′〉 and 〈y|αx〉 = α〈y|x〉;

• Conjugate linear in LHS (called “sesquilinear”): 〈y+y′|x〉 = 〈y|x〉+〈y′|x〉
and 〈αy|x〉 = α〈y|x〉;

• Positive definite : 〈x|x〉 ≥ 0 and 〈x|x〉 = 0⇔ x = 0;
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• Euclidean length: Define ||x|| =
√
〈x|x〉 for all x ∈ Cn. Then || · || is

a norm satisfying ||x + y|| ≤ ||x|| + ||y||, ||αx|| = |α|||x|| for all α ∈ C,
x, y ∈ Cn.

Definition. A Hilbert space is a complex vector space H equipped with a map

〈·|·〉 : H×H → C

that is sesquilinear, positive definite, and H is complete with respect to the
norm ||x|| =

√
〈x|x〉.

Examples. (1) Cn, as above.
(2) The space of matrices Mn,k = {(tij) : tij ∈ C, 1 ≤ i ≤ n, 1 ≤ j ≤ k},

where n is the number of rows and k is the number of columns. Mn,k is equipped
with the inner product defined by

〈(yij)|(xij)〉 =
n∑
i=1

n∑
j=1

yijxij .

We note that Mn,k
∼= Cnk.

3 Day - 24/Aug/11

3.1 Examples of Hilbert Spaces

Example. Cn is a Hilbert space with inner product

〈y|x〉 =
n∑
i=1

yixi,

where y = (y1, . . . , yn), x = (x1, . . . , xn) ∈ Cn. Cn has an orthonormal basis
defined by

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1),

and for all x ∈ Cn,

x =
n∑
i=1

xiei =
n∑
i=1

〈ei|x〉ei.

Example. The n×m matrices, Mn,m, is a Hilbert space with inner product

〈(yij)|(xij)〉 =
∑
i,j

yijxij .

Mn,m has as an orthonormal basis the set of matrix units defined by

Eij =
{

1, (i, j)th entry,
0, otherwise.

For all X ∈Mn,m,

X =
∑
i,j

XijEij =
∑
i,j

〈Eij |X〉Eij .
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3.2 Matrices

Definition. Let X = (xij) ∈Mn,m. We define the following:

1. Conjugate matrix: X = (xij).

2. Transpose matrix: Xt = (xij)t = (xji).

3. Conjugate Transpose or Adjoint matrix: X∗ = X
t

= (xij)t. (Note that
physicist denote this by X† = X∗.)

Matrix Multiplication. Let X = (xij) ∈Mn,m and Y = (yij) ∈Mm,p. Then,

XY =

(∑
k

xikykj

)
∈Mn,p.

If we write

X =


R1

· · ·
...
· · ·
Rn

 , Y = (C1

... . . .
...Cp),

as matrices of row and column vectors, then

XY = (Ri · Cj),

where “·” is the usual dot product.

Definition. Define the mapping Tr : Mn,n → C by Tr(X) =
∑n
i=1 xii. Tr is

called the trace of X. We sometimes write Trn for the trace of Mn,n.

3.3 Physicists Bra-Ket Notation

Notation. Let x, y ∈ Cn. Define

|x〉 =

 x1

...
xn


and

〈y| = |y〉∗ = (y1, . . . , yn).

Then,

〈y|x〉 = (y1, . . . , yn) ·

 x1

...
xn


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and

|x〉 〈y| =

 x1

...
xn

 · (y1, . . . , yn) = (xiyj) ∈Mn,n.

In addition, physicists prefer to number by 0, 1, . . . , n−1 instead of 1, 2, . . . , n.
In this numbering scheme, the canonical orthonormal basis of Cn is e0, . . . , en−1.
We can also write this bases by

|ej〉 = |j〉 ,

for all j. So, the canonical orthonormal basis is |0〉 , . . . , |n− 1〉.
Note also that

|x〉 =
n−1∑
i=0

〈ei|x〉 · |ei〉

=

[
n−1∑
i=0

|ei〉 〈ei|

]
|x〉

= In |x〉 .

3.4 Matrices and Linear Maps

Definition. T : Ck → Cn is linear if

T (x+ y) = T (x) + T (y)

and
T (αx) = αT (x).

We denote by L(Ck,Cn) to be the space of all linear maps from Ck to Cn.

Remark. Each n× k matrix A = (aij) defines a linear map from Ck to Cn by
matrix multiplication:

A

 x1

...
xk

 =


∑k
i=1 a1ixi

...∑k
i=1 anixi



=

 R1 · x
...

Rn · x

 .

Every linear map T is multiplication by the matrix

〈ei|Tej〉 = 〈i|T |j〉.
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3.5 Matrix Theory

Orthogonal Projections. Let V ⊆ Cn be a subspace with dim(V ) = k < n.
Pick an orthonormal basis {v1, . . . , vk} for V . Let P =

∑k
i=1 |vi〉 〈vi|. Then,

Px =
k∑
i=1

〈vi|x〉vi ∈ V.

Also,

〈vj |x− Px〉 = 〈vj |x〉 −

〈
vj |

k∑
i=1

〈vi|x〉vi

〉

= 〈vj |x〉 −
k∑
i=1

〈vi|x〉〈vj |vi〉

= 〈vj |x〉 − 〈vj |x〉
= 0.

So, vj⊥(x − Px) for all j. This implies that (x − Px)⊥V . Therefore, x =
Px+ (x−Px), where Px ∈ V and (x−Px) ∈ V ⊥. Hence, we have shown that
any x ∈ Cn can be written as x = v + w, where v ∈ V and w ∈ V ⊥.

We claim that this decomposition is unique. Suppose x can also be written
as x = v1 + w1, where v1 ∈ V and w1 ∈ V ⊥. Then,

v + w = v1 + w1 ⇒ v − v1 = w1 − w
⇒ v − v1 = w1 − w = 0
⇒ v = v1, w = w1.

Thus, Px and x− Px is the unique decomposition of writing x.
Now, suppose we picked a different orthonormal basis for V , say {ṽ1, . . . , ṽk}

and formed

P̃ =
k∑
i=1

|ṽi〉 〈ṽi| .

By uniqueness, P̃ = P . Note also that if v ∈ V , then by uniqueness, Pv = v.
We summarize: Given V ⊆ Cn, pick any orthonormal basis. Then

Px =
k∑
i=1

|vi〉 〈vi|x

is the unique orthonormal projection onto V .

Parseval. If v ∈ V and {v1, . . . , vk} is an orthonormal basis, then v =∑k
i=1〈vi|v〉vi. Then,

||v||2 =

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

〈vi|v〉vi

∣∣∣∣∣
∣∣∣∣∣
2

=
k∑
i=1

|〈vi|v〉|2.
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If we take V = Cn, this says that if {v1, . . . , vn} is any orthonormal basis, then

||v||2 =
n∑
i=1

|〈vi|v〉|2.

Other Properties of P .

1. P 2 = P .

2. P = P ∗. This is because P =
∑k
i=1 |vi〉 〈vi| and, for any vector x,

|x〉 〈x| = (xixj) = (xixj)∗.

Theorem. If P ∈ Mn such that P 2 = P and P = P ∗, and if we let V =
range(P ), then P is the orthogonal projection onto V .

Proof. For v ∈ V , then v = Px. So, Pv = P (Px) = P 2x = Px = v. If
w⊥V , then

||Pw||2 = 〈Pw|Pw〉
= 〈w|P ∗Pw〉
= 〈w|Pw〉
= 0.

Therefore, P is the orthogonal projection onto V .

4 Day - 31/Aug/11

4.1 Unitary Matrices

Definition. U ∈Mn is unitary if U∗U = I.

Theorem. For U ∈Mn, the following are equivalent:

(a) U is unitary.

(b) U is invertible and U−1 = U∗.

(c) UU∗ = I.

(d) U∗ is unitary.

(e) The columns of U are orthonormal.

(f) The rows of U are orthonormal.

(g) (Isometry) ||Ux|| = ||x|| for all x ∈ Cn.

(h) (Inner product preserving) 〈Ux|Uy〉 = 〈x|y〉 for all x, y ∈ Cn.

12



Proof. ((a) ⇒ (b)): U∗ is a left inverse implies U is one-to-one. So,
dim(rg(U)) = n, and so, U is onto. Hence, U is invertible and U∗ is the
inverse.

((b)⇒ (c)): Obvious.
((c)⇒ (d)): (U∗)∗ = U . So, (U∗)∗U∗ = I. Hence, U∗ is unitary.
((d)⇒ (a)): Since U∗ is unitary and (U∗)∗ = U , we have that (U∗)∗ = U is

unitary.
((a)⇒ (e)): Recall that if

A =


r1

· · ·
...
· · ·
rn

 , B = [c1
... . . .

...cn],

then A ·B = (ri · cj). So, if U = [c1
... . . .

...cn], then

U∗ =


c∗1
· · ·
...
· · ·
c∗n


and I = U∗U = (c∗i · cj). However,

c∗i · cj = 〈ci|cj〉 =
{

1, i = j,
0, i 6= j.

Hence, c1, . . . , cn are orthonormal.
((e) ⇒ (a)): Since the columns are orthonormal, we have that U∗U =

(c∗i · cj) = I.
((d)⇒ (f)): Let

U =


r1

· · ·
...
· · ·
rn

 , U∗ = [r∗1
... . . .

...r∗n].

Since U∗ is unitary, we know that r∗1 , . . . , r
∗
n are orthonormal. Hence, r1, . . . , rn

are orthonormal.
((f)⇒ (d)): Similar to ((d)⇒ (f)).
((a)⇒ (g)): ||Ux||2 = 〈Ux|Ux〉 = 〈x|U∗Ux〉 = 〈x|x〉||x||2.
((g) ⇒ (e)): this implies that ||Uei|| = ||ei|| = 1. However, Uei is the ith

column. Therefore, the columns all have length one. Let Uei = ci. For i 6= j,

||αei + βej ||2 = |α|2 + |β|2
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and
||U(αei + βej)||2 = |α|2 + |β|2.

However,

||U(αei + βej)||2 = 〈U(αei + βej)|U(αei + βej)〉
= 〈αei + βej |αei + βej〉
= |α|2〈ci|ci〉+ αβ〈ci|cj〉

+αβ〈cj |ci〉+ |β|2〈cj |cj〉
= |α|2 + |β|2 + 2Re(αβ〈ci|cj〉).

This implies 2Re(αβ〈ci|cj〉) = 0 for all α, β. Hence,

〈ci|cj〉 = 0.

Therefore, the columns are orthonormal.
((a)⇒ (h)): 〈Ux|Uy〉 = 〈x|U∗Uy〉 = 〈x|y〉.
((h)⇒ (g)): 〈Ux|Ux〉 = 〈x|x〉 implies ||Ux||2 = ||x||2 implies ||Ux|| = ||x||.

�

4.2 Householder Unitaries

Definition. Given w ∈ Cn with ||w|| = 1, recall that |w〉〈w| = (wiwj) = Pw-
projection onto span{w}. Set Uw = I − 2Pw. Then,

U∗wUw = (I − 2Pw)∗(I − 2Pw)
= (I − 2Pw)(I − 2Pw)
= I − 2Pw − 2Pw + 4Pw
= I.

So, Uw is unitary. We call Uw the Householder unitary given by w.

Remark. Geometrically, Uw is equal to the reflection through the hyperplane
{w}⊥.

Lemma (Schur). Given x, y ∈ Cn with ||x|| = ||y||, there exists w ∈ Cn with
||w|| = 1 and eiθ so that Uw(x) = eiθy.

Theorem (Schur). Let A ∈Mn. Then there exists a unitary U so that U∗AU
is upper triangular.

Proof. Pick an eigenvector x1 with ||x1|| = 1 and eigenvalue λ1 of A; i.e.,
Ax1 = λ1x1. (We can always normalize x1, so we may assume ||x1||1.) By
Schur’s lemma, there exists w, eiθ such that Uw(x1) = eiθe1. Then,

(UwAU∗w)(e1) = UwA(e−iθx1)
= eiθUwλ1x1

= λ1e
−iθeiθ

= λe1.
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. This implies

UwAU
∗
w =

[
λ1 ∗
0 A1

]
,

where A1 is (n− 1)× (n− 1).
Pick x2 ∈ Cn−1 with ||x2|| = 1 and λ2 such that A1x1 = λ2x2. By Schur’s

lemma, there exists w1 with

Uw1A1U
∗
w1

=
[
λ2 ∗
0 A2

]
,

where A2 is (n− 2)× (n− 2).
Now consider

Ũw1 =
[

1 0
0 Uw1

]
.

Then

(Ũw1Uw)A(UwŨw1)∗ =

 λ1 ∗ ∗ ∗
0 λ2 ∗ ∗
0 0 A2

 .
Now proceed by induction.

�

Recall. The characteristic polynomial of A is defined by pa(t) = det(tI −A) =
nth degree polynomial.

Corollary. Tr(A) = λ1 + . . .+ λn, where the λj are the eigenvalues of A.
Proof. Apply Schur’s theorem to U∗AU = T , where

T =


t11 ∗
0 t22

. . . ∗
0 tnn

 .

Then, t11 + . . . + tnn = Tr(T ) = Tr(U∗AU) = Tr(AUU∗) = Tr(A). Since
pT (t) = det(tI − T ) = (t− t11) . . . (t− tnn), the roots are t11, . . . , tnn. Since

det(tI − U∗AU) = det(U∗(tI − a)U)
= det(tI −A)
= pA(t),

we have that pA(t) = pT (t).
�

5 Day 4 - 2/Sep/11

5.1 Hermitian Matrices

Definition. H ∈Mn is Hermitian, or self-adjoint, if H = H∗.

Theorem. The following are equivalent:

15



(a) H is Hermitian.

(b) There exists a unitary U such that U∗HU = D, where D is a diagonal
matrix with real entries.

(c) H has an orthonormal basis with real eigenvectors.

(d) 〈x|Xx〉 is real for all x ∈ Cn.

Proof. We need a lemma:
Lemma . For T ∈Mn, if 〈x|Tx〉 = 0 for all x ∈ Cn, then T = 0.
Remark. Let

T =
(

0 1
−1 0

)
and x ∈ R2. Write x = (x1x2)t. Then,

〈x|Tx〉 = 〈(x1x2)t|(x2 − x1)t〉
= x1x2 − x2x1

= 0

but T 6= 0.
Proof of Lemma . Given x, y ∈ Cn, we have

0 = 〈x+ y|T (x+ y)〉
= 〈x|Tx〉+ 〈y|Tx〉+ 〈x|Ty〉+ 〈y|Ty〉
= 〈y|Tx〉+ 〈x|Ty〉.

and

0 = 〈x+ iy|T (x+ iy)〉
= 〈iy|Tx〉+ 〈x|Tiy〉
= −i〈y|Tx〉+ i〈x|Ty〉.

Hence, 〈y|Tx〉 = 〈x|Ty〉 and 〈y|Tx〉 = −〈x|Ty〉. So, 〈y|Tx〉 = 0 for all x, y ∈ Cn.
Take x = ej and y = ei. This implies tij = 0, and so, T = 0.

⊗
We now prove the theorem.
((a)⇒ (b)): By Schur, there exists a unitary U such that U∗HU = T , with

T upper triangular. Then,

T ∗ = (U∗HU)∗

= U∗H∗U∗∗

= U∗HU

= T.

This implies T is diagonal. Let T = D. Then D∗ = D, which implies D has
real entries.
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((b) ⇒ (c)): Let U∗HU = D and Dej = λjej be the eigenvectors and
eigenvalues. Then HU = UD, which implies

H(Uej) = UDej = U(λjej) = λjUej .

So, Uej is an eigenvector of H for all j. However, Uej is the jth column of U .
Therefore, uj = Uej is an orthonormal basis of eigenvectors.

((c) ⇒ (a)) Let {u1, . . . , un} be an orthonormal basis of eigenvectors with
real eigenvalues; i.e., Huj = λjuj , for all j. Let D = diag{λ1, . . . , λn} and

U = [u1

... . . .
...un].

Then U is unitary and

HUej = Huj = λjuj = λjUej = UDej

for all j. So, HU and UD agree in column j, for all j. This implies HU = UD
and H = UDU∗. Hence,

H∗ = U∗∗D∗U∗ = UDU∗ = H.

((a) ⇒ (d)) 〈x|Hx〉 = 〈H∗x|x〉 = 〈Hx|x〉 = 〈x|Hx〉 implies 〈x|Hx〉 ∈ R for
all x.

((d)⇒ (a)) 〈x|Hx〉 = 〈x|Hx〉 = 〈Hx|x〉 = 〈x|H∗x〉 implies 〈x|(H−H∗)x〉 =
0 for all x. By the lemma, H −H∗ = 0 implies H = H∗.

�

5.2 Positive Definite and Semidefinite

Definition. P ∈ Mn is positive semidefinite, denoted P ≥ 0, if 〈x|Px〉 ≥ 0 for
all x ∈ Cn. It is called positive definite, denoted P > 0, if 〈x|Px〉 > 0 for all
x ∈ Cn.

Note that, by part (d) above, P positive semidefinite implies P = P ∗.

Theorem. P ≥ 0 if and only if P = P ∗ and all the eigenvalues are non-negative.
Proof. (⇒) 〈x|Px→≥ 0 implies 〈x|Px〉 ∈ R implies P = P ∗. Let Px = λx.

Then,
0 ≤ 〈x|Px〉 = 〈x|λx〉 = λ〈x|x〉 = λ||x||2.

Hence, 0 ≥ λ.
(⇐) Let {u1, . . . , un} be an orthonormal basis of eigenvectors, Puj = λjuj

17



with λj ≥ 0. Given x ∈ Cn, write x = α1u1 + . . .+ αnun. Then,

〈x|Px〉 =
∑
i,j

= 1n〈αiui|P (αjuj)〉

=
∑
i,j

= 1nαiαj〈ui|Puj〉

=
∑
i,j

= 1nαiαjλj〈ui|uj〉

=
n∑
j=1

λj |αj |2

≥ 0.

�

Corollary. P > 0 if and only if P = P ∗ and all the eigenvalues are strictly
positive.

Proof. (⇒) We know that P = P ∗ has eigenvalues greater than or equal to
0. If Puj = 0uj , then 0 = 〈uj |Puj〉. Therefore, λj > 0 for all j.

(⇐) Write x = α1u1 + . . . + αnun as before. Then 〈x|Px〉 =
∑n
j=1 λj |αj |2.

Since x 6= 0, some αk 6= 0. Hence, 〈x|Px〉 > 0.
�

Theorem. P ≥ 0 if and only if P =
∑m
i=1 |vi〉〈vi| for some set of vectors.

Proof. (⇒) Take an orthonormal basis of eigenvectors {u1, . . . , un} with
λj ≥ 0. If x =

∑n
i=1 αiui, then Px =

∑n
j=1 αjPxj =

∑n
j=1 αjλjuj . However,

(|uj〉〈uj |)x = 〈uj |x〉uj = αjuj .

Therefore, Px =
(∑n

j=1 |uj〉〈uj |
)
x implies

P =
n∑
j=1

λj |uj〉〈uj | =
n∑
j=1

|λ1/2
j uj〉〈λ1/2

j uj |.

(⇐) If P =
∑n
i=1 |vi〉〈vi|, then

Px =
m∑
i=1

〈vi|x〉vi.

Therefore,

〈x|Px〉 = 〈x|
m∑
i=1

〈vi|x〉vi〉 =
m∑
i=1

〈vi|x〉〈x|vi〉 =
m∑
i=1

|〈vi|x〉|2 ≥ 0.

So, P ≥ 0.
�

18



Key: P =
∑m
i=1 |vi〉〈vi|. Then 〈x|Px〉 =

∑|
i=1〈vi|x〉|2.

Theorem. Let Pn×n =
∑m
i=1 |vi〉〈vi|. Then P > 0 if and only if span{v1, . . . , vm} =

Cn.
Proof . (⇐) If x 6= 0, since the vi’s span Cn, 〈vi|x〉 6= 0 for some i. So,

〈x|Px〉 =
∑|
i=1〈vi|x〉|2 > 0. Hence, P > 0.

(⇒) Suppose {v1, . . . , vm} do not span Cn. Then there exists x 6= 0 such
that x⊥vj for all j. then 〈x|Px〉 =

∑|
i=1〈vi|x〉|2 = 0, contradicting P > 0.

Therefore, span{v1, . . . , vm} = Cn.
�

6 Day - 7/Sep/11

6.1 Aside

Given an n× n matrix P such that P = P ∗, how do we tell P ≥ 0 or P > 0.

Practical Tests

1. If P = P ∗, then P > 0 if and only if

det

 p1,1 . . . p1,k

...
...

pk,1 . . . pk,k

 > 0

for k = 1, . . . , n. Note that

det

 p1,1 . . . p1,k

...
...

pk,1 . . . pk,k

 ≥ 0

for k = 1, . . . , n does not imply P ≥ 0.

2. The best method is Cholesky’s algorithm:

Theorem. If P = (pi,j) is n × n and P = P ∗, then P ≥ 0 if and only if

P −
(
pi,1·p1,j
p1,1

)
≥ 0.

Note that

(
pi,1 · p1,j

p1,1

)
=



p1,1

... p1,2 . . . p1,n

· · · · · · · · ·

p2,1

...
...

... ∗

pn,1
...


;

19



i.e., it is equal to P in the first row and column. Therefore, P −
(
pi,1·p1,j
p1,1

)
is really an (n− 1)× (n− 1) matrix.

Then we repeat the process.

Example. Let

P =

 1 2 3
2 4 5
3 5 7

 .

Then,

R =
(
pi,1 · p1,j

p1,1

)

=
1
1

 1
2
3

 ·
 1

2
3

∗

=

 1 2 3
2 4 6
3 6 9

 .

Hence,

P −R =

 0 0 0
0 0 −1
0 −1 −2

 .

So, P 6≥ 0.

Example. Let

P =

 4 2 3
2 5 6
3 6 8

 .

Then

R =
(
pi,1 · p1,j

p1,1

)

=
1
4

 4
2
3

 ·
 4

2
3

∗

=
1
4

 16 8 12
8 4 6
12 6 9

 .

Hence,

P −R =

 0 0 0
0 4 9/2

0 9/2
23/4

 .
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Repeating, we obtain(
4 9/2

9/2
23/4

)
− 1

4

(
4

9/2

)
·
(

4
9/2

)∗
=
(

0 0
0 11/16

)
.

Therefore, P is positive semidefinite.

Remark. The other advantage of Cholesky is when P ≥ 0, this writes P as a
sum of rank one matrices.

6.2 Direct Sums of Vector Spaces, Partitioned Matrices

Definition. Given vector spaces V,W , their direct sum is defined by

V ⊕W = {(v, w) v ∈ V,w ∈W}.

It is a vector space with operations

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2), α(v, w) = (αv, αw).

It is a Hilbert space with inner product

〈(v1, w1)|(v2, w2)〉V⊕W = 〈v1|v2〉V + 〈w1|w2〉W .

Proposition. If v1, . . . , vn is a basis for V and w1, . . . , wk is a basis for W ,
then (v1, 0), . . . , (vn, 0), (0, w1), . . . , (0, wk) is a basis for V ⊕W .

Proof. For v ∈ V , write v = α1v1 + . . .+αnvn. Similarly, for w ∈W , write
w = β1w1 + . . .+ βkwk. Then,

(v, w) = α1(v1, 0) + . . .+ βk(0, wk)
= (v, 0) + (0, w)
= (v + 0, 0 + w)
= (v, w).

Therefore, they span V ⊕W . A similar calculation shows that they are linearly
independent.

�

Corollary. dim(V ⊕W ) = dim(V ) + dim(W ).

Note. Note that V ∼= {(v, 0) : v ∈ V } ⊂ V ⊕W . Similarly for W ∼= {(0, w) :
w ∈ W}. Hence, (v, 0)⊥(0, w), making V and W perpendicular to each other
in V ⊕W .

Key Examples

1. Cn+k = {(a1, . . . , an, an+1, . . . , an+k) : ai ∈ C} = {(v, w) : v ∈ Cn, w ∈
Ck} = Cn ⊕ Ck.
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2. Given T : Cn1+k+1 → Cn2+k2 , T can be represented by an (n2 + k2) ×
(n1 + k1) matrix:

T =



t1,1 . . . t1,n1 t1,n1+1 . . . t1,n1+k+1

...
tn2,1 . . . tn2,n1 tn2,n1+1 . . . tn2,n1+k1

tn2+1,1 . . . tn2+1,n1 tn2+1,n1+1 . . . tn2+1,n1+k1
...

tn2+k2,1 . . . tn2+k2,n1 tn2+k2,n1+1 . . . tn2+k2,n1+k1


=

 T1,1

... T1,2

T2,1

... T2,2

 ,

where

T1,1 : Cn1 → Cn2 ,

T1,2 : Ck1 → Cn2 ,

T2,1 : Cn1 → Ck2 ,
T2,2 : Ck1 → Ck2 .

So,

T



a1

...
an1

an1+1

...an1+k1

 = T

(
v
w

)
, where v ∈ Cn1 , w ∈ Ck1 ,

=

 T1,1

... T1,2

T2,1

... T2,2

( v
w

)

=
(
T1,1v + T1,2w
T2,1v + T2,2w

)
,

where, T1,1v + T1,2w ∈ Cn2 , T2,1v + T2,2w ∈ Ck2 .

7 Day - 9/Sep/11

7.1 Tensor Products

Definition. Given vector spaces X,Y, Z, a map B : X × Y → Z, B(x, y) ∈ Z,
is called bilinear provided:

(1) B(x1 + x2, y) = B(x1, y) +B(x2, y),

(2) B(x, y1 + y2) = B(x, y1) +B(x, y2), and,

(3) for all λ ∈ C, B(λx, y) = B(x, λy) = λB(x, y).
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Notes. (1) λB(x, 0) = B(x, λ · 0) = B(x, 0), for all λ ∈ C. Hence, B(x, 0) = 0.
Similarly, B(0, y) = 0.

(2) B(x1 + x2, y1 + y2) = B(x1 + x2, y1) + B(x1 + x2, y2) = B(x1, y1) +
B(x1, y2) +B(x2, y1) +B(x2, y2). Hence, these are like products.

Motivation of Tensor Products: In the new space, bilinear becomes linear.

Axiom. We form the vector space X ⊗ Y , which is the span of “elementary
tensors” x⊗y, for all x ∈ X, y ∈ Y , satisfying the universal property: Whenever
B : X×Y → Z is bilinear, there exists a corresponding linear map LB : X⊗Y →
Z with B(x, y) = LB(x⊗ y).

Key: X ⊗ Y = span{x⊗ y : x ∈ X, y ∈ Y } and has the following relations:

• (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y,

• x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2,

• λ(x⊗ y) = (λx)⊗ y = x⊗ (λy).

Theorem. If {e1, . . . , ek}, {f1, . . . , fm} are bases for X,Y , respectively, then

{ei ⊗ fj : 1 ≤ i ≤ k, 1 ≤ j ≤ m}

is a basis for X ⊗ Y . Hence, dim(X ⊗ Y ) = dim(X) · dim(Y ).
Proof. We first show that {ei⊗ fj} is spanning. Given x ∈ X, y ∈ Y , write

x = α1e1 + . . .+ αkek,

y = β1f1 + . . .+ βmfm.

Then,

x⊗ y = (α1e1 + . . .+ αkek)⊗ (β1f1 + . . .+ βmfm)

=
k∑
i=1

m∑
j=1

(αiei)⊗ (βjfj)

=
k∑
i=1

m∑
j=1

(αiβj)(ei ⊗ fj).

Hence, they span the set.
To show linear independence, define B : X × Y →Mk,m by

B(α1e1 + . . .+ αkek, β1f1 + . . .+ βmfm) = (αiβj) ∈Mk,m.

Then, B is bilinear, and by the universal property, there exists LB : X ⊗ Y →
Mk,m, LB(x⊗y) = B(x, y). However, LB(ei⊗fj) = Ei,j . So, if

∑
αij(ei⊗fj) =

0, then
0 = LB

(∑
αij(ei ⊗ fj)

)
=
∑

αijEi,j .
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Hence, αij = 0 for all i, j.
�

Proposition. Let {e1, . . . , ek}, {f1, . . . , fm} be bases for X,Y , respectively, and
u ∈ X ⊗ Y . Then:

(1) there exists unique x1, . . . , xm ∈ X such that u = x1 ⊗ f1 + . . .+ xm ⊗ fm;

(2) there exists unique y1, . . . , yk ∈ Y such that u = e1 ⊗ y1 + . . .+ ek ⊗ yk.

Proof. Since {ei⊗fj} is a basis for X⊗Y , there exists unique αij ∈ C such
that u =

∑k
i=1

∑m
j=1 αij(ei ⊗ fj). Let xj =

∑k
i=1 αijei. Then,

u =
m∑
j=1

xj ⊗ fj .

Similarly, let yi =
∑m
j=1 αijfj . Then,

u =
k∑
i=1

ei ⊗ yi.

Uniqueness follows from the fact that {ei ⊗ fj} is a basis.
�

Corollary. If dim(X) = k and dim(Y ) = m, then

X ⊗ Y ∼= X ⊕ . . .⊕X (m times)
∼= Y ⊕ . . .⊕ Y (k times).

Key. In these last identifications, we needed to choose a basis!

Remark. Let u ∈ X ⊗ Y . There exists many ways to write u as a sum of
elementary tensors. For example,

u = (2e1 + 3e2)⊗ (f1 + f2) + e2 ⊗ (3f1 + 4f2)
= 2e1 ⊗ f1 + 2e1 ⊗ f2 + 3e2 ⊗ f1 + 3e2 ⊗ f2 + 3e2 ⊗ f1 + 4e2 ⊗ f2

= 2e1 ⊗ f1 + 2e1 ⊗ f2 + 6e2 ⊗ f1 + 7e2 ⊗ f2.

Definition. Given u ∈ X ⊗ Y , the Schmidt rank of u, denoted rankS(u) is the
least number of elementary tensors in an expression for u.

8 Day - 12/Sep/11

8.1 Tensor Produts of Hilbert Spaces

Remark. Let H,K be Hilbert spaces. Then we set

〈h1 ⊗ k1|h2 ⊗ k2〉 = 〈h1|h2〉H · 〈k1|k2〉K . (∗)
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Theorem. (∗) extends to define a sesquilinear form on H⊗K satisfying 〈u|u〉 =
0 if and only if u = 0. Therefore, this defines an inner product on H ⊗K. In
finite dimensions, we call H⊗K with this inner product the Hilbert space tensor
product.

When H,K are infinite dimensional, the vector space H ⊗ K will not be
complete in the norm coming from this inner product. In this case, the Hilbert
space tensor product means the completion.

Proposition. If {hi}i∈I is an orthonormal basis for H and {kj}j∈J is an
orthonormal basis for K, then

{hi ⊗ kj : i ∈ I, j ∈ J}

is an orthonormal basis for H ⊗K.
Proof. (Finite Dimensional Case) We see that

〈hi1 ⊗ kj1 |hi2 ⊗ kj2〉 = 〈hi1 |hi2〉〈kj1 |kj2〉

=
{

1, i1 = i2 and j1 = j2
0, otherwise.

Therefore, they are orthonormal. Since this set has |I| · |J | = dim(H)dim(K) =
dim(H ⊗K) elements, it is a basis.

(Sketch of Infinite Dimensional Case) We still have that

{hi ⊗ kj : i ∈ I, j ∈ J}

is an orthonormal set. Then show that the linear span is dense.
�

Summary. Given the Hilbert spaces Cn,Ck and canonical orthonormal bases

{ei : 1 ≤ i ≤ n}, {ej : 1 ≤ j ≤ k},

Cn ⊗ Ck has an orthonormal basis {ei ⊗ ej}. In physics notation, we write
ei = |i〉 and ei ⊗ ej = |ij〉.

If we have Cn,Ck,Cp with canonical orthonormal bases {ei}, {ej}, {el}, then

{ei ⊗ ej ⊗ el}

is an orthonormal basis for Cn ⊗ Ck ⊗ Cp and dim(Cn ⊗ Ck ⊗ Cp) = nkp. In
physics notation, ei ⊗ ej ⊗ el = |ijl〉.

Example. For C2 ⊗ . . .⊗C2 (N copies), we have the orthonormal basis {ei1 ⊗
. . . ⊗ eiN = |i1 . . . iN 〉}. In mathematical notation, I = (i1, . . . , iN ) is called a
multi-index and we write eI = ei1 ⊗ . . .⊗ eiN .

A basis for C2 is {e0, e1}. Then, the multi-index I = (i1, . . . , iN ) ∈ (Z2)N

for C2 ⊗ . . .⊗ C2 (N copies).
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8.2 Postulates of Quantum Mechanics

Postulate 1. To each isolated physical system, there corresponds a Hilbert
space, called the state space, and the state of the system is completely described
by a unit vector in H called the state vector.

Example. The system of a single photon with the state equal to the polar-
ization described by a unit vector in C2.

Postulate 2. The time evolution from time t1 to t2, t1 < t2, of a closed
quantum system is described by a unitary U : H → H so that if the system
is in state ψ at time t1, then it is in state Uψ at time t2. (Often, we have a
continuous time and then we have U(t) and U(s+ t) = U(s)U(t)).

By closed, we mean “not interacting with anything outside the system.” By
open, we mean it is a piece of a larger system.

Quantum Measurements. When we want to observe a system, i.e., connect
to the “outside world,” the system is no longer closed because we interact with
it. This leads to nonunitary changes.

Postulate 3. Quantum measurements are described by a collection of operators
{Mm}m=measurements on H, called measurement operators. If the system is in
state ψ before we measure, then the probability that we observe m is

pm(ψ) = 〈ψ|M∗mMm|ψ〉
= 〈ψ|M∗mMmψ〉
= ||Mmψ||2.

(Since 1 =
∑
m pm(ψ) =

∑
〈ψ|M∗mMmψ〉 = 〈ψ|

∑
mM

∗
mMm|ψ〉 = 〈ψ|Iψ〉,

we have that 〈ψ|(I−
∑
mM

∗
mMm)ψ〉 = 0 for all ψ. Therefore, I =

∑
mM

∗
mMm.)

Also, after we observe m, then the system changes to the state Mmψ
(pm(ψ))1/2

.

9 Day - 14/Sep/11

9.1 Quantum Game

Alice has two states {ψ1, ψ2}. Bob knows that they are {ψ1, ψ2}. Alice picks
one and sends to Bob. Can Bob create a measurement system {Mm} that, with
certainty, decides which one he is given?

Formally, we want M1,M2 such that ||M1ψ2|| = 0, ||M1ψ1||2 = p1(ψ1) = 1,
||M2ψ1|| = 0, and ||M2ψ2||2 = 1.

Case I (ψ1⊥ψ2): Let
M1 = |ψ1〉〈ψ1|,

the projection onto the span of ψ1, and let

M2 = |ψ2〉〈ψ2|.
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Note that M2
1 = M∗1M1 = M1, M2

2 = M∗2M2 = M2. Let

M3 = I −M1 −M2,

which is the projection onto the span of {ψ1, ψ2}⊥. Note that M∗3M3 =
M2

3 = M3. Then,

||M1ψ1||2 = 〈M1ψ1|M1ψ1〉
= 〈ψ1|ψ1〉
= 1,

and

||M1ψ2|| = 〈M1ψ2|M1ψ2〉 = 0,
||M2ψ1|| = 0,
||M2ψ2|| = 1.

Therefore, we can distinguish with certainty.

Case II (ψ1 6 ⊥ψ2): Suppose we had any measurement system {Mm} such that
||M1ψ1|| = 1. This implies ||Mlψ1|| = 1 for all l 6= 1. Now, ψ2 = αψ1 +βγ,
where ψ1⊥γ and ||γ|| = 1. So, ||ψ2||2 = 1 implies |α|2 + |β|2 = 1. Hence,
α 6= 0.

Now,

1 =
∑
m pm(ψ2) =

∑
m〈Mmψ2|Mmψ2〉

=
∑
m ||Mm(αψ1 + βγ)||2 = ||M1(αψ1 + βγ)||2 +

∑
l 6=1 ||Ml(αψ1 + βγ)||2

= ||M1(αψ + βγ)||2 +
∑
l 6=1 ||Ml(βγ)||2 ≤ ||M1(ψ2)||2 +

∑
l ||βMl(γ)||2

= ||M1(ψ2)||2 + |β|2.

This implies 1 − |β|2 = |α|2 ≤ ||M1(ψ2)||2. So, with probability |α|2,
Measurement 1 will “light up” when ψ2 is sent.

In spite of this problem we do have:
Theorem. Given states {ψ1, . . . , ψn} which are linearly independent, there

exists a measurement system M0, . . . ,Mn such that if the ith occurs, then ψi is
received.

Remark. Given P ≥ 0,

U∗PU = D =

 λ1 0
. . .

0 λn

 ,

where λi ≥ 0, denote

P 1/2 = U


λ

1/2
1 0

. . .
0 λ

1/2
n

U∗.
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So, P 1/2 ≥ 0 and (P 1/2)2 = P .
Proof. Let Vi = span{ψj : j 6= i}. Let Ei be the projection onto V ⊥i .

Since ψj ∈ Vi for j 6= i, we have that Ei(ψj) = 0 for all i 6= j. However, ψi ∈ Vi
implies Ei(ψi) 6= 0. For each i, 0 ≤ Ei ≤ I implies

0 ≤ E1 + . . .+ En ≤ nI.

So,

0 ≤ 1
n
E1 + . . .+

1
n
En ≤ nI.

Let Mi = 1√
n
Ei. Then, Mi = M∗i , M∗iMi = 1

nEi, and
∑n
i=1M

∗
iMi ≤ I. Hence,

P = I −
n∑
i=1

M∗iMi ≥ 0.

Let M0 = P 1/2. Then, M∗0M0 = P , and therefore,
n∑
i=0

M∗iMi = I.

Thus, {M0, . . . ,Mn} is a measurement system.
If for i = 1, . . . , n, Mi occurs, then

||Mi(ψj)|| = ||frac1
√
nEi(ψj)|| = 0,

for j 6= i. So, if the ith occurs, then ψi is received.
�

Remark. Suppose we send ψ1. Then, Mi(ψ1) = 0 for i = 2, . . . , n. However,

||M1(ψ1)||2 =
1
n
||E1(ψ1)||2 ≤ 1

n
.

With probablity

1− ||M1(ψ1)2 ≥ 1− 1
n

=
n− 1
n

,

we get 0 for a measurement.

9.2 Projective Measurements, Expected Values, and Self-
Adjoints

Recall the example from probablity: Roll a die, which has six outcomes, {1, . . . , 6},
each with probablity 1

6 . Now roll the die a large number of times, say n times.
Add up the numbers obtained and divide by n:

o1 + . . .+ on
n

∼=
n
6 · 1 + . . .+ n

6 · 6
n

=
1
6
· 1 + . . .+

1
6
· 6

= prob(1) · 1 + . . .+ prob(6) · 6.
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Let
E(X) =

∑
i

prob(X = ai) · ai,

which we call the expected value of X.
If we have measurements {Mm}, measurement outcomes are real numbers

{λm}. If ψ is the state, the probability that the outcome occurs is pm(ψ) =
||Mmψ||2. Hence, the expected value is

E =
∑
m

pm(ψ) · λm

=
∑
m

λm〈Mmψ|Mmψ〉

=
∑
m

λm〈ψ|M∗mMmψ〉

= 〈ψ|(
∑

λmM
∗
mMm)ψ〉

= 〈ψ|Hψ〉,

where H =
∑
m λmM

∗
mMm and H∗ = H. Therefore, 〈ψ|Hψ〉 is equal to the

expected value of the outcome when ψ passes through the system.

10 Day - 16/Sep/11

10.1 Positive Operator-Valued Measures

Let {Mm}, {M̃m} be measurement operators. If

M∗mMm = M̃∗mM̃m

for all m, then

pm(ψ) = ||Mmψ||2

= 〈Mmψ|Mmψ〉
= 〈ψ|M∗mMmψ〉
= 〈ψ|M̃∗mM̃mψ〉
= p̃m(ψ).

Hence, we cannot distinguish these systems. Thus, only M∗mMm matters and∑
mM

∗
mMm = I.

Now suppose that we have Pm ≥ 0 and
∑
m Pm = I. If we set Mm = P

1/2
M ,

then {Mm} is a measurement system.

Definition. A positive operator-valued measure is a set {Pm} of positive oper-
ators such that

∑
m Pm = I.

Note that some books and researchers focus on these as “measurements.”
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10.2 Composite System

Suppose we have two or more distinct physical systems. How do we describe it?

Postulate 4: The state space of a composite system is the tensor product of
the state spaces of each component; that is, if these spaces are H1, . . . ,Hn and
te ith component is in state ψi, thent he system is in state ψ1 ⊗ . . .⊗ ψn.

Example. Suppose we have two photons in a lab, the first given by 1√
2
|0〉 +

1√
2
|1〉 and the second given by |0〉+i|1〉√

2
. The pair is then described by a vector

in C2 ⊗ C2 ∼= C4 given by(
1√
2
|0〉+

1√
2
|1〉
)
⊗
(
|0〉+ i|1〉√

2

)
=
|0〉 ⊗ |0〉+ i|0〉 ⊗ |1〉+ |1〉 ⊗ |1〉+ i|1〉 ⊗ |1〉

2

=
|00〉+ i|01〉+ |10〉+ i|11〉

2
.

Note that this is a vector of Schmidt rank 1.

Remark. Suppose one just has two photons. They will be represented by a
unit vector ψ in C2⊗C2. Are there two subsystems so that these can be thought
of as two separate photons, one in each subsystem?

The answer is yes if and only if ψ = ψ1 ⊗ ψ2 if and only if rankS(ψ) = 1.
When rankS(ψ) > 1, this is a phenomenon known as entanglement.

Note that entanglement does happen in nature!

10.3 Measurements in Composite Systems

Tensor Products of Operators: Given R : H → H, T : K → K, there exists
a unique operator

R⊗ T : H ⊗K → H ⊗K

given by

(R⊗ T )

(
n∑
l=1

hl ⊗ kl

)
=
∑
l

(Rhl)⊗ (Tkl).

Proof. Define B : H × K → H ⊗ K by B(h, k) = (Rh) ⊗ (Tk). This is
obviously bilinear. So, there exists a unique linear map LB : H ⊗K → H ⊗K.
Now set R⊗ T = LB .

�

Properties: (1) If Ri : H → H, Ti : K → K, for i = 1, 2, then

(R1 ⊗ T1)(R2 ⊗ T2) = (R1R2)⊗ (T1T2).

(2) (R⊗ T )∗ = R∗ ⊗ T ∗.
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Proof of (2). We have that

〈h1 ⊗ k1|(R⊗ T )∗(h2 ⊗ k2)〉 = 〈(R⊗ T )(h1 ⊗ k1)|h2 ⊗ k2〉
= 〈Rh1 ⊗ Tk1|h2 ⊗ k2〉
= 〈Rh1|h2〉H · 〈Tk1|k2〉K
= 〈h1|R∗h2〉H · 〈k1|T ∗k2〉K
= 〈h1 ⊗ k1|(R∗ ⊗ T ∗)(h2 ⊗ k2)〉.

�

Remark. If lab A has measurement system {Mm} and state space H, and if
lab B has state space K, let H ⊗K be the state space of the composite system.
Then the measurement system for A is {Mm ⊗ Ik}. So, if we had states ψ in A
and φ in B, then

pABm (ψ ⊗ φ) = ||(Mm ⊗ Ik)(ψ ⊗ φ)||2

= ||(Mmψ)⊗ φ||2

= 〈(Mmψ)⊗ φ|(Mmψ)⊗ φ〉
= 〈(Mm ⊗ I)(ψ ⊗ φ)|(Mm ⊗ I)(ψ ⊗ φ)〉
= 〈ψ ⊗ φ|(Mm ⊗ I)∗(Mm ⊗ I)(ψ ⊗ φ)〉
= 〈ψ ⊗ φ|(M∗mMm ⊗ I)(ψ ⊗ φ)〉
= 〈ψ|M∗mMmψ〉H〈φ|φ〉K
= ||Mmψ||2

= pAm(ψ).

10.4 Two Applications of Entanglement

Example 1 - Simultaneous transfer of information; Eavesdropping: A
and B share two entangled photons. Suppose the state is

γ =
|00〉+ |11〉√

2
.

A prepares the experiment

M∗0M0 = |0〉〈0|,M∗1M1 = M1 = |1〉〈1|.

Then,

p0(γ) = 〈γ|(M0 ⊗ I)γ〉

=
〈
e0 ⊗ e0 + e1 ⊗ e1√

2
,

(M0e0)⊗ e0 + (M0e1)⊗ e1√
2

〉
=

〈
e0 ⊗ e0 + e1 ⊗ e1√

2
,
e0 ⊗ e0 + 0√

2

〉
= 1/2 + 0
= 1/2.
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So, p(γ) = 1/2.
If we get outcome 0, γ changes to

(M0 ⊗ I)γ√
p0(γ)

=
e0⊗e0√

2
1√
2

= e0 ⊗ e0.

If we get outcome 1, γ changes to e1 ⊗ e1.
Suppose lab B does measurements I ⊗M0, I ⊗M1. If A obtained outcome

0, then in Lab B, we get outcome 0 with probability 1. If A obtained outcome
1, then in lab B, we get outcome 1 with probability 1.

11 Day - 19/Sep/11

11.1 Example from Last Session

Example: “Super Dense Coding.” Given two entangled qubits and state

γ =
|00〉+ |11〉√

2
,

suppose that the first qubit is in Lab A and the second in Lab B.

Lab A Send to Lab B
Does Nothing −→ γ = |00〉+|11〉√

2

Multiply by
(

1 0
0 −1

)
−→ γ = |00〉−|11〉√

2

Multiply by ( 0 1
1 0 ) −→ γ = |10〉+|01〉√

2

Multiply by
(

0 1
−1 0

)
−→ γ = −|10〉+|01〉√

2

Hence, the surprise is that Lab A can send one qubit but can communicate four
possible pieces of information.

Similarly, if they share 2m entangled qubits, Lab A keeping m and Lab B
keeping the other m, if Lab A does something to its m and then sends to Lab
B, it can communicate 4m possible pieces of information.

11.2 Some Binary and Quantum Gates

G. Boole (1854): Set 0 = F = “not in set” and 1 = T = “in set.”

1 Bit Gates

NOT : 0→ 1, 1→ 0

1 Qubit Gates

NOT : X = ( 0 1
1 0 ), which is unitary.
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Others :
Z =

(
1 0
0 −1

)
:= e0 → e0, e1 → −e1

Y =
(

0 −i
i 0

)
:= e0 → ie1, e1 → −ie0

H = 1√
2

(
1 1
1 −1

)
S = ( 1 0

0 i ) ,
(

1 0
0 eiθ

)
H is called the Hadamard gate and has the property H2 = X. S has the
property that the two matrices generate all 2× 2 unitaries.

2 Bit Gates

AND or ∩ :
Input Output
0, 0 → 0
0, 1 → 0
1, 0 → 0
1, 1 → 1

OR or ∪ :
Input Output
0, 0 → 0
0, 1 → 1
1, 0 → 1
1, 1 → 1

XOR or AδB :
Input Output
0, 0 → 0
0, 1 → 1
1, 0 → 1
1, 1 → 0

NAND or Ac ∪Bc :
Input Output
0, 0 → 1
0, 1 → 1
1, 0 → 1
1, 1 → 0

NOR or Ac ∩Bc :
Input Output
0, 0 → 1
0, 1 → 0
1, 0 → 0
1, 1 → 0

Notes (1) C.S. Pierce (1880): Proved that NAND alone generates all other
Boolean operations. In 1886, he wrote to N. Tesla and explained how Boolean
operations could be done via circuits. Tesla built and patented the idea.

(2) Sheffer (1913): Proved that NOR generates all other Boolean operations.
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2 Qubit Gates

No 2 bit gate is an allowable quantum gate because they have the property
2dim→ 1dim, which are not unitary. They are also known as irreversible.

CNOT :
Input Output
0, 0 → 0, 0
0, 1 → 0, 1
1, 0 → 1, 1
1, 1 → 1, 0

As a matrix, we have that

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


which is unitary.

3 Bit Gates

Tommaso Toffoli (1980): Proved that there existed a reversible binary gate
that generates all Boolean operations, called the Toffoli gate or CCNOT.

CCNOT :
Input Output
0, 0, 0 → 0, 0, 0
0, 0, 1 → 0, 0, 1
0, 1, 0 → 0, 1, 0
0, 1, 1 → 0, 1, 1
1, 0, 0 → 1, 0, 0
1, 0, 1 → 1, 0, 1
1, 1, 0 → 1, 1, 1
1, 1, 1 → 1, 1, 0

As a matrix, we have that

CCNOT =
(
I6 0
0 ( 0 1

1 0 )

)
which is unitary.

12 Day - 21/Sep/11

12.1 Correction from Last Time

Define

NOTX := ( 0 1
1 0 ) ,

H :=
1√
2

(
1 1
1 −1

)
.
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Then,

H2 =
1
2
(

1 1
1 −1

) (
1 1
1 −1

)
= I,

He0 = H ( 1
0 ) =

1√
2

( 1
1 ) =

e0 + e1√
2

,

which is a 45 degree rotation,

Xe0 = ( 0
1 ) = e1,

which is a 90 degree rotation,

Xe1 = ( 1
0 ) ,

which rotates 90 degrees, and,

He1 =
1√
2

(
1
−1

)
.

Hence, X is a reflection about 45◦. Since H2 = I, H is also a reflection about
45◦

2 = π
8 .

12.2 Correction from Last Time

CNOT is described as

Input Output
00 00
01 01
10 11
11 10

Hence, when a = 0, do nothing and save a. When a = 1, do NOT on b and save
a.

CCNOT is described as

Input Output
000 000
001 001
010 010
011 011
100 100
101 101
110 111
111 110

Hence, when a = 0, do nothing to b, c and save a. When a = 1, do CNOT to
b, c.

35



12.3 Circuit Diagrams, Modular Arithmetic

We identify Z2
∼= {0, 1}. Then,

NOT =
{

0 7→ 1
1 7→ 0 .

What we really mean is a 7→ a+ 1. With CNOT, we have

CNOT: |a, b〉 = |a〉 ⊗ |b〉 = ea ⊗ eb, a, b ∈ Z2.

The operation is then |a, b〉 7→ |a, b+ a〉. This tells what the math does on the
basis. Here, we used the notation

ea ⊗ eb = |a, b〉.

Circuit Diagrams:
a • a

b ⊕ a+ b

The diagram
a ⊕ a+ b

b • b

corresponds to the description and matrix:

Input Output
00 00
01 11
10 10
11 01

;


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

.

The diagram

a a+ (a+ b) b

a • ⊕ • b

b ⊕ • ⊕ a

a+ b a+ b (a+ b) + b
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corresponds to the permutation matrix
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The Toffoli operation CCNOT is given by the diagram:

a • a

b • b

c ⊕ c+ (ab)

12.4 Cloning and No Cloning

For 1 bit, we have

0 → 00
1 → 11

and
|a〉 → |aa〉.

In other words, if we take the unitary CNOT, call it U , then

U(ea ⊗ e0) = ea ⊗ ea.

On the computational basis, CNOT can “clone:”

|i1, . . . , in〉 = ei1 ⊗ . . .⊗ ein ∈ C2 ⊗ . . .⊗ C2.

Then there exists a unitary U such that

U(|i1, . . . , in〉 ⊗ |0, . . . , 0〉) = |i1, . . . , in〉 ⊗ |i1, . . . , in〉;

i.e., the computational basis can be cloned.

What does “no cloning” mean? Take

ψ = αe0 + βe1 = α|0〉+ β|1〉.

Apply the CNOT unitary to ψ ⊗ e0:

U(ψ ⊗ e0) = U((αe0 + βe1)⊗ e0)
= U(αe0 ⊗ e0 + βe1 ⊗ e0)
?= ψ ⊗ ψ
= α2e0 ⊗ e0 + αβ(e0 ⊗ e1 + e1 ⊗ e0) + β2e1 ⊗ e1.
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When αβ 6= 0, then they are not equal. The only case for U(ψ ⊗ e0) = ψ ⊗ ψ)
is ψ = e0 or ψ = e1.

No Cloning Theorem. To “clone,” we want a state ψ and a unitary U on
H ⊗H such that

U(ψ ⊗ φ) = ψ ⊗ ψ
for all ψ ∈ H. We show that this is impossible.

Proof. If U(ψ ⊗ φ) = ψ ⊗ ψ for all ψ ∈ H, then

U((−ψ)⊗ φ) = (−ψ)⊗ (−ψ) = ψ ⊗ ψ

for all ψ ∈ H. On the other hand,

U((−ψ)⊗ φ) = U(−(ψ ⊗ φ)) = −U(ψ ⊗ φ) = −(ψ ⊗ ψ)

for all ψ ∈ H, which is a contradiction.
�

Remark. This proves that you cannot “clone” everything, but can “clone” the
computational basis.

13 Day - 23/Sep/11

13.1 Quantum Parallelism

Recall that
H =

1√
2

(
1 1
1 −1

)
and

He0 =
e0 + e1√

2
=
|0〉+ |1〉√

2
Also,

H⊗N (e0 ⊗ . . .⊗ e0) = (He0)⊗ . . .⊗ (He0)

=
e0 + e1√

2
⊗ . . .⊗ e0 + e1√

2
.

When N = 2,

e0 + e1√
2
⊗ e0 + e1√

2
=

e0 ⊗ e0 + e0 ⊗ e1 + e1 ⊗ e0 + e1 ⊗ e1

(
√

2)2

=
(

1√
2

)2 ∑
J∈Z2

2

eJ .

In general,

H⊗N (e0 ⊗ . . .⊗ e0) =
(

1√
2

)N ∑
J∈ZN2

eJ =
(

1√
2

)2∑
J

|J〉.
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Application. Suppose we have a function with two outcomes, say f : ZN2 → Z2.
We want to count how many of each outcome; i.e., we want

M = #{J ∈ ZN2 : f(J) = 0}.

Now suppose we have eJ ⊗ ei → eJ ⊗ ei+f(J). Then,

〈eJ1 ⊗ ei1+f(J1)|eJ2 ⊗ ei2+f(J2)〉 = 〈eJ1 |eJ2〉〈ei1+f(J1)|ei2+f(J2)〉

=
{

1, J1 = J2, i1 = i2,
0, otherwise.

We conclude that
{eJ ⊗ ei+f(J) : J ∈ ZN2 }

is an orthonormal basis for (C2)⊗N ⊗ C2. So, there exists a unitary

Uf : (C2)⊗(N+1) → (C2)⊗(N+1)

such that
Uf (eJ ⊗ ei) = eJ × ei+f(J).

This unitary Uf is called an oracle for f .

Proposition. Given γ ∈ H with ||γ|| = 1, measurements P0 = M∗0M0 = |γ〉〈γ|,
P1 = M∗1M1 = I − P0, and ψ ∈ H, then

p0(ψ) = |〈γ|ψ〉|2, p1(ψ) = 1− |〈γ|ψ〉|2.

Proof. We have

p0(ψ) = 〈ψ|M∗0M0ψ〉 = ||M0ψ||2,

M0|ψ〉 = |γ〉〈γ|ψ〉 · ||M0ψ||2

= ||γ||2|〈γ|ψ〉|2

= |〈γ|ψ〉|2.

Take

X = (He0)⊗ . . .⊗ (He0) =
(

1√
2

)N∑
J

eJ .

Input x⊗ e0 into Uf to get the output

Uf (x⊗ e0) =
(

1√
2

)N∑
J

Uf (eJ ⊗ e0) =
(

1√
2

)N∑
J

eJ ⊗ ef(J).
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Now, prepare measurements with γ = x⊗ e0. For input x⊗ e0,

p0(Uf (x⊗ e0)) = 〈x⊗ e0|
(

1√
2

)N∑
J

eJ ⊗ ef(J)〉

=
(

1√
2

)N∑
J

〈x|eJ〉〈e0|ef(J)〉

=
(

1√
2

)N∑
J

(
1√
2

)N
〈e0|ef(J)〉

=
1

2N
·#{J |f(J) = 0}

=
M

2N
.

This implies that p1(Uf (x⊗ e0)) = 1− M2

4N
, p0(Uf (x⊗ e0)) = M2

4N
.

�

Remark. Note that this is a Bernoulli trial. Outcome 0 has probablity p = M2

4N

and outcome 1 has probablity q = 1− p. Repeat K times, and we get outcome
0 L of those times. Then, L

K is an estimator for p.
The cost is that we used K(N + 1) qubits. Take K << 2N

N+1 and we can get
an estimate for M . We only want∣∣∣∣M2

4N
− L

K

∣∣∣∣
in some confidence interval. Hence, we can take K to be quite small when
compared to 2N

N+1 .

14 Day - 26/Sep/11

14.1 Ensembles or Mixed States

Motivation: (1) Start with a state ψ = a|0〉+ b|1〉 such that |a|1 + |b|2 = 1 and
measurements M0 = |0〉〈0|, M1 = |1〉〈1|. Recall, after measurement, p0(ψ) =
|a|2 and after state becomes

M0ψ

||M0ψ||
=

a

|a|
|0〉;

similarly, p1(ψ) = |b|2 and after state becomes

M1ψ

||M1ψ||
=

b

|b|
|1〉.

Later, we want to do measurements {M̃α}. What will be the expected outcomes?
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Outcome α: pα = |a|2||M̃α( a
|a| |0〉)||

2 + |b|2||M̃α( b
|b| |1〉)||

2.

Definition. An ensemble {pi, ψi}Li=1 is a set of states {ψi} together with prob-
abilities pi ≥ 0,

∑L
i=1 pi = 1.

Given a measurement system {Mα}, the probability of outcome α given this
ensemble is

pα({pi, ψi}) =
L∑
i=1

pi||Mα(ψi)||2.

(2) Suppose Lab A has state space HA. In reality, A is seldom truly isolated
from the outside world. Imagine the environment described by a state space
HE . Our state really lives in HA ⊗HE . When we form measurements in Lab
A, {Mα : HA → HA}, they really act as Mα ⊗ IHE .

Let ψ ∈ HA ⊗ HE such that ||ψ|| = 1. Pick an orthonormal basis {fl} for
HE . Write

ψ =
∑
l

φl ⊗ fl,

||ψ||2 = 〈
∑
l

φl ⊗ fl|
∑
k

φk ⊗ fk〉

=
∑
l,k

〈φl ⊗ fl : φk ⊗ fk〉

=
∑
l,k

〈φl|φk〉〈fl|fk〉

=
∑
l

||φl||2.

Therefore,
∑
l ||φl||2 = 1. Also,

pα(ψ) = ||(Mα ⊗ I)(ψ)||2

= ||
∑
l

(Mαφl)⊗ (Ifl)||2

= ||
∑
l

Mα(φl)⊗ fl||2

=
∑
l

||Mα(φl)||2.
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Form an ensemble {pl, φl
||φl||}, pl = ||φi||2 ≥ 0, and

∑
p1 =

∑
||φl||2 = 1. Then,

pα({pl,
φl
||φl||

}) =
∑
l

pl||Mα(
φl
||φl||

)||2

=
∑
l

pl ·
1
||φl||2

||Mα(φl)||2

=
∑
l

||Mα(φl)||2

= pα(ψ).

So, ψ ∈ HA ⊗HE behaves like the ensemble {pl, φl
||φl||}.

14.2 Von Neumann’s Density Matrix Approach

Von Neumann noticed (1) dealing with ensembles is messy from this viewpoint,
and (2) state are not really vectors but functionals.

Given a state ψ ∈ HA, then eiθψ is also a state. For any measurement Mα,

pα(ψ) = ||Mαψ||2 = ||Mα(eiθψ)||2 = pα(eiθψ).

Hence, measurements really identify ψ ∼ eiθψ.
Note that

|ψ〉〈ψ| = |eiθψ〉〈eiθψ|.

In coordinates, if ψ =

(
α1

...
αn

)
, then

|ψ〉〈ψ| = (αiαj),

|eiθψ〉〈eiθψ| = ((eiθαi)(eiθαj)) = (αiαj).

Hence, we really think of the projection determined by ψ and not the vector.

Given any vector γ =

(
β1

...
βn

)
,

|γ〉〈γ| = (βiβj) = γγ∗,

and

||γ|2 =
n∑
i=1

|βi|2 = Tr(|γ〉〈γ|).

Therefore, if we start with a state γ, and Mα is some measurement,

pα(ψ) = ||Mαψ||2

= Tr(|Mαψ〉〈Mαψ|)
= Tr((Mαψ)(Mαψ)∗)
= Tr(Mαψψ

∗M∗α)
= Tr((M∗αMα)(ψψ∗)).
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This implies
pα(ψ) = ||Mαψ||2 = Tr((M∗αMα)(ψψ∗)).

For an ensemble {pl, ψl},

pα({pl, ψl}) =
∑
l

pl||Mαψl||2

=
∑
l

plTr((M∗αMα)(ψlψ∗l ))

= Tr((M∗αMα)(
∑
l

plψlψ
∗
l )).

So, for any measurement {Mα},

pα({pl, ψl}) = Tr(M∗αMα(P )),

where P =
∑
l pl|ψl〉〈ψl|.

Definition. P =
∑
l pl|ψl〉〈ψl| is called the density matrix of the ensemble.

15 Day - 28/Sep/11

15.1 Continuation

Recall: For an ensemble {pi, ψi}, we associate the density matrix ρ =
∑
i pi|ψi〉〈ψi|.

For measurements {Mα},

pα({pi, ψi}) =
∑

pi||Mαψi||2

= Tr((M∗αMα)ρ)
= 〈M∗αMα|ρ〉L(HA).

Question: Which matrices are density matrices of an ensemble?

Proposition. For ρ ∈ L(HA), then there exists an ensemble {pi, ψi} such that
ρ is the density matrix of the ensemble if and only if ρ ≥ 0 and Tr(ρ) = 1.

Proof. (⇒) Write ρ =
∑
pi|ψi〉〈ψi|. This implies ρ ≥ 0. Also,

Tr(ρ) =
∑

piTr(|ψi〉〈ψi|) =
∑

pi = 1.

(⇐) Since ρ = ρ∗, ρ has an orthonormal basis of eigenvectors. Let ψ,
i = 1, . . . , n, be an orthonormal basis such that ρψi = λiψi. ρ ≥ 0 implies
λi ≥ 0. Recall that Tr(ρ) =

∑
λi = 1. Finally, we know ρ =

∑
λi|ψi〉〈ψi|.

Therefore, ρ is the density matrix of the ensemble {λi, ψi}.
Definition. ρ ∈ L(HA) is called a density matrix when ρ ≥ 0 and Tr(ρ) = 1.

We call the ensemble {λi, ψi}, consisting of eigenvalues and an orthonormal basis
of eigenvectors, the spectral ensemble.
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Remark. Given ρ such that ρ ≥ 0, Tr(ρ) = 1, in general, there are many
ensembles that it is the density matrix of. Write

ρ = XX∗ = [c1
... . . .

...cn]


c∗1
. . .
...
. . .
c∗n

 = c1c
∗
1 + . . .+ cnc

∗
n.

Let ψi = ci
||ci|| , which is a unit vector, and pi = ||ci||2. This implies

ρ =
∑

piψiψ
∗
i =

∑
pi|ψi〉〈ψi|.

Then,
1 = Tr(ρ) =

∑
piTr(|ψi〉〈ψi|) =

∑
pi.

Therefore, {pi, ψi} is an ensemble and ρ is the density matrix of this ensemble.
Hence, the map {ensemble} 7→ {density matrix} is a many-to-one mapping.

No uniqueness in general.

Question. Suppose we start with a standard state ψ. We get the density
matrix

ρ = |ψ〉〈ψ|.
What ensemble represents it?

Suppose {pi, ψi}mi=1 so that ρ =
∑m
i=1 pi|ψi〉〈ψi|. Then,

1 = rank(ρ) = rank(
m∑
i=1

pi|ψi〉〈ψi|).

If we take a vector γ⊥ψ, then

〈γ|ργ〉 = 〈γ|ψ〉〈ψ|γ〉
= 〈ψ|γ〉〈γ|ψ〉
= |〈ψ|γ〉|2

= 0.

Therefore,

0 = 〈γ|
∑

pi|ψi〉〈ψi|γ〉

=
∑

pi〈γ|ψi〉〈ψi|γ〉

=
∑

pi|〈ψi|γ〉|2.

This implies γ⊥ψi, and so, ψi is parallel to ψ. Therefore, ψi = βiψ, with
|betai| = 1. Hence,

|ψi〉〈ψi| = |ψ〉〈ψ|.

The density matrices (or states ψ) are called the pure states.
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15.2 Composite Ensembles

Suppose we have for Lab A and Lab B the state spaces HA, HB . Let {pi, ψi}
be an ensemble in A and {ql, φi} an ensemble in B. The composite should be
represented by a density matrix on HA ⊗HB .

Recall that if we just have ψ in A and φ in B, then it is in state ψ ⊗ φ. If
we had a measurement system {Mα} on HA ⊗HB , then

pα(ψi ⊗ φl) = 〈ψi ⊗ φl|M∗αMα(ψi ⊗ φl)〉.

But, ψi ⊗ φl will appear with probablity piql. Hence,

pα(composite) =
∑
i,l

piql〈ψi ⊗ φl|M∗αMα|ψi ⊗ φl〉

= pα({piql, ψi ⊗ φl}).

the density matrix is

ρ =
∑
i,l

piql|ψi ⊗ φl〉〈ψi ⊗ φl| =
∑

piql(|ψi〉〈ψi|)⊗ (|φl〉〈φl|).

To see this, we only need to verify that if ψ ∈ HA, φ ∈ HB , then

|ψ ⊗ φ〉〈ψ ⊗ φ| ?= (|ψ〉〈ψ|)⊗ (|φ〉〈φ|).

Note that any vector in HA ⊗HB is a sum of vectors of the form h⊗ k. To see
if two linear maps on HA ⊗HB are the same, it is enough to check on h⊗ k:

|ψ ⊗ φ〉〈ψ ⊗ φ|(h⊗ k) = |ψ ⊗ φ〉〈ψ|h〉HA〈φ|k〉HB ,

(|ψ〉〈ψ|)⊗ (|φ〉〈φ|)(h⊗ k) = (|ψ〉〈ψ|h〉HA)⊗ (|φ〉〈φ|k〉HB )
= 〈ψ|h〉HA〈φ|k〉HB |ψ ⊗ φ〉.

Hence, they are the same.

15.3 Partial Traces

Motivation: Suppose we have Lab A, Lab B. So a general mixed state is
given by a density matrix ρ ∈ L(HA ⊗ HB) such that ρ ≥ 0 and Tr(ρ) = 1.
Measurements {Mα} in Lab A in the composite act as the operators {Mα⊗IHB}.
So,

pα(ρ) = Tr((Mα ⊗ I)∗(Mα ⊗ I)ρ) = Tr((M∗αMα ⊗ I)ρ).

The question is how do we compute? We will show that there exists a density
matrix ρA ∈ L(HA) such that for any {Mα},

TrHA⊗HB ((M∗αMα ⊗ I)ρ) = TrHA((M∗αMα)ρA).
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16 Day - 30/Sep/11

16.1 More on Traces

Identify L(Cn) ∼= Mn and let A = (aij). Then

tr(A) =
n∑
i=1

aii =
n∑
i=1

〈ei|Aei〉.

Proposition. Let {u1, . . . , un} be any orthonormal basis for Cn. Then,

tr(A) =
n∑
i=1

〈ui|Aui〉.

Proof. Let

U = [u1

... . . .
...un].

Then U is unitary and Uei = ui for all i. So,

n∑
i=1

〈ui|Aui〉 =
n∑
i=1

〈Uei|AUei〉

=
n∑
i=1

〈ei|U∗AUei〉

= tr(U∗AU)
= tr(AUU∗)
= tr(A).

�

Recall. For R ∈ L(HA), T ∈ L(HB), there exists R ⊗ T ∈ L(HA ⊗HB) such
that

(R⊗ T )(h⊗ k) = (Rh)⊗ (Tk).

Proposition. tr(R⊗ T ) = tr(R)tr(T ).
Proof. Pick orthonormal bases {e1, . . . , em} for HA and {f1, . . . , fp} for

HB . Then,
{ei ⊗ fj : 1 ≤ i ≤ m, 1 ≤ j ≤ p}
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is an orthonormal basis for HA ⊗HB . Therefore,

tr(R⊗ T ) =
m∑
i=1

p∑
j=1

〈ei ⊗ fj |(R⊗ T )(ei ⊗ fj)〉

=
∑
i

∑
j

〈ei ⊗ fj |(Rei)⊗ (Tfj)〉

=
∑
i

∑
j

〈ei|Rei〉〈fj |Tfj〉

= (
∑
i

〈ei|Rei〉)(
∑
j

〈fj |Tfj〉)

= tr(R)tr(T ).

�

What we really have is a mapping Γ : L(HA) ⊗ L(HB) → L(HA ⊗ HB),
R⊗ T 7→ R⊗ T .

Proposition. If dim(HA), dim(HB) < +∞, then Γ is a vector space isomor-
phism.

Proof. Let dim(HA) = m, dim(HB) = p. Then, dim(L(HA)) = m2,
dim(L(HB)) = p2. Hence,

dim((L(HA))⊗ (L(HB))) = m2p2.

Also, dim(HA ⊗HB) = mp. Hence,

dim(L(HA ⊗HB)) = (mp)(mp) = m2p2.

So, the dimensions are the same.
To show that Γ is an isomorphism, it is enough to show that it is one-

to-one; i.e., show ker(Γ) = {0}. Identify L(HB) ∼= Mp, which has a basis
{Eij : 1 ≤ i, j ≤ p}. Pick an orthonormal basis {f1, . . . , fp} for HB such that

Eijfk =
{
fi, j = k,
0, j 6= k.

.

Given X ∈ L(HA)⊗ L(HB), there exists a unique Xij ∈ L(HA) such that

X =
p∑

i,j=1

Xij ⊗ Eij .

Then, X = 0 if and only if Xij = 0 for all i, j. So, we want to show that
Γ(X) = 0 implies Xij = 0 for all i, j. Now,

Γ(X) : HA ⊗HB → HA ⊗HB ,Γ(X)(h⊗ k) =
p∑

i,j=1

(Xij ⊗ Eij)(h⊗ k)

=
p∑

i,j=1

(Xijh)⊗ (Eijk)

= (∗).
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So, Γ(X) = 0 implies (∗) = 0 for all h, k. Pick k = fl. Then,

0 = Γ(X)(h⊗ fl)

=
p∑

i,j=1

(Xijh)⊗ (Eijfl)

=
p∑
i=1

(Xilh)⊗ (fi);

i.e., Xilh = 0 for all i, h. This implies Xil = 0 for all i. Now repeat for all l and
we obtain Xil = 0 for all i, l. Therefore, X = 0.

�

16.2 Partial Trace

Define the mapping trB : L(HA ⊗HB) → L(HA) as follows: identify L(HA ⊗
HB) = L(HA)⊗ L(HB). Given X =

∑
lRl ⊗ Tl, then

trB(X) =
∑
l

tr(Tl)Rl.

This map is well-defined since, L(HA)× L(HB)→ L(HA), (R, T ) 7→ tr(T )R, is
bilinear and by the universal property of tensor products. We also denote this
by

XA = trB(X) ∈ L(HA).

Similarly, we have trA : L(HA ⊗HB)→ L(HB),

trA(X) =
∑
l

tr(Rl)Tl,

and we write XB = trA(X) ∈ L(HB).

16.3 Partial Traces and Measurements

Suppose we have Lab A,B with respective spaces HA, HB . Then the composite
space is HA ⊗HB . Then the density matrix is given by p ∈ L(HA ⊗HB) such
that p ≥ 0, tr(p) = 1.

Suppose that we can only do measurements in Lab A: {Mα,
∑
M∗αMα = I.

Then the measurements really look like Mα ⊗ IHB .
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Write p =
∑
lRl ⊗ Tl. Then,

pα(p) = tr((Mα ⊗ I)∗(Mα ⊗ I)p)
= tr((M∗αMα ⊗ I)p)

= tr((M∗αMα ⊗ I)(
∑
l

Rl ⊗ Tl))

=
∑
l

tr((M∗αMα ⊗ I)(Rl ⊗ Tl))

=
∑
l

tr((M∗αMαRl)⊗ Tl)

=
∑
l

tr(M∗αMαRl)tr(Tl)

=
∑
l

tr(M∗αMα(tr(Tl)Rl))

= tr(M∗αMα(tB(p)))
= tr(M∗αMαp

A).

Therefore,
pα(p) = pα(pA).

Similarly, when Lab B does measurements, we only see pB ; i.e., all measure-
ments of p are the same as of pB .

Check. For p ≥ 0, tr(p) = 1, write p =
∑
Rl ⊗ Tl. Then

pA =
∑

tr(Tl)Rl

and

tr(pA) =
∑
l

tr(tr(Tl)Rl)

=
∑
l

tr(Tl)tr(Rl)

=
∑
l

tr(Rl ⊗ Tl)

= tr(p)
= 1.

Also, we need p ≥ 0 implies pA ≥ 0 (which happens to be true; i.e., see below).

17 Day - 3/Oct/11

17.1 More on Partial Traces

Last time, we saw that L(HA)⊗ L(HB) ∼= L(HA ⊗HB) by the mapping

R⊗ T ↔ R⊗ T (h⊗ k) = (Rh)⊗ (Tk).
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We also defined the partial traces:

trB : L(HA ⊗HB)→ L(HA), trB(R⊗ T ) = tr(T )R ∈ L(HA),

trA : L(HA ⊗HB)→ L(HB), trB(R⊗ T ) = tr(R)T ∈ L(HB).

17.2 Another View

Let dim(HA) = n with basis {e1, . . . , en} and dim(HB) = p with basis {f1, . . . , fp}.
Then on HB , we have the operator

Eijfl =
{
fi, l = j,
0, l 6= j,

where we call the Eij the matrix units. We know that

{Eij : 1 ≤ i, j ≤ p}

is a basis for L(HB). Hence, every X ∈ L(HA)⊗L(HB) has a unique represen-
tation

X =
p∑

i,j=1

Xij ⊗ Eij ,

where Xij ∈ L(HA). Then, we can write the partial traces as

trB(X) =
p∑

i,j=1

Xijtr(Eij) =
p∑
i=1

Xii ∈ L(HA),

trA(X) = trA(
p∑

i,j=1

Xij ⊗ Eij) =
p∑

i,j=1

tr(Xij)Eij ∈ L(HB).

If we identify L(HB) ∼= Mp, then

trA(X) = (tr(Xij)).

Similarly, if we write X =
∑
Ekl ⊗ Ykl, with the Ykl ∈ L(HB), then

trA(X) =
∑
k,l

tr(Ekl)Ykl =
∑
k

Ykk ∈ L(HB),

trB(X) =
∑
k,l

Ekltr(Ykl) ∼= (tr(Ykl)) ∈Mn
∼= L(HA).

Finally, what happens to R⊗ T when we choose bases? Pick a basis for HB

and write in matrix units T =
∑p
i,j=1 tijEij . Then,

R⊗ T =
p∑

i,j=1

R⊗ (tijEij) =
p∑

i,j=1

(tijR)⊗ Eij .
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So far, we have seen the case of L(HA)⊗L(HB) ∼= L(HA ⊗HB). When we
pick a basis {f1, . . . , fp} for HB , then every vector v ∈ HA ⊗HB has a unique
representation

v = h1 ⊗ f1 + . . .+ hp ⊗ fp,

where h1, . . . , fp ∈ HA and ||v||2 = ||h1||2 + . . . + ||hp||2. This creates an
isomorphism

HA ⊗HB
∼= HA ⊕ . . .⊕HA (p copies)

by the mappings

v =
p∑
i=1

hi ⊗ fi ↔ (h1, . . . , hp)↔

h1

...
hp

 .

Then, L(HA ⊗HB) ∼= L(H(p)
A ), where we denoted

HA ⊕ . . .⊕HA ≡ H(p)
A .

Here, it is natural to think of X ∈ L(H(p)
A ) as X = (Xij)

p
i,j=1, where the

Xij ∈ L(HA) and

X

h1

...
hp

 = (Xij)

h1

...
hp

 =


∑p
j=1X1jhj

...∑p
j=1Xpjhj

 .

So, X ∼= (Xij) ∈ L(HA ⊗HB) ∼= L(H(p)
A ).

On the other hand,

L(HA ⊗HB) ∼= L(HA)⊗ L(HB).

So, if X = (Xij) is written in block matrix notation, we also have X as a sum
of elementary tensors, X =

∑p
i,j=1Xij ⊗ Eij . Hence, we can write the partial

traces in block notation:

trB((Xij)) = X11 + . . .+Xpp ∈ L(HA),

trA((Xij)) = (tr(Xij))p×p.

17.3 Reformulate Postulates

Postulate 1’: Given a quantum system, there exists a Hilbert space HA such
that the state of the system is completely described by a density matrix p ∈
L(HA); i.e., p ≥ 0 and tr(p) = 1.

Postulate 2’: Evolution of a closed system from t1 to t2 is described by a
unitary U ∈ L(HA) so that if at time t1 we have the state given by p, then at
t2, the state is given by UpU∗.
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Postulate 3’: Measurement systems are given by {Mα} on HA satisfying∑
M∗αMα = I and the probability of outcome α given by density p is pα(p) =

tr(M∗αMαp).

Postulate 4’: Given systems HA, HB with densities p1, p2, then the composite
system is given by HA ⊗HB and density p1 ⊗ p2.

18 Day - 5/Oct/11

18.1 Measurement Maps

Suppose we have a measurement {Mα},
∑
M∗αMα = I, on HA. Given a state

ψ, the probability pα(ψ) = ||Mαψ||2 and the after state is Mαψ
||Mαψ

. We can then
build an ensemble with density matrix

p =
∑
α

pα(ψ)
∣∣∣∣ Mαψ

||Mαψ

〉〈
Mαψ

||Mαψ

∣∣∣∣
=

∑
α

pα(ψ)
||Mαψ||2

(Mαψ)(Mαψ)∗

=
∑

Mα(ψψ∗)M∗α.

If we had an ensemble {pi, ψi} and density matrix p1 =
∑
pi|ψi〉〈ψi|, after

measurement, we would have a new density matrix∑
i

piM(|ψi〉〈ψi|) =
∑
α

Mα(
∑
i

pi|ψi〉〈ψi|)M∗α

=
∑
α

Mαp1M
∗
α.

Hence, if we start with an ensemble with density matrix p1, then after measure-
ment, it behaves like the density matrix

M(p1) =
∑
α

Mαp1M
∗
α;

i.e., we have a linear map M : L(HA) → L(HA), M(X) =
∑
αMαXM

∗
α,

recalling that
∑
αM

∗
αMα = I.

18.2 Noise and Quantum Noise

For the classical bit {0, 1}, because of the environment (i.e., static, background
magnetic field, etc.), after a period of time, 0 could flip to 1, and 1 could flip to
0:

0
p //

1−p

��>>>>>>> 0

1

1−q
@@������� q // 1
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If we start with p0 being the probablity we are in state 0 and p1 = 1− p0 being
the probability of being in state 1, then after this time elapses, the probability
we are in state 0 is q0 = pp0 + (1− q)p1 and the probability we are in state 1 is
q1 = (1− p)p0 + qp1; i.e., we have(

q0

q1

)
=
(

p 1− q
1− p q

)(
p0

p1

)
.

Definition. A matrix such that all entries are non-negative and each column
sums to 1 is called a stochastic matrix (in the above, set p = q). If, in addition,
each row sums to 1, then the matrix is called a doubly stochastic matrix.

Long Time Behavior: Markov chains.

18.3 Model for Quantum Noise

Suppose you have a state space HA with density matrix p ∈ L(HA). Also, we
have an outside environment HE in some state |φ〉. Then, we are really in the
state p⊗ (|φ〉〈φ|).

After some time goes by, there exists a unitary U on HA ⊗ HE such that
p⊗ (|φ〉〈φ|) evolves to

U(p⊗ (|φ〉〈φ|))U∗.

But, in Lab A, we only see the partial trace

trE(U(p⊗ (|φ〉〈φ|))U∗).

Now, assume that dim(HE) = p < +∞, φ = (α1, . . . , αp)T , and |φ〉〈φ| =
(αiαj)p×p. Then,

p⊗ (αiαj) ∈ L(HA ⊗HE) = L(HA ⊕ . . .⊕HA),

and the tensor is written in block matrix form:

p⊗ (αiαj) = (p(αiαj))p×p.

For the unitary U ∈ L(HA ⊗HE), then U = [Uij ] with each Uij ∈ L(HA) and

U∗ =

U
∗
11 . . . U∗p1
...

. . .
...

U∗1p . . . U∗pp

 = (U∗ji).

This implies
U(pαiαj)U∗ = (

∑
k,l

Uik(pαkαl)U∗jl)i,j

and
trE(U(pαiαj)U∗) =

∑
i,k,l

Uik(pαkαl)U∗il.
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Let Wi =
∑
k Uikαk. Then,

W ∗i =
∑
k

U∗ikαk =
∑
l

U∗ilαl =
∑
i

WipW
∗
i .

So, noise, or interaction with the environment, transforms p to

E(p) =
∑
i

WipW
∗
i .

Observe the ∑
i

W ∗i Wi =
∑
i,k,l

U∗ilαlUikαk

=
∑
k,l

αlαk(
∑
i

U∗ilUik)

=
∑

αlαlI

= I.

Hence, if a hostile person sneaks into the lab and does a measurement, or an
outside environment introduces noise, both alter p via maps of the same form;
that is,

p 7→
∑

XαpX
∗
α,
∑

X∗αXα = I.

18.4 Third Way: Axiomatic

Given HA and a density matrix p, after some “quantum event,” p transforms
to a new density Φ(p). Assume that Φ(p) : L(HA)→ L(HA) is linear.

Proposition. Let Φ(p) : L(HA) → L(HA). Then Φ(p) is a density matrix for
all density matrices p if and only if both

1. p ≥ 0 implies Φ(p) ≥ 0; i.e., Φ is a positive linear map; and,

2. for all X, tr(Φ(X)) = tr(X); i.e., Φ is trace-preserving,

hold. In addition, given any HB , then

Φ⊗ IL(HB) : L(HA ⊗HB)→ L(HA ⊗HB)

send density matrices to density matrices.

Definition. A map Φ : L(HA) → L(HA) satisfying the condition: for all HB

such that dim(HB) < +∞, Φ ⊗ IL(HB) : L(HA ⊗ HB) → L(HA ⊗ HB) sends
positives to positives, is called a completely positive map.

Theorem (Choi-Kraus). A map Φ : L(HA)→ L(HA) is completely positive
and trace-preserving if and only if there exists matrices {Ei} with

∑
E∗i Ei = I

such that Φ(X) =
∑
EiXE

∗
i .
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19 Day - 7/Oct/11

19.1 Theory of CP Maps

Proposition. Let X ∈Mn = L(Cn). Then, X = (P1−P2) + i(P3−P4), where
each Pi ≥ 0; i.e., span(M+

n ) = Mn.
Proof. H = X+X∗

2 and K = X−X∗
2i . Then, H = H∗,

K∗ =
X∗ −X
−2i

= K,

and X = H+iK. Then, the spectral decomposition of H is H =
∑n
i=1 λi|ψi〉〈ψi|,

where each Ei = |ψi〉〈ψi| is a rank one projection and each λi is an eigenvalue.
Set

P1 =
∑
λi≥0

λiEi, P2 = −
∑
λi<0

λiEi.

Then, P1, P2 ≥ 0 and H = P1 − P2.
Similarly, we decompose K = P3 − P4.

�

Definition. We call a linear map Φ : Mn → Md positive if P ≥ 0, then
Φ(P ) ≥ 0.

Proposition. If Φ : Mn → Md is linear, then Φ(P ) is a density matrix, for
every density matrix P , if and only if Φ is positive and trace-preserving; i.e.,
tr(Φ(X)) = tr(X).

Proof. (⇐) Obvious.
(⇒) Given a non-zero P ≥ 0, tr(P ) 6= 0. Therefore, ρ = 1

tr(P )P is a density
matrix. Therefore,

Φ
(

1
tr(P )

P

)
is positive semidefinite. This implies

Φ(P ) = tr(P )Φ(ρ) ≥ 0.

Therefore, Φ is positive. Also,

tr(Φ(ρ)) = tr(tr(P )Φ(ρ))
= tr(P )tr(Φ(ρ))
= tr(P ).

Now, given any X = P1 − P2 + i(P3 − P4),

tr(Φ(X)) = tr(Φ(P1)− Φ(P2) + i(Φ(P3)− Φ(P4)))
= tr(Φ(P1))− tr(Φ(P2)) + i(tr(Φ(P3))− tr(Φ(P4)))
= tr(P1)− tr(P2) + i(tr(P3)− tr(P4))
= tr(X).
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�

Definition. A linear map Φ : Mn →Md is called p-positive if

Φ⊗ idL(Cp) : L(Cn ⊗ Cp)→ L(Cd ⊗ Cp)

is positive. Φ is completely positive if it is p-positive for all p.
Remark. In block matrix form,

Cn ⊗ Cp ∼= Cn ⊕ . . .⊕ Cn (p times)

and

Mn ⊗Mp
∼= L(Cn)⊗ L(Cp)
∼= L(Cn ⊗ Cp)
∼= L(Cn ⊕ . . .⊕ Cn)
∼= Mp(L(Cn))
∼= Mp(Mn).

Hence, in block matrices,

Φ⊗ idL(Cp) : Mn ⊗Mp → Md ⊗Mp,
|| ||

Mp(Mn) Mp(Md)

(Φ⊗ id)(X) = (Φ⊗ id)((Xij)) = (Φ(Xij)).

Definition. Φ : Mn →Md is p-positive if and only if for every (Xij) ∈Mp(Mn)
that is positive semidefinite, we have that (Φ(Xij)) ∈ Mp(Md) is positive
semidefinite. Φ is completely positive if and only if it is p-positive for every
p.

Given Φ : Mn →Md, we write Φ(p) : Mp(Mn)→Mp(Md),

Φ(p)((Xij)) = (Φ(Xij)).

Example. Let Φ : M2 → M2 be defined by Φ(A) = At. Now,
(
a b
c d

)
≥ 0 if

and only if c = b, a, d ≥ 0. hence, it has two real eigenvalues λ1, λ2 such that
λ1λ2 = ad− |b|2. In addition, A and At have the same eigenvalues1 Therefore,
A ≥ 0 if and only if At ≥ 0. So, Φ is 1-positive.

1Let M+
n be the set of positive semidefinite matrices. We show that P ∈ M+

n implies
P t ∈M+

n . Write P = (pij) and P t = (pji). Let x, x ∈ Cn, written as columns. Then,

〈x|P tx〉 =
X
i,j

xiPjixj

=
X
i,j

xjPijxi

=
X
i,j

xiPijxj

= 〈x|Px〉
≥ 0.

This implies Φ : Mn →Mn, Φ(X) = Xt is a positive map.
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Let

X =
(
E11 E12

E21 E22

)
=
(

( 1 0
0 0 ) ( 0 1

0 0 )
( 0 0

1 0 ) ( 0 0
0 1 )

)
.

Then, X = X∗ and X2 = 2X. Therefore, X2 − 2X = 0 implies X(2−X) = 0
and λ(λ− 2) = 0. Thus, spec(X) ⊆ {0, 2} and X ≥ 0. However,

Φ(2)(X) =
(

( 1 0
0 0 ) ( 0 0

1 0 )
( 0 1

0 0 ) ( 0 0
0 1 )

)
and det(Φ(2)(X)) = −1. So, Φ(2)(X) is not positive semidefinite, in general.
Therefore, Φ is not 2-positive.

20 Day - 10/Oct/11

20.1 Continuation

Theorem (Choi, 1975). Let Φ : Mn → Md be linear. The following are
equivalent:

(1) Φ is completely positive.

(2) Φ is n-positive.

(3) PΦ = (Φ(Eij)) ≥ 0 in Mn(Md).

(4) There exists n× d matrices Bi such that

Φ(X) =
K∑
i=1

BiXB
∗
i .

Proof. (1)⇒ (2): Obvious.
(2)⇒ (3): Consider P = (Eij) ∈Mn(Mn). Then, P = P ∗ and

P 2 =

(
n∑
k=1

EikEkj

)
(nEij) = nP.

This implies P 2−nP = P (P −nI) = 0. Hence, λ(λ−n) = 0 for all eigenvalues
λ of P . So, the eigenvalues of P are {0, n}, and by definition, P ≥ 0. So,
P ∈Mn(Mn)+. Since Φ is n-positive, Φ(n)(P ) = (Φ(Eij)) ≥ 0 in Mn(Md).

(3)⇒ (4): Since PΦ ≥ 0 and of size nd× nd, we have that

PΦ =
K∑
k=1

vkv
∗
k,
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for vk ∈ Cnd. Write each

vk =


wk1
· · ·
...
· · ·
wkn

 ,

where wki ∈ Cd. Then,

vkv
∗
k =


wk1
· · ·
...
· · ·
wkn

 ((wk1 )∗
... . . .

...(wkn)∗) = ((wki )(wki )∗) ∈Mn(Md).

This implies
∑K
k=1(wki )(wkj )∗ = Φ(Eij).

Let Bk = (wk1
... . . .

...wkn)d×n. Then,

B∗k =


(wk1 )∗

· · ·
...
· · ·

(wkn)∗


n×d

.

Also,

BkEijB
∗
k = Bk



0
...
0

(wkj )∗

0
...
0


= (((wki )(wki )∗)d×d).

Therefore,
∑K
k=1BkEijB

∗
k =

(∑K
k=1(wki )(wki )∗

)
= Φ(Eij).

Take any X ∈Mn and write X =
∑
xijEij . By linearity,

Φ(X) =
n∑

i,j=1

xijΦ(Eij) =
∑
i,j

xij

K∑
k=1

BkEijB
∗
k

=
K∑
k=1

Bk

∑
i,j

xijEij

B∗k =
∑
k

BkXB
∗
k .
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(4) ⇒ (1): We have Φ(X) =
∑K
k=1BkXB

∗
k . We need to show that Φ is

p-positive for all p. Recall that if P ≥ 0 then Y PY ∗ ≥ 0 since

〈h|Y PY ∗h〉 = 〈(Y ∗h)|P (Y ∗h)〉 ≥ 0.

Therefore, if P ≥ 0, BkPB∗k ≥ 0, implying
∑K
k=1BkPB

∗
k ≥ 0. So, Φ is 1-

positive.
To show that Φ is r-positive, let P = (pij)ri,j=1 ∈ Mr(Mn)+ with each

pij ∈Mn. Then,

Φ(r)(P ) = (Φ(pij)) =

(
K∑
k=1

BkPijB
∗
k

)

=
K∑
k=1

(
Bk 0

. . .
0 Bk

)
(Pij)

(
B∗k 0

. . .
0 B∗k

)
≥ 0.

Therefore, Φ is r-positive for all r.
�

Notes. (1) When Φ is completely positive, writing Φ(X) =
∑K
i=1BiXB

∗
i is

called a Choi-Krauss representation of Φ.
(2) The matrix PΦ(Φ(Eij)) is called the Choi-Jamliokowska matrix.
(3) Let CP (Mn,Md) be the set of completely positive maps from Mn to Md.

Then
CP (Mn,Md)

1−1↔ Mn(Md)+

Φ ↔ PΦ

(4) What about characterizing Φ such that Φ is trace-preserving or so that
Φ(In) = Id? We need to check that tr(Φ(X)) = tr(X) for all X if and only if
tr(Φ(Eij)) = tr(Eij). So, PΦ = (Rij) is completely positive and trace-preserving
if and only if PΦ ≥ 0 and tr(Rij) = δij .

(5) PΦ = (Rij) is unital (i.e., unit preserving) and CP (UCP ) (i.e., unital
completely positive) if and only if

∑n
i=1Rii = Id and PΦ ≥ 0.

21 Day - 12/Oct/11

21.1 Continuation

Proposition. Let φ : Mn → C be linear. The following are equivalent:

(1) φ is positive.

(2) φ is completely positive.

(3) Pφ = (φ(Eij)) ∈M+
n .
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Proof. (2)⇔ (3): By Choi’s theorem with d = 1.
(2)⇒ (1): Obvious.
(1)⇒ (2): Take P = (Pij) ∈Mr(Mn). Then,

φ(r) : Mr(Mn)→Mr(C) = Mr, φ
(r)(P ) = (φ(Pij)).

We need to show that if P ≥ 0, then (φ(Pij)) ∈M+
r . Let v = (αi) ∈ Cr. Then,

〈v|(φ(Pij))v〉 =
r∑

i,j=1

αiφ(Pij)αj = φ(
r∑

i,j=1

αiPijαj). (∗)

We claim that
∑r
i,j=1 αiαjPij ∈M+

n . Let

Y =

α1I
...

αrI

 .

Then, Y ∗PY ≥ 0. However,

Y ∗PY = (α1I, . . . , αrI)(Pij)

α1I
...

αrI

 =
r∑

i,j=1

αiαjPij .

By the claim, φ positive implies (∗) ≥ 0.
�

Recall that if Mn,Md are Hilbert spaces, then

〈Y |X〉Mn
= tr(Y ∗X).

Proposition. Let Φ : Mn →Md and Φ∗ : Md →Mn.
(1) If Φ(X) =

∑L
i=1AiXA

∗
i , where the Ai are d×n matrices, then Φ∗(Y ) =∑L

i=1A
∗
i Y Ai.

(2) Φ is completely positive if and only if Φ∗ is completely positive.
(3) Φ is completely positive and unital if and only if Φ∗ is completely positive

and trace-preserving.
Proof. (1) Let X ∈Mn and Y ∈Md. Then,

〈Φ∗(Y )|X〉Mn
= 〈Y |Φ(X)〉Md

= tr(Y ∗Φ(X))

=
L∑
i=1

tr(Y ∗AiXA∗i ) =
L∑
i=1

tr(A∗i Y
∗AiX)

=
L∑
i=1

tr((A∗i Y Ai)
∗X) =

∑
i=1

L〈A∗i Y Ai|X〉

= 〈
L∑
i=1

A∗i Y Ai|X〉.
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This implies Φ∗(Y ) =
∑L
i=1A

∗
i Y Ai.

(2)If Φ is completely positive, then Φ(X) =
∑
AiXA

∗
i . This implies Φ∗(Y ) =∑

A∗i Y Ai, but we saw that all such maps are completely positive.
Conversely, if Φ∗ is completely positive, then (Φ∗)∗ = Φ is completely posi-

tive by the above.
(3) Let Φ(X) =

∑L
i=1AiXA

∗
i . Then Φ is completely positive and unital if

and only if Φ(In) = Id if and only if
∑L
i=1AiIA

∗
i = I if and only if

∑L
i=1AiA

∗
i =

I. On the other hand, Φ∗(Y ) =
∑L
i=1A

∗
i Y Ai. So, Φ∗ is completely positive

and trace-preserving if and only if tr(Φ∗(Y )) = tr(Y ) for all Y if and only if
tr(Y ) = tr(

∑L
i=1A

∗
i Y Ai) if and only if tr(Y ) = tr((

∑L
i=1AiA

∗
i )Y ) for all Y .

We claim that if B ∈ Md and tr(BY ) = tr(Y ) for all Y , then B = I. In
fact,

bii = tr(BEii) = tr(Eii) = 1

for all i, and
bji = tr(BEij) = tr(Eij) = 0

for all j 6= i. Hence, B = I.
By the claim, Φ∗ is completely positive and trace-preserving if and only if∑L
i=1AiA

∗
i = I if and only if Φ is unital and completely positive.

�

Definition. Let Φ : Mn → Md be completely positive. Then the Choi rank of
Φ is defined to be

cr(Φ) = min{L : Φ(X) =
L∑
l=1

BlXB
∗
l }.

Theorem (Choi). cr(Φ) = rank(PΦ).
Proof. By the (3)⇒ (4) part of Choi’s main theorem, we showed that when

PΦ =
∑L
l=1 vlv

∗
l , then that gave rise to an expression for Φ(X) =

∑L
l=1AlXA

∗
l

(with the same L). When we use the spectral decomposition of PΦ to write as
a sum of “rank ones,” this decomposition gives us PΦ =

∑r
l=1 vlv

∗
l ., where r

is the number of non-zero eigenvalues of PΦ; i.e., r = rank(PΦ). Therefore,
cr(Φ) ≤ rank(PΦ).

We now need a lemma:
Lemma. Let P = (Eij) ∈Mn(Mn)+. Then rank(P ) = 1.
Proof of Lemma. We have

P 2 = (
n∑
k=1

EikEkj) = (nEij) = nP.

So, σ(P ) ⊆ {0, n}. Thus, at least one eigenvalue of P is equal to n. Let
λ1, . . . , λn2 be the eigenvalues with λ1 = n. Then,

λ1 + . . .+ λn2 = tr(E11) + . . .+ tr(Enn)
= n.
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So, λj = 0 for all j 6= 1. Therefore, rank(P ) = 1.
⊗

Now, if rank(B) = 1, then rank(ABC) ≤ 1 because

rank(ABC) = dim(range(ABC)) = dim(Arange(BC)) ≤ dim(range(BC)).

However, range(BC) ⊆ range(B). This implies

dim(range(BC)) ≤ dim(range(B)) = rank(B) = 1.

Suppose cr(Φ) = L and write Φ(X) =
∑L
l=1AlXA

∗
l . Therefore,

PΦ = (Φ(Eij)) =
L∑
l=1

Al 0
. . .

0 Al

 (Eij)

A
∗
l 0

. . .
0 A∗l

 .

Hence,

rank(PΦ) ≤
L∑
l=1

rank

 L∑
l=1

Al 0
. . .

0 Al

 (Eij)

A
∗
l 0

. . .
0 A∗l


 ≤ L = cr(Φ).

�

22 Day - 14/Oct/11

22.1 Continuation

Corollary. If Φ : Mn →Md is completely positive, then Φ(X) =
∑K
l=1AlXA

∗
l ,

where K ≤ nd.
Proof. cr(Φ) = rank(PΦ) and PΦ ∈Mn(Md) = Mnd. Therefore, rank(PΦ) ≤

nd.
�

Conjecture. Suppose Φ : Mn → Md is completely positive. Does there ex-
ists unital completely positive {Φ1, . . . ,Φn} such that cr(Φl) ≤ d and Φ =
1
n

∑n
l=1 Φl?

This is equivalent to both of the following:

(i) Suppose ψ : Mn → Md is completely positive and trace-preserving. Does
there exists completely positive and trace-preserving {ψ1, . . . , ψn} such
that cr(ψl) ≤ d and ψ = 1

n

∑n
l=1 ψl?

(ii) Suppose P ∈Mn(Md)+ such that trd(P ) = Id. Does there exists positive
{P1, . . . , Pn} such that rank(Pl) ≤ d, trd(Pl) = Id, and P = 1

n

∑n
l=1 Pl?
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Lemma. Suppose T : Cr → Cm is one-to-one. Then T ∗ : Cm → Cr is onto.
Proof. The range of T ∗ is closed. So, it is enough to show that if h⊥range(T ∗),

this implies h = 0. Suppose 〈T ∗k|h〉 = 0 for all k. This implies 〈k|Th〉 = 0 for
all k, which means Th = 0. Since T is one-to-one, h = 0.

�

Proposition. If {v1, . . . , vr} ⊆ Ck is linearly independent, then {viv∗j : 1 ≤
i, j ≤ r} ⊆Mk is linearly independent.

Proof. Let T : Cr → Ck. Write

T = [v1

... . . .
...vr].

So, T is one-to-one, and by the lemma,

T ∗ =


v∗1
· · ·
...
· · ·
v∗r


is onto. For h ∈ Ck,

T ∗h =


v∗1h
· · ·
...
· · ·
v∗rh

 =


〈v1|h〉
· · ·
...
· · ·
〈vr|h〉

 .
Suppose

∑r
i,j=1 αijviv

∗
j = 0. This implies, for all h ∈ Ck,

r∑
i,j=1

αijviv
∗
jh =

r∑
i=1

 r∑
j=1

αij〈vj |h〉

 vi = 0.

So, for all i,
∑r
j=1 αij〈vj |h〉 = 0. Hence

(αij)(T ∗h) = 0.

So, if T ∗h is any vector, then (αij) = 0; i.e., αij = 0 for all i, j. Therefore,
{viv∗j } is linearly independent.

�

Lemma. If 0 ≤ ww∗ ≤ P , then w ∈ rangle(P ).
Proof. If

P =


(
λ1 0

. . .
0 λr

)
0

0 0

 ,
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then,

ww∗ =
(
∗ 0
0 0

)
.

This implies w = (w1, . . . , wr, 0, . . . , 0)t and

w = P



λ−1
1 w1

...
λ−1
r wr

0
...
0


.

Now use that P is unitary equivalent to such a matrix.
�

Notation. We write R(P ) = range(P ).

Proposition. If P ≥ 0 and P =
∑m
l=1 wlw

∗
l , then R(P ) = span{w1, . . . , wm}.

Proof. Ph =
∑m
l=1 wl〈wl|h〉. Therefore, R(P ) ⊆ {w1, . . . , wm}. By the

lemma above, span{w1, . . . , wm} ⊆ R(P ).
�

Theorem. Suppose P ≥ 0 and

P =
r∑
j=1

vjv
∗
j =

m∑
l=1

wlw
∗
l ,

where rank(P ) = r. Then, there exists U = (αij)m×r such that wi =
∑r
j=1 αijvj

and U∗U = Ir.
Proof. We have that

span{v1, . . . , vr}R(P ) = span{w1, . . . , wm}.

Since dim(R(P )) = r, it implies v1, . . . , vr is a basis, and in particular, linearly
independent. Therefore, there exists unique αij such that wi =

∑r
j=1 αijvj and

r∑
j=1

vjv
∗
j = P

=
m∑
k=1

wkw
∗
k

=
m∑
k=1

(
r∑
j=1

αkjvj)(
r∑
i=1

αkivi)∗

=
∑
k=1

m

r∑
j=1

r∑
i=1

αkjαkivjv
∗
i

=
r∑
j=1

r∑
i=1

δijvjv
∗
i ,
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where δij is the (i, j)-entry of U∗U . Therefore,

r∑
i,j=1

δijvjv
∗
i =

r∑
j=1

vjv
∗
j .

Since the vjv∗i are linearly independent,

δij =
{

1, i = j,
0, i 6= j;

i.e., U∗U = Ir.
�

Theorem 2 (Choi). If Φ : Mn →Md is completely positive, cr(Φ) = r, and

Φ(X) =
r∑
j=1

VjXV
∗
j =

m∑
l=1

WlXW
∗
l ,

then there exist unique αij such that

Wi =
r∑
j=1

αijVj

and if U = (αij), then U∗U = Ir.

Proof. Given V = [h1

... . . .
...hn]d×n, then write

v =

h1

...
hn


1×nd

∈ Cnd.

In the proof of Choi’s theorem 1, we saw that Φ written as above form vectors
v1, . . . , vr, w1, . . . , wm ∈ Cnd, then

PΦ =
r∑
j=1

vjv
∗
j =

m∑
l=1

wlw
∗
l .

Therefore, there exists unique αij such that wi =
∑r
j=1 αijvj and U = (αij)

such that U∗U = Ir. This implies

Wi =
r∑
j=1

αijVj .

�
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23 Day - 17/Oct/11

23.1 Continuation

Proposition. Suppose that Φ : Mn → Md is completely positive, cr(Φ) = r,
and Φ(X) =

∑r
i=1 V

∗
i XVi. Then, {V1, . . . , Vr} are linearly independent.

Proof. Since rank(PΦ) = r,R(PΦ) = span{v1, . . . , vr}. Since dim(R(PΦ)) =
r, v1, . . . , vr are linearly independent. This implies {V1, . . . , Vr} are linearly in-
dependent since, for example,

V1 = [v1
1

... . . .
...vn1 ]

and

v1 =

v
1
1
...
vn1

 .

23.2 Convex Sets in Vector Spaces

Definition. Let V be a vector space. A set C ⊆ V is convex provided whenever
v1, v2 ∈ C implies tv1 + (1− t)v2 ∈ C for all 0 ≤ t ≤ 1.

A point v in a convex set C is called extreme of v1, v2 ∈ C and v = 1
2 (v1 +v2)

implies v = v1 = v2.

Examples. (1) If C is a closed squared area, then C is convex and the extreme
points are the corners of the square.

(2) If C is a closed disc, then C is convex and the boundary points are
extreme points.

Theorem (Krein-Milman). If V is a real vector space with dim(V ) < +∞,
and C ⊆ V is convex and compact, then C is the convex hull of its extreme
points.

Definition. Given a set E, a convex combination of points in E is any point
of the form v = t1e1 + . . . + tmem, where e1, . . . , em ∈ E and ti ≥ 0 such that
t1 + . . .+ tm = 1. the set of all convex combinations of points in E is called the
convex hull.

Definition. Let C1 ⊆ V1 and C2 ⊆ V2 both be convex. A map T : C1 → C2 is
called affine if T (tv1 + (1− t)v2) = tT (v1) + (1− t)T (v2) for all v1, v2 ∈ C1, for
all 0 ≤ t ≤ 1.

Two convex sets are called affinely isomorphic if there exists a bijective affine
T : C1 → C2 such that T−1 : C2 → C1 is affine.

Examples. (1) Let

UCP (Mn,Md) = {Φ : Mn →Md : Φunital, completely positive} ⊆ L(Mn,Md).

This is a convex set. In fact, let Φ1,Φ2 ∈ UCP (Mn,Md), 0 ≤ t ≤ 1, and define

Φ(X) = tΦ1(X) + (1− t)Φ2(X).
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Then,

Φ(I) = tΦ1(I) + (1− t)Φ2(I)
= tI + (1− t)I
= I.

So, Φ is unital. Also,

PΦ = (Φ(Eij))
= (tΦ1(Eij) + (1− t)Φ2(Eij))
= tPΦ1 + (1− t)PΦ2

≥ 0.

Therefore, it is convex.
This set is also compact. It is easy to see that it is closed. To see bounded,

observe that Φ(I) = I implies
∑

Φ(Eii) = I implies 0 ≤ Φ(Eii) ≤ I. If
0 ≤ (rij) ≤ I implies

1− r11 −r12 . . . −r1n

0 1− r22 ∗
. . .

0 1− rnn

 ≥ 0.

Hence, rii ≤ 1. Look at any 2× 2
( rii rij
rji rjj

)
≥ 0. This implies |rij |2 ≤ riirjj ≤ 1.

Therefore, |rij | ≤ 1.
(2) Let

CPTP (Md,Mn) = {Φ : Md →Mn : Φ completely positive, trace preserving}.

This set is also compact and convex. In fact, recall that Φ : Mn →Md is unital
and completely positive if and only if Φ∗ : Md → Mn is completely positive
and trace-preserving. The map Γ : UCP (Mn,Md) → CPTP (Md,Mn), given
by Γ(Φ) = Φ∗, satisfies

Γ(tΦ1 + (1− t)Φ2) = (tΦ1 + (1− t)Φ2)∗

= tΦ∗1 + (1− t)Φ∗2
= tΓ(Φ1) + (1− t)Γ(Φ2).

Theorem 3 (Choi). If Φ : Mn →Md is unital and completely positive, Φ(X) =∑r
i=1 V

∗
i XVi, and r = cr(Φ), then Φ is an extreme point of UCP (Mn,Md) if

and only if
{V ∗i Vj : 1 ≤ i, j ≤ r} ⊆Md

are linearly independent.
Corollary. If Φ is extreme, then cr(Φ) ≤ d.
Proof. #{V ∗i Vj : 1 ≤ i, j ≤ r} = r2 ≤ dim(Md) = d2. So, r ≤ d.
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�
Corollary. If Φ : Md → Mn is completely positive and trace-preserving,

Φ(X) =
∑r
i=1 ViXV

∗
i , and r = cr(Φ), then Φ is extreme in CPTP (Md,Mn) if

and only if
{V ∗i Vj : 1 ≤ i, j ≤ r} ⊆Md

is linearly independent.
Proof. If ψ(X) =

∑
V ∗i XVi, then ψ∗(Y ) =

∑
ViY V

∗
i .

�
Proof of Theorem 3 (Choi). (⇒) Suppose that

∑r
i,j=1 λijV

∗
i Vj = 0.

This implies
r∑

i,j=1

λijV
∗
j Vi = 0.

This implies
∑r
i,j=1 λjiV

∗
i Vj = 0. So,

r∑
i,j=1

(λij + λji)V ∗i Vj = 0.

Note that µ = (λij + λji) = λ + λ∗. Hence, µ is self-adjoint. Suppose that we
know that

r∑
i,j=1

µijV
∗
i Vj = 0

for all µ = µ∗ implies µ = 0. Given
∑
λijV

∗
i Vj = 0 and λ = (λij), we would

know that λ+ λ∗ = 0. Also,

λ− λ∗

2i
=
λij − λji

2i

is also self-adjoint. Therefore,

λ− λ∗

2i
= 0

implies λ = 0.
So, to show that {V ∗i Vj} is linearly independent, it is enough to show that∑
µijV

∗
i Vj = 0 for all µ = µ∗ implies µ = 0.

Let
∑r
i,j=1 µijV

∗
i Vj = 0, where µ = µ∗. It is enough to assume that −I ≤

µ ≤ I. This implies I + µ ≥ 0 and I − µ ≥ 0.
Let ψ±(X) =

∑r
i=1 V

∗
i XVi ±

∑r
i,j=1 µijV

∗
i XVj . Then,

1
2

(ψ+ + ψ−) = Φ.

(finish next time ...)
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24 Day - 19/Oct/11

24.1 Continuation

Theorem 3 (Choi). If Φ : Mn → Md, cr(Φ) = r, and Φ(X) =
∑r
i=1 V

∗
i XVi,

then Φ is extreme in UCP (Mn,Md) if and only if

{V ∗i Vj : 1 ≤ i, j ≤ r} ⊆Md

is linearly independent.
Proof. (⇒): Last time we had shown that it is enough to show that if∑r
i,j=1 µijV

∗
i Vi = 0 and µ = (µij) = µ∗, then µ = 0. We scaled −I ≤ µ ≤ +I

and let

ψ±(X) =
r∑

i,j=1

V ∗i XVi ±
r∑

i,j=1

µijV
∗
i XVj .

Write (I + µ) = (αij)∗(αij). Let

Wi =
r∑
j=1

αijVj .

Then,

r∑
k=1

W ∗kXWk =
r∑

k=1

(
r∑
i=1

αkiV
∗
i )X(

r∑
j=1

αkjVj)

=
r∑
i=1

r∑
j=1

(
r∑

k=1

αkiαkj)V ∗i XVj

=
r∑
i=1

(1 + µii)V ∗i XVi +
∑
i6=j

µijV
∗
i XVj

=
r∑
i=1

V ∗i XVi +
∑
i,j

µijV
∗
i XVj

= ψ+(X).

Therefore, ψ+ is a completely positive map. Also,

ψ+(In) =
r∑
i=1

V ∗i InVi +
r∑

i,j=1

µijV
∗
i Vj

= Φ(In) + 0
= I.

Similarly, 0 ≤ I − µ = (βij)∗(βij). Set W̃i =
∑
βijVj , and we get

r∑
k=1

W̃ ∗i XW̃i = ψ−(X).
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Therefore, ψ− is completely positive and

ψ−(I) = Φ(I) + 0 = I.

Now,

1
2

(ψ+(X) + ψ−(X)) =
1
2

(
∑
i=1

rV ∗i XVi +
r∑

i,j=1

µijV
∗
i XVj +

r∑
i=1

V ∗i XVi −
r∑

i,j=1

µijV
∗
i XVj)

= Φ(X).

Since Φ is extreme, Φ = ψ+ = ψ−. However,

ψ+(X) =
r∑

k=1

W ∗XWk = Φ(X).

By Choi’s earlier theorem, there exists unique U = (uij) such that

Wi =
r∑
j=1

uijVj

and U∗U = I. We also know that {V1, . . . , Vr} are linearly independent.
Earlier, we had Wi =

∑r
j=1 αijVj . Therefore, αij = uij and

I = U∗U = (αij)∗(αij) = I + µ.

This implies µ = 0 and µij = 0 for all i, j. Therefore, the V ∗i Vj are linearly
independent.

(⇐): Note that if {V ∗i Vj} are linearly independent, we claim that the
{V1, . . . , Vr} are linearly independent. In fact, suppose that

β1V1 + . . .+ βrVr = 0.

Then,

(
r∑
i=1

βiVi)∗(
r∑
j=1

βjVj) = 0.

This implies
∑r
i,j=1 βiβjV

∗
i Vj = 0. Hence, βiβj = 0 for all i, j, which implies

βi = 0 for all i.
Now, suppose that Φ(X) = 1

2 (ψ1(X) +ψ2(X)), where the ψj are unital and
completely positive. Let

ψ1(X) =
m1∑
p=1

W ∗pXWp, ψ2(X) =
m1+m2∑
p=m1+1

W ∗pXWp.

Then,

Φ(X) =
m1+m2∑
p=1

(
1√
2
Wp)∗X(

1√
2
Wp).
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Therefore, there exists unique αpj so that

1√
2
Wp =

r∑
j=1

αpjVj

and U = (αpj)(m1+m2)×r satisfies U∗U = Ir.
By the above,

I =
r∑
i=1

V ∗i Vi = ψ1(I)

=
m1∑
p=1

W ∗pWp

= 2
m1∑
p=1

(
r∑
i=1

αpiV
∗
i )(

r∑
j=1

αpjVj)

= 2
r∑

i,j=1

(
m1∑
p=1

αpiαpj)V ∗i Vj .

Therefore,

2
m1∑
p=1

αpiαpj = δij .

Therefore, if we set

U =

(U1)m1

· · ·
(U2)m2

 ,

we have

I = U∗U

= (U∗1
...U2)

U1

· · ·
U2


= U∗1U1 + U∗2U2.

The above sums are the entries of U∗1U1. This implies 2U∗1U1 = Ir. So, U∗1U1 =
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1
2Ir. Similarly, U∗2U2 = 1

2Ir. Thus,

ψ1(X) =
m1∑
p=1

W ∗pXWp

=
m1∑
p=1

(
√

2
r∑
i=1

αpiV
∗
i )X(

√
2

r∑
i=1

αpiVi)

= 2
r∑

i,j=1

(
m1∑
p=1

αpiαpj)V ∗i XVj

=
r∑
i=1

V ∗i XVi

= Φ(X).

Similarly, ψ2(X) = Φ(X). By definition, Φ is extreme.
�

Examples. (1) Let U be an n×n unitary and Φ : Mn →Mn ∈ UCP (Mn,Mn).
Suppose Φ(X) = U∗XU . Then r = 1 and {U∗U} is linearly independent. So,
Φ is extreme.

(2) Suppose that U1, U2 are unitaries. Then

Φ : Mn →Mn,Φ(X) =
1
2

(U∗1XU1 + U∗2XU2),

is not extreme because if we let V1 = 1√
2
U1, V2 = 1√

2
U2, then,

{V ∗i Vj : 1 ≤ i, j ≤ 2} = {1
2
U∗1U1,

1
2
U∗1U2,

1
2
U∗2U1,

1
2
U∗2U2}

is not linearly independent since 1
2U
∗
1U1 = 1

2U
∗
2U2 = 1

2I.
(3) Let Φ : Mn → Md be given by Φ(X) = tr(X)Id. Then, Φ(Eij) =

tr(Eij)Id = δijId. So,

PΦ = (Φ(Eij)) = (δijId) ∈Mn(Md).

So, cr(Φ) = nd > d. This implies Φ is not extreme.
(4) Let Φ : Mn →Mn be given by

Φ(X) = diag(X) =

x11 0
. . .

0 xnn

 .

Then rank(PΦ) = rank

(
E11 0

. . .
0 Enn

)
= n and n = d. However,

Φ(X) =
n∑
i=1

EiiXEii,

and if we set Vi = Eii, {V ∗i Vj} is not linearly independent.
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25 Day - 24/Oct/11

25.1 Operator Systems, Arveson’s Correspondence, Arve-
son’s Extension Theorem

Overview. Recall that Choi showed that

Φ : Mn →Md ↔ PΦ ∈Mn(Md)

and his work also showed

Φ completely positive ⇔ Φn-positive.

Arverson’s correspondence will show that

Φ : Mn →Md ↔ SΦ : Md(Mn)→ C,
CP (Mn,Md)↔ positive linear functionals,

and
Φ completely positive ⇔ Φd-positive.

Definition. A subspace S ⊂ B(H) of the bounded linear functionals on H is
called an operator system provided I ∈ S and X ∈ S implies X∗ ∈ S.

Given an operator system S ⊆ B(H), we identify

Mp(S) ⊂ B(H ⊕ . . .⊕H)

by letting (Xij) ∈Mp(S) be identified with the operator

(Xij) : H ⊕ . . .⊕H → H ⊕ . . .⊕H,

(Xij)

(
h1

...
hp

)
=

Pp
j=1X1jhj

...Pp
j=1Xpjhj

.

In particular, this allows us to defineMp(S)+ as the elements that define positive
operators.

Note. Mp(S) is an operator system in B(H ⊕ . . .⊕H) because the identity isI 0
. . .

0 I


and X = (Xij) ∈Mp(S) implies X∗ = (X∗ji) ∈Mp(S).

Definition. If S is an operator system, then Φ : S →Md is completely positive
provided (Xij) ∈ Mp(S)+ implies (Φ(Xij)) ∈ Mp(Md) for all p. Similarly, we
define k-positive when this is true for p = k.

Proposition. Let S be an operator system and X ∈ S. Then there exists
P1, P2, P3, P4 ∈ S+ such that X = (P1 − P2) + i(P3 − P4).
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Proof. Since X ∈ S, X∗ ∈ S. This implies

X = H + iK,

where H = X+X∗

2 and K = X−X∗
2i . Since H = H∗,K = K∗, H,K ∈ S. Now,

H = H∗ ∈ S ⊆ B(H) and we know that ||H||I −H ≥ 0 and ||H||I + H ≥ 0.
Let

P1 =
||H||I +H

2
, P2 =

||H||I −H
2

.

Then, P1, P2 ∈ S+ and H = P1 − P2. We similarly do this for K.
�

25.2 Arveson’s Extension Theorem

Theorem (Arveson’s Extension, 1969). If S ⊆ Mn is an operator system
and Φ : S → Md is completely positive, then there exists ψ : Mn → Md that is
completely positive and ψ(X) = Φ(X) for all X ∈ S.

Corollary. If Φ : S → Md is completely positive, then there exists n × d
A1, . . . , Ar so that

Φ(X) =
r∑
i=1

A∗iXAi.

Proof. Extend Φ to ψ and use the Choi-Krauss representation of ψ.
�

25.3 Arveson’s Correspondence

Definition. Given Φ : S →Md and an orthonormal basis e1, . . . , ed on Cd, let

fij : S → C

be defined by
fij(X) = 〈ei|Φ(X)ej〉.

Hence, Φ(X) = (fij(X))d×d. Now define

SΦ : Md(S)→ C

by

SΦ((Xij)) =
1
d

d∑
i,j=1

fij(Xij).

Theorem (Arveson). If S is an operator system and Φ : S → Md is linear,
then the following are equivalent:

(1) Φ is completely positive;

(2) Φ is d-positive;
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(3) SΦ is a positive linear functional.

Proof. (1)⇒ (2): Obvious.
(2)⇒ (3): Let (Xij)di,j=1 ∈Md(S)+. Then, (Φ(Xij)) ∈Md(Md)+. Consider

v =

e1

...
ed

 ∈ Cd ⊕ . . .⊕ Cd.

Hence,
(Xij) ∈Md(S)+

implies

0 ≤ 〈v|(Φ(Xij))v〉

=

〈e1

...
ed

 |

∑Φ
j=1(X1j)ej

...∑d
j=1 Φ(Xdj)ej


〉

=
d∑

i,j=1

〈ei|Φ(Xij)ej〉

=
∑
i,j

= 1dfij(Xij)

= dSΦ((Xij)).

Therefore, SΦ is a positive linear functional.
(3) ⇒ (1): We must show that for any q, when (Xrs)

q
r,s=1 ∈ Mq(S)+, then

(Φ(Xrs)) ∈Mq(Md)+. To do this, let vs ∈ Cd, for 1 ≤ s ≤ q. Then,

v =

( v1
...
vq

)
∈ Cd ⊕ . . .⊕ Cd.

Then,

0 ≤ 〈v|(Φ(Xrs))v〉

=
q∑

r,s=1

〈vr|Φ(Xrs)vs〉

= (∗)
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If we write vs =
∑d
j=1 vsjej , then

(∗) =
q∑

r,s=1

d∑
i,j=1

vrivsj〈ei|Φ(Xrs)ej〉

=
q∑

r,s=1

d∑
i,j=1

vrivsjfij(Xij)

=
d∑

i,j=1

fij(
q∑

r,s=1

vrivsjXrs).

Let

Yij =
q∑

r,s=1

vrivsjXrs ∈ S.

Then,
Y = (Yij)di,j=1 ∈Md(S)

and
(∗) = dSΦ(Y ).

Hence, it is enough to show that Y ∈Md(S)+. Let

A =

v
t
1
...
vtq


q×d

.

Then a calculation shows that Y = A∗XA. Since X ≥ 0, Y ≥ 0.
�

26 Day - 26/Oct/11

26.1 Arveson Correspondence

L(S,Md) L(Md(S),C)
Φ(X) = (fij(X)) 7→ SΦ((Xij)) = 1

d

∑d
i,j=1 fij(Xij)

If we start with f : Md(S) → C, define fij : S → C by fij(X) = f(Eij ⊗ X).
Then we define Φf : S →Md by Φf (X) = d(fij(X)).

L(Md(S),C) L(S,Md)
f 7→ Φf

We want to check that these operations are mutual inverses.
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If we begin with f : Md(S) → C, we obtain Φf : S → Md and SΦf :
Md(S) → C. We need to show that SΦf = f . Given (Xij) ∈ Md(S), then
(Xij) =

∑
i,j Eij ⊗Xij . Therefore,

f((Xij)) =
∑
i,j

f(Eij ⊗Xij) =
∑
i,j

fij(Xij).

However,

SΦf (Xij)(Xij) =
1
d

d∑
i,j=1

dfij(Xij).

The other direction is an exercise.

Definition. Let P (Md(S),C) denote the set of positive linear functionals from
Md(S) to C and UP (Md(S),C) the unital positive linear functionals, which are
also called states.

Theorem (Arveson Correspondence). The map Φ → SΦ defines an affine
isomorphism from CP (S,Md) onto P (Md(S),C). If Φ is also unital, then SΦ ∈
UP (Md(S),C).

Proof. Last time we showed that Φ ∈ CP (S,Md) if and only if SΦ ∈
P (Md(S),C). Given f ∈ (Md(S),C), form Φf : S → Md and SΦf = f because
of mutual inverses. Therefore, SΦf ∈ P (Md(S),C) implies Φf ∈ CP (S,Md).
Hence, Φ→ SΦ maps CP (S,Md) onto P (Md(S),C).

Let Φ = (fij) and Ψ = (gij). Then

tΦ + (1− t)Ψ = (tfij + (1− t)gij).

So,

StΦ+(1−t)Ψ((Xij)) =
1
d

∑
i,j

(tfij + (1− t)gij)(Xij)

= tSΦ + (1− t)SΨ.

Suppose Φ : S →Md is unital and Φ = (fij). Then, I = Φ(I) implies1 0
. . .

0 1


d×d

=

f11(I) . . . f1d(I)
. . .

fd1(I) . . . fdd(I)

 .

So, fij(I) = δij . Therefore, SΦ : Md → C satisfies

SΦ


1 0

. . .
0 1


 =

1
d

d∑
i=1

fii(I) = 1.

�
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Note: If f : Md(S) → C, then f unital does not imply Φf : S → Md unital.
Observe that f unital implies

f


1 0

. . .
0 1


 = 1.

Since fij(X) = f(Eij ⊗X),

f


I 0

. . .
0 I


 = f(

d∑
i=1

Eii ⊗ I)

=
d∑
i=1

fii(I)

= 1.

However,

Φf (I) = d(fij(I)) = d

f11(I) . . . f1d(I)
. . .

fd1(I) . . . fdd(I)

 .

All we get is tr(Φf (I)) = 1.

26.2 Hahn-Banach Theorem

Definition. Let W be a normed space. A linear functional f : W → C is called
bounded if there exists a constant C such that |f(W )| ≤ C||w||. When f is
bounded, the least such C is called the norm of f , denoted ||f ||, and is given by

||f || = sup{|f(w)| : ||w|| ≤ 1}.

Theorem (Hahn-Banach). Let W be a normed space and V ⊆W a subspace.
Let g : V → C be a bounded linear functional. Then there exists a bounded
linear functional f : W → C with ||f || = ||g|| and f(v) = g(v) for all v ∈ V .

26.3 Arveson’s Extension Theorem

Theorem (Arveson’s Extension Theorem). Let S ⊆ Mn be an operator
system and Φ : S →Md a completely postive map. Then there exists Ψ : Mn →
Md that is completely positive and Ψ(X) = Φ(X) for all X ∈ S.

To prove this, we need lemmas:

Proposition. Let S be an operator system and f : S → C be linear such that
f(I) = 1. Then f is positive if and only if ||f || = 1.
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Proof. (⇐): Let P ∈ S+. Suppose f(P ) = λ is not positive. Recall that
σ(P ) ⊆ [0, ||p||]. Pick a ∈ C and r > 0 so that |λ − a| > r but 0 ≤ t ≤ ||p||
implies |t− a| < r. Look at P − aI, which is diagonalizable. Then,

σ(P − aI) ⊆ {t− a : 0 ≤ t ≤ ||p||}.

||P − aI|| = max{|λ− a : λ ∈ σ(P − aI)}

implies ||P − aI|| < r. However,

f(P − aI) = f(P )− af(I) = λ− a

and
|f(P − aI)| = |λ− a| > r > ||P − aI||.

This contradicts ||f || = 1. Therefore, f(P ) ∈ [0, ||p||] and f(P ) ≥ 0.
(⇒): GivenH = H∗ ∈ S, we proved thatH = P1−P2 such that P1, P2 ∈ S+.

This implies
f(H) = f(P1)− f(P2) ∈ R.

Also,
−||H||I ≤ H ≤ +||H||I;

i.e.,
||H||I −H,H − ||H||I ∈ S+.

This implies
||H|| − f(H) = f(||H||I −H) ≥ 0.

So, f(H) ≤ ||H||. Using the other inequality, we get

−||H|| ≤ f(H).

So, |f(H)| ≤ ||H||.
Now, let X ∈ S such that ||X|| ≤ 1. We need to show that |f(X)| ≤ 1. Let

f(X) = λ = eiθr, where r = |λ|. This implies

f(e−iθX) = r ≥ 0.

Write e−iθX = H + iK. Then,

H =
e−iθX + (e−iθX)∗

2

and ||H|| ≤ 1. So,

0 ≤ r = f(H + iK) = f(H) + if(K).

This implies r = f(H) and |r| = |f(H)| ≤ ||H|| ≤ 1. Therefore, |f(X)| = r ≤ 1.
�
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27 Day - 28/Oct/11

27.1 Continuation

Proposition. If Φ : S → Md is completely positive such that Φ(I) = P , then
there exists a unital completely positive map ψ : S →Mr and a d× r matrix V
such that Φ(X) = V ∗ψ(X)V .

Proof. First suppose that P is invertible. Let

ψ(X) = P−1/2Φ(X)P−1/2.

Then ψ is completely positive and

ψ(I) = P−1/2Φ(I)P−1/2 = I.

When P is not invertible, after a unitary conjugation, we can assume

P =


(
λ1 0

. . .
0 λr

)
0

0 0

 .

Take any H = H∗ ∈ S. Then

−||H||I ≤ H ≤ +||H||I.

This implies
−||H||Φ(I) ≤ Φ(H) ≤ +||H||Φ(I).

Hence,

−||H||


(
λ1 0

. . .
0 λr

)
0

0 0

 ≤ Φ(H) ≤ +||H||


(
λ1 0

. . .
0 λr

)
0

0 0

 ,

which implies

||H||


(
λ1 0

. . .
0 λr

)
0

0 0

± Φ(H) ≥ 0.

Thus,

Φ(H) =
(
∗ 0
0 0

)
.

Since X ∈ S, we write X = H + iK. So,

Φ(X) = Φ(H) + iΦ(K) =
(
∗ 0
0 0

)
.

So,

Φ(X) =
(

Φ̃(X) 0
0 0

)
,
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where Φ̃ : S →M(r) is given by

Φ̃(I) =

(
λ1 0

. . .
0 λr

)
.

Now let ψ : S →Mr be defined by

ψ(X) =

 λ
−1/2
1 0

. . .
0 λ−1/2

r

 Φ̃(X)

 λ
−1/2
1 0

. . .
0 λ−1/2

r

 .

Then ψ is a unital completely positive map. Let

V =


 λ

1/2
1 0

. . .
0 λ1/2

r


0

 .

Then,

V ∗ψ(X)V =
(

Φ̃(X) 0
0 0

)
= Φ(X).

�

Proposition. Let Φ : Mn → Md be a completely positive map. Then there
exists r > 0, a r × n matrix V , and a completely positive and trace-preserving
map ψ : Mr →Md such that

Φ(X) = ψ(V XV ∗).

Proof. Consider a completely positive map Φ∗ : Md → Mn. Then there
exists a unital completely positive map ψ : Md → Mr and a d × r matrix V
such that

Φ∗(Y ) = V ∗ψ(Y )V.

Therefore, if X ∈Mn, Y ∈Md,

tr(Y ∗Φ(X)) = tr(Φ∗(Y ∗)X)
= tr(V ∗ψ(Y ∗)V X)
= tr(ψ(Y ∗)V XV ∗)
= tr(Y ∗ψ∗(V XV ∗)).

Therefore, Φ(X) = ψ∗(V XV ∗). Since ψ : Md → Mr is unital and com-
pletely positive, we have that ψ∗ : Mr → Md is completely positive and trace-
preserving.

�

Theorem (Arveson Extension). Let S ⊆ Mn be an operator system and
Φ : S → Md be a completely positive map. Then there exists a completely
positive map ψ : Mn →Md such that ψ(X) = Φ(X) for all X ∈ S.
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Proof. We only do the case when Φ(I) = I. Consider SΦ : Md(S) → C,
which is a unital positive linear functional. We write Φ(X) = (fij(X)) and

SΦ((Xij)) =
1
d

d∑
i,j=1

fij(Xij).

Last time we saw that SΦ unital and positive implies ||SΦ|| = 1. Since Md(S) ⊆
Md(Mn), we apply the Hahn-Banach theorem to obtain f : Md(Mn)→ C such
that ||f || = 1. Then,

SΦ


I 0

. . .
0 I


 = 1

implies

f


I 0

. . .
0 I


 = 1.

Therefore, f is unital and ||f || = 1. This implies f is positive.
Now consider Φf : Mn → Md which is unital and completely positive. By

Arveson’s Correspondence, Φf extends Φ because for any X ∈ S, Φf (X) =
(f̃ij(X)) and f̃ij : Mn → C extends fij : S → C.

When Φ is not unital, write Φ(X) = V ∗ψ(X)V with ψ unital and completely
positive. The apply the above casse to ψ.

�

Corollary. If Φ : S → Md is completely positive, then there exists n × d
matrices Ai such that Φ(X) =

∑r
i=1A

∗
iXAi.

Proof. Extend Φ to ψ : Md →Md, then ψ has this form by Choi-Krauss.
�

27.2 Entanglement Revisited

Recall that given HA, HB in states ψ, φ, respectively, then HA ⊗HB is in state
ψ ⊗ φ. The matrix identification of states as rank one density matrices gives

|ψ ⊗ φ〉〈ψ ⊗ φ| = |ψ〉〈ψ| ⊗ |φ〉〈φ| ∈ L(HA)⊗ L(HB) = L(HA ⊗HB).

If we have ensembles (or mixed states), {ψi, pi} on HA and {φj , qj} on HB ,
with pi, qj ≥ 0 such that

∑
pi = 1 =

∑
qj and ||ψi|| = ||φj || = 1, then this is

represented by

{ψi ⊗ φj , piqj} ↔
∑

piqj |ψi〉〈ψi| ⊗ |φj〉〈φj |,

which is a positive matrix of trace one; i.e., a density matrix.
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Definition. A density matrix P ∈ L(HA ⊗HB) is called separable if it has the
form

P =
∑

pl|ψl〉〈pl| ⊗ |φl〉〈φl|,

where ||ψl|| = ||φl|| = 1, ψl ∈ HA, φl ∈ HB , pl ≥ 0,
∑
pl = 1.

A density matrix P ∈ L(HA ⊗HB) is entangled if it is not separable.

Issues. (1) Are there any entangled density matrices?
(2) How can we tell? (Detection/Witnesses)

28 Day - 31/Oct/11

28.1 Continuation

Last time we saw that, for ensembles {ψi, pi} on HA and {φj , qj} on HB , we
obtain ∑

piqj |ψi〉〈ψi| ⊗ |φj〉〈φj |.

In matrix form, we have ∑
l

Pl ⊗Ql ∈ L(HA ⊗HB)+,

where P ∈ L(HA)+, Q ∈ L(HB)+. We defined such a matrix
∑
l Pl ⊗ Ql to

be separable. Also, P ∈ L(HA ⊗ HB)+ is not separable if and only if P is
entangled.

Proposition. If Φ : Mn →Md is positive and

R ∈Mr(Mn)+ = L(Cr ⊗ Cn)+

is separable, then Φ(r)(R) ∈Mr(Md)+.
Proof 1. First suppose that R = P ⊗Q, where P ∈ M+

r , Q ∈ M+
n . Recall

that
Φ(r) = idr ⊗ Φ : Mr ⊗Mn →Mr ⊗Md.

Therefore,

Φ(r)(R) = (idr ⊗ Φ)(P ⊗Q) = P ⊗ Φ(Q) ∈Mr ⊗M+
d .

Proof 2. If P = (pij)r×r, then

R = P ⊗Q = (pijQ) ∈Mr(Mn).

So,
Φ(r)(pijQ) = (pijΦ(Q)) ∈Mr(Md).

Hence, we want to show that this is positive.
First suppose that P is rank one; i.e., P = (αiαj). Therefore,

Φ(r)((αiαjQ)) = (αiαjΦ(Q)) ∈Mr(Md) = L(Cd ⊕ . . .⊕ Cd).
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Take h1, . . . , hr ∈ Cd. Then,

〈

(
h1

...
hr

)
|(αiαjΦ(Q))

(
h1

...
hr

)
〉 =

r∑
i,j=1

〈hi|αiαjΦ(Q)hj〉

= 〈|Φ(Q)h〉,

where h =
∑r
j=1 αjhj .

Now, P , in general, is a sum of rank one positive matrices. Decomposing
P as a sum of rank one matrices decomposes (pijΦ(Q)) as a sum of positive
matrices. This shows that if R = P ⊗Q, then Φ(r)(R) ≥ 0.

For a general separable R, write R =
∑
l Pl⊗Ql. Then, Φ(r)(R) =

∑
l Φ(Pl⊗

Ql), where each term is the sum is positive. So, Φ(r)(R) is positive.
�

Corollary. If R ∈ Mr(Mn)+ and Φ : Mn → Md is positive, then Φ(r)(R) not
positive implies R entangled.

Examples. If i 6= j, then (
Eii Eij
Eji Ejj

)
is a positive matrix. Also, (Eij) ∈Mn(Mn)+. Both of these are entangled. For
example, take Φ : Mn →Mn, Φ(X) = Xt, which is positive. However,

Φ(2)

((
Eii Eij
Eji Ejj

))
=
(
Eii Eji
Eij Ejj

)
.

Take h =
( ej
−ei
)
. Then,

〈
( ej
−ei
)
|
(
Eii Eji
Eij Ejj

)( ej
−ei
)
〉 = 〈

( ej
−ei
)
|
(−ej
ei

)
〉

= −〈ej |ej〉 − 〈ei|ei〉
= −2.

Similarly, Φ(n)((Eij)) = (Eji), which was previously shown to not be positive.
�

Our goal is to prove the following two theorems:

Theorem. Let R ∈ Mr(Mn). Then R is separable if and only if Φ(r)(R) ≥ 0
for all positive maps Φ : Mn →Mn.

Corollary. If R ∈ Mr(Mn)+ is entangled, then there exists a positive map
Φ : Mn →Mn such that Φ(r)(R) is not positive.

Notation. Let Sep ⊆Mr(Mn) be the set of separable matrices: Sep = {
∑
l Pl⊗

Ql}.

Proposition. Let f : Mr(Mn)→ C be a linear functional. Then f(Sep) ≥ 0 if
and only if Φf : Mn →Mr is positive.
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Proof. (⇒): Let P ∈ M+
n and v =

(
α1

...
αr

)
∈ Cr. We must show that

〈v|Φf (P )v〉 ≥ 0:

〈v|Φf (P )v〉 =
∑

αiαj〈ei|Φf (P )ej〉

=
∑

αiαjfij(P )

= αiαjf(Eij ⊗ P )

= f((
∑
i,j

αiαjEij)⊗ P )

≥ 0

since (
∑
i,j αiαjEij)⊗ P ∈ Sep.

(⇐): Let P ∈ M+
n and Q = (qij) ∈ M+

r . We want to show f(Q ⊗ P ) ≥ 0.
It is enought to do the case when Q is a rank one positive matrix. In this case,
write Q = (αiαj) =

∑
αiαjEij . Therefore,

f(Q⊗ P ) =
r∑

i,j=1

αjαjf(Eij ⊗ P )

= 7
∑r
i,j=1 αiαj〈ei|Φf (P )ej〉

= 〈v|Φf (P )v〉
≥ 0.

�

28.2 Theory of Convex Sets and Linear Functionals

Definition. Let V be a finite dimensional real vector space. A subset C ⊂ V
is a cone provided if x, y ∈ C and 0 ≤ t, s, then tx+ sy ∈ C.

Alternatively, C is a cone if C is convex and x ∈ C implies tx ∈ C for all
t ≥ 0.

Theorem. Let V be a real vector space, K ⊆ V a closed convex subspace, and
y /∈ K. Then there exists a linear functional f : V → R and α ∈ R so that
f(y) < α ≤ f(K).

Corollary. Let V be a real vector space, C ⊆ V a closed cone, and y /∈ C.
Then there exists a linear functional f : V → R such that f(y) < 0 ≤ f(C).

Proof. Take the f given by the theorem. Then there exists α such that
f(y) < α ≤ f(C). Since 0 ∈ C, α ≥ 0. Suppose there was x ∈ C such that
f(x) < 0. Then tx ∈ C for all t ≥ 0. This implies α < f(tx) = tf(x). By taking
t large enough, we get tf(x) < α, a contradiction. So, 0 ≤ f(x) for all x ∈ C.

�
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29 Day - 2/Nov/11

29.1 Continuation

Theorem. Let V be a real finite dimensional vector space, C ⊆ V a closed
cone, and w /∈ C. Then there exists a real linear functional f : V → R such
that f(w) < 0 ≤ f(C).

Note. Let Mr(Mn)h be the set of Hermitian (or self-adjoint) matrices, which
is a real vector space. Let

C = {
∑
l

Pl ⊗Ql : Pl ∈M+
r , Ql ∈M+

n }.

Then C is a closed cone.
R ∈ Mr(Mn)+ entangled means that R /∈ C. So, there exists a real linear

functional f : Mr(Mn)→ R such that f(R) < 0 ≤ f(C).
Given X ∈ Mr(Mn), write X = H + iK with H,K self-adjoint. Define

f̃ : Mr(Mn)→ C by
f̃(H + iK) = f(H) + if(K).

We show that f̃ is complex linear:

f̃((a+ ib)(H + iK)) = f̃((aH − bK) + i(bH + aK))
= f(aH − bK) + if(bH + aK)
= af(H)− bf(K) + ibf(H) + af(K)
= (a+ ib)(f(H) + if(K))
= (a+ ib)f̃(H + iK).

Note. We have that f̃(R) = f(R) and f̃(C) = f(C). So, f̃(R) < 0 ≤ f̃(C). By
Arveson correspondence,

f̃ ↔ Φf̃ : Mn →Mr.

We also proved that f̃ ≥ 0 on separable matrices if and only if Φf̃ is a positive
map.

Theorem. Let R ∈Mr(Mn)+. Then R is separable if and only if Φ(r)(R) ≥ 0
for all positive maps Φ : Mn →Mr.

Proof. (⇒): We have already shown that R separable implies Φ(r)(R) ≥ 0.
(⇐): We show the contrapositive; i.e., if R is entangled, then there exists a

positive map Φ : Mn →Mr such that Φ(r)(R) is not positive.
We know that there exists a linear functional f : Mr(Mn) → C such that

f(Sep) ≥ 0, f(R) < 0, and corresponds to a positive map

Φf : Mn →Mr.

We want to show that Φ(r)
f (R) is not positive.
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Recall that Φf (X) = d(fij(X)), 1 ≤ i, j ≤ r and fij(X) = f(Eij ⊗ X).
Write

R = (Rij) ∈Mr(Mn), Rij ∈Mn

and

R =
r∑

i,j=1

Eij ⊗Rij ∈Mr ⊗Mn.

Let

e =

(
e1
...
er

)
,

where e1, . . . , er is a basis for Cr. We compute:

〈e|Φ(r)(R)e〉 = 〈

(
e1
...
er

)
|(Φf (Rij))

(
e1
...
er

)
〉

=
r∑

i,j=1

〈ei|Φf (Rij)ej〉

= d

r∑
i,j=1

fij(Rij)

=
r∑

i,j=1

f(Eij ⊗Rij)

= df(R)
< 0.

So, Φ(r)
f (R) is not positive.

�

29.2 Universal Entanglement Witnesses

Question: Does there exists a positive map Φ : Mn → Mr so that for any
R ∈Mr(Mn)+, R is entangle if and only if Φ(r)(R) is not positive?

Answer: Sadly, no for most n, r.

Theorem (Horodecki-Peres). Let Φ : M2 → M2 be defined by Φ(X) = Xt.
Let v ∈ C2 ⊗ C2. Then v is separable if and only if Φ(r)(|v〉〈v|) ≥ 0; i.e., if v is
entangled, then Φ(2)(|v〉〈v|) is not positive.

Proof. Write v = α⊗ β, where α = ( α1
α2 ), β =

(
β1
β2

)
. In block form,

v =
(
α1β
α2β

)
= ( v1v2 ) ∈ C2 ⊗ C2 = C2 ⊕ C2.

Now, v is separable if and only if v1, v2 are parallel. Hence, v is entangled if
and only if v1, v2 are linearly independent.
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Observe that

|v〉〈v| = vv∗ = ( v1v2 ) (v∗1 , v
∗
2) =

(
v1v

∗
1 v1v

∗
2

v2v
∗
1 v2v

∗
2

)
∈M2(M2).

Therefore,

Φ(2)(|v〉〈v|) =
(

Φ(v1v
∗
1 ) Φ(v1v

∗
2 )

Φ(v2v
∗
1 ) Φ(v2v

∗
2 )

)
=
(

(v1v
∗
1 )t (v1v

∗
2 )t

(v2v
∗
1 )t (v2v

∗
2 )t

)
.

Write vj = (xj , yj)t, j = 1, 2. Then,

v1v
∗
1 =

(
x1x1 x1y1

y1x1 y1y1

)
implies

(v1v
∗
1)t =

(
x1x1 y1x1

x1y1 y1y1

)
=
(
x1
y1

)
(x1, y1) = v1v

∗
1.

Similarly,

(v1v
∗
2)t =

(
x1x2 x1y2

y1x2 y1y2

)t
=

(
x1x2 y1x2

x1y2 y1y2

)
=

(
x2
y2

)
(x1, y1)

= v2v
∗
1.

Therefore,

Φ(2)(|v〉〈v|) =
(
v1v
∗
1 v2v

∗
1

v1v
∗
2 v2v

∗
2

)
.

We apply this to the vector w =
(−v2
v1

)
:

〈
(−v2
v1

)
|
(
v1v
∗
1 v2v

∗
1

v1v
∗
2 v2v

∗
2

)(−v2
v1

)
〉 = 〈

(−v2
v1

)
|
(
−v1〈v1|v2〉+v2〈v1|v1〉
−v1〈v2|v2〉+v2〈v2|v1〉

)
〉

= 〈v2|v1〉〈v1|v2〉 − 2||v2||2||v1||2

+〈v1|v2〉〈v2|v1〉
= 2|〈v2|v1〉|2 − 2||v2||2||v1||2

< 0,

unless v1, v2 are parallel and by Cauchy-Schwarz theorem.
�

30 Day - 7/Nov/11

30.1 Error Detection/Correction - Classic Binary

We start with a binary n-tuple; i.e., v ∈ Zn2 . We want to transmit v, but there
is a possibility of 0 being switched to 1 or 1 to 0. Note that this corresponds

88



to adding +1. This could be caused by static, stray magnetism, or any other
interaction with the environment. The question is how to fix it.

The idea is as follows:

v ∈ Zn2
φ−−−−−−→

encoding
Zn+k

2

transmit−−−−−−→ φ(v) + error
decode−−−−→ v.

Example (“Repetition”). Define v ∈ Zn2 7→ (v, v) ∈ Z2n
2 . In the n = 3 case,

we have
v = (a, b, c) 7→ (a, b, c, a, b, c) 7→ (a, b, c, a, b, c) + error.

This method and detect one error, but two errors may go undetected. Correction
of errors is unknown and the cost rises from n to 2n.

�

Example (“Parity Check”). Define

v = (a1, . . . , an) ∈ Zn2 7→ (a1, . . . , an; a1 + . . .+ an) ∈ Zn+1
2 .

This map can detect one error but misses every pair of errors, and cannot correct
even one error. However, the cost is much better than the repetition method.

�

Example (Hamming [7,1,3]). Define

(a1, . . . , a7) 7→ (a1, . . . a7; a1 + a2 + a3 + a4; a1 + a2 + a5 + a6; a1 + a3 + a5 + a7).

This is equivalent to the matrix

(
I7

1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1

)a1

...
a7

 .

This method can detect and correct one error.
�

Remark. What we seek are one-to-one maps Zn2
φ−−−−−−→

encoding
Zn+k

2 , where range(φ) =

S ⊆ Zn+k
2 . Since |Zn2 | = 2n = |S|, we want the points in S to be “far apart.”

Definition. Given w ∈ Zm2 , its Hamming weight is defined as

||w|| = # of non-zero entries of w.

For φ(v1) to be mistaken for φ(v2), we would need a vector of errors e added to
φ(v1) so that

φ(v1) + e = φ(v2).
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The number of errors that must occur is

||e|| = ||φ(v2)− φ(v1)||.

So, given S ⊆ Zm2 with |S| = 2n, the Hamming weight of S is defined as

min{||v − w|| : v, w ∈ S, v 6= w},

which is equivalent to the minimum number of errors to go from one point in S
to another point in S.

Remark. For S ⊆ Zm2 , |S| = 2n, the best Hamming weight we can hope for is
when S is a subspace. In this case, for v, w ∈ S, (v −w) ∈ S. So the Hamming
weight of S is equal to

min{||v|| : v ∈ S, v 6= 0}
and S a subspace implies dimZ2(S) = n. Hence, there exists a linear map

φ : Zn2 → S ⊆ Zm2

given by a matrix of ones and zeroes. Also, decoding amounts to choosing a left
inverse for the matrix of φ.

Example. Suppose we have

(a, b, c) = (a, b, c; a+ b+ c).

This is equivalent to the mapping

φ =


1 0 0
0 1 0
0 0 1
1 1 1

 : Z3
2 → Z4

2.

One left inverse for φ is

γ =

1 0 0 0
0 1 0 0
0 0 1 0

 , γ


a
b
c
d

 =

ab
c

 .

Another left inverse is given as

γ̃


a
b
c
d

 =

b+ c+ d
a+ c+ d
a+ b+ d

↔
0 1 1 1

1 0 1 1
1 1 0 1

 .

Note that, start with
(

1
0
0

)
, and observed the error

φ
(

1
0
0

)
=
(

1
0
0
1

)
+
(

1
0
0
0

)
=
(

0
0
0
1

)
,
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γ would produce the correction
(

0
0
0

)
and γ̃ would produce the correction

(
1
1
1

)
.

�

Remarks. Some of the best binary codes use Galois theory and Number theory,
which are called “cyclic codes.” The idea is to identity

Zm2 ∼= P (x)/〈xm − 1〉.

Instead of vector subspaces, they look for ideals in P (x)/〈xm − 1〉. These are
generated by a divisor g of xm − 1.

Suppose g(x)|(xm−1) in P (x) over Z2 and deg(g) = m−n. Given p, q ∈ P (x)
with deg(p) ≤ n− 1, deg(q) ≤ n− 1, we have

deg(gp), deg(gq) < m.

Therefore, if p 6= q, we have gp 6≡ gq.
For encoding, we have

v = (a0, . . . , an−1) ∈ Zn2 → p(x) = a0 + . . .+ an−1x
n−1 φ−→ gp.

To decode, suppose we have

(b0, . . . , bm−1)↔ b(x) = b0 + . . .+ bm−1x
m−1.

We then do synthetic division by g, writing b(x) = gp+ r. Here, no remainder
is good, else, we keep p as the “decoded” part.

In addition, a great deal known is about detection and correction.

31 Day - 9/Nov/11

31.1 Binary: Errors and Probability

Assume that a bit changes i 7→ i + 1 with probability p. Then no change has
probability q = 1 − p. Recall that, for independent events, we multipy the
probabilities.

Example (Repetition on 3 Bits). Let (a, b, c) 7→ (a, b, c, a, b, c). Then,
undetected errors may look like:

(a, b, c, a, b, c) //

))SSSSSSSSSSSSSS

##HHHHHHHHHHHHHHHHHHHHHH
(a+ 1, b, c, a+ 1, b, c),

(a, b+ 1, c, a, b+ 1, c)

etc.
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The probability for two undetected errors is 3p2(1 − p)4, for four undetected
errors is 3p4(1− p)2, and for six undetected errors is p6. So, the probability of
an undetected error is

3p2(1− p)4 + 3p4(1− p)2 + p6.

Example (Parity on 3 Bits). Let (a, b, c) 7→ (a, b, c, a+ b+ c). Then, unde-
tected errors happen when any two bits are switched. Hence, the probability of
an undetected error is

( 4
2 ) p2(1− p)2 + p4.

When we compare with the previous example,

3p2(1− p)4 + 3p4(1− p)2 + p6 < ( 4
2 ) p2(1− p)2 + p4

whenever p < 1
2 .

31.2 Error Detecting/Correcting Code

Majority Rule Code. We encode as follows:

0 7→ 000, 1 7→ 111.

Suppose that there was one error; e.g.,

0 7→ 100, 010, or, 001.

Since the majority are still 0’s, we decode as a 0.
Whenever two or three errors occur, the majority changes, and we have an

“incorrectly corrected” vector. For example,

0 7→ 110, 101, 011

would decode as a 1.
The probability of uncorrected errors is 3p2(1− p) + p3.

31.3 Quantum Error Detection/Correction

Note that we cannot clone, in general, but we can clone basis vectors. In
addition, measurements destroy information and can also be used for decoding.

Examples (Analogue of Bit Switch, Majority Rule). Let

X =
(

0 1
1 0

)
.

Recall that Xe0 = e1, Xe1 = e0. Observe the cases where

ψ1 ⊗ . . .⊗ ψn, ψi ∈ C2.
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The only errors allowed are “qubit flips:” for one error, X⊗ I⊗ . . .⊗ I, I⊗X⊗
I ⊗ . . . ⊗ I, . . ., I ⊗ . . . ⊗ I ⊗X; for two errors, we have two X’s in the tensor
product; for three errors, three X’s in the tensor product; etc.

For a general qubit ψ = a|0〉+ b|1〉, Xψ = b|0〉+ a|1〉.
Three Qubit Bit Flip Code: We encode by

a|0〉+ b|1〉 7→ a|000〉+ b|111〉,

which is an analogue of majority rule code. The diagram is as follows:

ψ • •

|0〉 ⊕

|0〉 ⊕

After we encode a|0〉+ b|1〉 → a|000〉+ b|111〉, possible errors are as follows:

1 error :
a|100〉+ b|011〉
a|010〉+ b|101〉
a|001〉+ b|110〉

2 error : etc.
3 error : etc.

Decoding is done in two steps:

1. Error Detection/Syndrome Diagnosis We create a measurement sys-
tem:

P0 = |000〉〈000|+ |111〉〈111| No errors
P1 = |100〉〈100|+ |011〉〈011| 1 errors
P2 = |010〉〈010|+ |101〉〈101| 2 errors
P3 = |001〉〈001|+ |110〉〈110| 3 errors

Note that

P 2
0 + P 2

1 + P 2
2 + P 2

3 + P0 + P1 + P2 + P3 = IC8 .

If ψ = a|000〉 + b|111〉, then 〈ψ|P0ψ〉 = 1. After measurement, the new
state becomes

P0ψ

||P0ψ||
= ψ.

If ψ1 = a|100〉 + b|011〉, then 〈ψ1|P0ψ1〉 = 0 but 〈ψ1|P1ψ1〉 = 1. After
measurement,

P1ψ1

||P1ψ1||
= ψ1.
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Similarly, if the second or third error occurs, the vectors are left alone by
P2, P3, respectively.

Now, what if two errors occurred, say ψ 7→ a|011〉 + b|100〉 = γ? Then it
will be detected by P1, P1γ = γ. So, when zero or one error occurs, the
measurements show us where the error occurred.

2. Recovery Define R : M2 ⊗M2 ⊗M2 →M2 ⊗M2 ⊗M2 by

R(Y ) = P0Y P0 + (X ⊗ 1⊗ 1)P1Y P1(X ⊗ 1⊗ 1)
+(1⊗X ⊗ 1)P2Y P2(1⊗X ⊗X) + (1⊗ 1⊗X)P3Y P3(1⊗ 1⊗X).

Note that

M(Y ) = P0Y P0 + P1Y P1 + P2Y P2 + P3Y P3

is a measurement map. Also, R is a completely positive map. Recall that
Φ(Y ) =

∑
AiY A

∗
i is trace-preserving if and only if

∑
A∗iAi = I. Since

X =
(

0 1
1 0

)
and X2 = I,

P0P0+P1(X⊗1⊗1)(X⊗1⊗1)P1+P2(1⊗X⊗1)(1⊗X⊗1)P2+P3(1⊗1⊗X)(1⊗1⊗X)P3

can be reduced to
P 2

0 + P 2
1 + P 2

2 + P 2
3 = I.

Therefore, R is completely positive and trace-preserving, and hence, is
physically realizable.

Lastly, if Y is the outcome of ψ = a|000〉+ b|111〉 after zero or one errors,
then R(Y ) = |ψ〉〈ψ|. If ψi is the outcome witht he ith error, then

R(|ψ1〉〈ψ1|) = |ψ〉〈ψ|,

for all i = 1, 2, 3. Therefore, R recovers ψ if no or one error occurred.

32 Day - 11/Nov/11

32.1 Three Qubit Bit Flip Code: Operator Viewpoint

Let X = ( 0 1
1 0 ) with probability p. If we do nothing to ψ = a|0〉+ b|1〉, then

ψ
Error−−−−−−→

Ensemble
{(1− p), ψ}, {pXψ = a|0〉+ a|1〉}

Density−−−−−→
Matrix

(1− p)|ψ〉〈ψ|+ p|Xψ〉〈Xψ|.
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The error map is

E(|ψ〉〈ψ|) = (1− p)|ψ〉〈ψ|+ p|Xψ〉〈Xψ|,

and for a general Y , the error map is

E(Y ) = (1− p)Y + pXY X∗,

which is completely positive and trace-preserving.
If we do the three bit encoding,

a|0〉+ b|1〉 → ψ ≡ a|000〉+ b|111〉,

then,

ψ
Errors−−−−−−→
Ensemble

{(1− p)3, ψ}, {p(1− p)2, (X ⊗ I ⊗ I)ψ},

{p(1− p)2, (I ⊗X ⊗ I)ψ}, {p(1− p)2, (I ⊗ I ⊗X)ψ},
{p2(1− p), (I ⊗X ⊗X)ψ}, {p2(1− p), (X ⊗ I ⊗X)ψ},
{p2(1− p), (X ⊗X ⊗ I)ψ}, {p3, (X ⊗X ⊗X)ψ}.

The error map is

E(Y ) = (1− p)3Y + p(1− p)2(X ⊗ I ⊗ I)Y (X ⊗ I ⊗ I)∗

+p(1− p)2(I ⊗X ⊗ I)Y (I ⊗X ⊗ I)∗ + . . .

+p3(X ⊗X ⊗X)Y (X ⊗X ⊗X)∗.

We had the recovery/decoding mapping

R(Y ) = P0Y P0 + (X ⊗ I ⊗ I)P1Y P1(X ⊗ I ⊗ I)
(I ⊗X ⊗ I)P2Y P2(I ⊗X ⊗ I) + (I ⊗ I ⊗X)P3Y P3(I ⊗ I ⊗X).

So the errors followed by the recovery, for ψ, obey

R ◦ E(|ψ〉〈ψ|) = ((1− p)3 + 3p(1− p)2)|ψ〉〈ψ|
+(3p2(1− p) + p3 + p3)(X ⊗X ⊗X)(|ψ〉〈ψ|)(X ⊗X ⊗X),

and for a general Y ,

R ◦ E(|ψ〉〈ψ|) = ((1− p)3 + 3p(1− p)2)Y
+(3p2(1− p) + p3 + p3)(X ⊗X ⊗X)Y (X ⊗X ⊗X).

In summary, if we do nothing,

|ψ〉〈ψ| → (1− p)|ψ〉〈ψ|+ p|Xψ〉〈Xψ|,

and if we use code recovery,

|ψ̃〉〈ψ̃| → ((1−p)3+3p(1−p)2)|ψ̃〉〈ψ̃|+(3p2(1−p)+p3)|(X⊗X⊗X)ψ̃〉〈(X⊗X⊗X)ψ̃|,

where ψ = a|0〉 + b|1〉 and ψ̃ = a|000〉 + b|111〉. The code recovery “looks
better” because (1− p)3 + 3p(1− p)2 “looks bigger” than (1− p). In addition,
the code recovery is “better” when (1 − p)3 + 3p(1 − p)2 ≥ (1 − p) if and only
if (1− p)2 + 3p(1− p) ≥ 1 if and only if p ≤ 1/2.

A better measurement of how well a code behavior is fidelity.
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32.2 Introduce and Motivate Fidelity

Recall that a state is equal to some unit vector.
Start with a state ψ, perturbed to ψ′ = aψ + bψ⊥. How close a is to 1

measures how “little” ψ′ is perturbed. Since eiθψ,ψ are the same state, so we
only need |a| = |〈ψ′|ψ〉|. So, fidelity for states is defined F ≡ |〈ψ′|ψ〉|.

For density matrices ψ 7→ |ψ〉〈ψ| = p, ψ′ 7→ |ψ′〉〈ψ′| = p′,

〈p|p′〉 = Tr(pp′)
= Tr(|ψ〉〈ψ||ψ′〉〈ψ′|)
= Tr(〈ψ|ψ′〉〈ψ′|ψ〉)
= |〈ψ′|ψ〉|2.

So, fidelity is defined F ≡
√
Tr(pp′).

The measure used for comparing error correction is fidelity:

F =
√
Tr(|ψ〉〈ψ|R ◦ E(|ψ〉〈ψ|)) =

√
〈ψ|R ◦ E(|ψ〉〈|psi|)ψ〉.

Then we are interested in either

minψ(
√
〈ψ|R ◦ E(|ψ〉〈ψ|)ψ〉)

or some type of average fidelity, say∫
sphereinC2

〈ψ|(R ◦ E(|ψ〉〈ψ|))ψ〉ds(ψ).

Example. We compare the minimum fidelities for “do nothing” and “three-
qubit error/recovery code.” For the “do nothing“

|ψ〉〈ψ| → E(|ψ〉〈ψ|) = (1− p)|ψ〉〈ψ|+ p|Xψ〉〈Xψ|,

the fidelity is

F =
√
〈ψ|[(1− p)|ψ〉〈+p|Xψ〉〈Xψ|]ψ〉

=
√

(1− p)〈ψ|ψ〉+ p〈Xψ|ψ〉〈ψ|Xψ〉
=

√
(1− p) + p|〈Xψ|ψ〉|2.

Since X|0〉⊥|0〉, minF =
√

1− p.
For the “recovery”

|ψ̃〉〈ψ̃| → R ◦ E(|ψ̃〉〈ψ̃|)
= ((1− p)3 + 3p(1− p)2)|ψ̃〉〈ψ̃|+ (3p2(1− p) + p3)|(X ⊗X ⊗X)ψ̃〉〈(X ⊗X ⊗X)ψ̃|,

the fidelity is

F =
√
〈ψ̃|R ◦ E(|ψ̃〉〈ψ̃|)ψ̃〉

= [((1− p)3 + 3p(1− p)2)〈ψ̃|ψ̃〉2 + (3p2(1− p) + p3)|〈ψ̃|(X ⊗X ⊗X)ψ̃〉|2]1/2.

Pick ψ̃ = |000〉. Then (X ⊗X ⊗X)ψ̃ = |111〉⊥ψ̃. So,

minF =
√

(1− p)3 + 3p(1− p)2.
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33 Day - 14/Nov/11

33.1 Three Qubit Phase Flip Code

Let Z =
(

1 0
0 −1

)
. Then Z|0〉 = |0〉 and Z|1〉 = −|1〉. Set

|+〉 =
|0〉+ |1〉√

2
, |−〉 =

|0〉 − |1〉√
2

.

Note that

(1) |+〉⊥|−〉.

(2) Z|+〉 = |−〉, Z|−〉 = |+〉.

So, this is completely analogous to the bit flip X = ( 0 1
1 0 ).

We encode by

|0〉 → |+ ++〉 = |+〉 ⊗ |+〉 ⊗ |+〉,
|1〉 → | − −−〉.

This behaves exactly like the bit flip code, only now for detecting/correcting
phase flips.

We similarly define for Y =
(

0 i
−i 0

)
. Set |+〉 as above. Then

Y |+〉 =
i|0〉 − i|1〉√

2
= i

(
|0〉 − |1〉√

2

)
= β.

Observe that |+〉⊥β, Y |+〉 = β, and Y β = |+〉. We encode as

|0〉 → |+ ++〉,
|1〉 → |βββ〉 = β ⊗ β ⊗ β.

33.2 The Shor Code

The encoding is as follows:

|0〉 → |0L〉 = (|000〉+|111〉)⊗(|000〉+|111〉)⊗(|000〉+|111〉)
2
√

2
∈ C29

,

|0〉 → |1L〉 = (|000〉−|111〉)⊗(|000〉−|111〉)⊗(|000〉−|111〉)
2
√

2
∈ C29

.

Theorem (Shor). There exists a completely positive and trace-preserving map
R : M29 →M29 such that, for all 2× 2 unitaries U , for all i,

Ũ = I ⊗ . . .⊗ I ⊗ U ⊗ I ⊗ . . .⊗ I,

and for all ψ = a|0l〉+ b|1L〉, we have

R(Ũ |ψ〉〈ψ|Ũ∗) = |ψ〉〈ψ|.
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In other words, the recovery operation R corrects all single errors, but for arbi-
trary U ∈M2.

Proposition. Let V ⊆ Cn be a subspace and let {U1, . . . , Ut} ⊆ Mn be uni-
taries. If UiV⊥UjV for all i 6= j, then there exists a completely positive and
trace-preserving R : Mn →Mn such that

R(Ui|ψ〉〈ψ|U∗i ) = |ψ〉〈ψ|

for all ψ ∈ V, for all i.
Proof. Let Pi be the orthogonal projection onto UiV. Let

P0 = I − P1 − . . .− Pt.

These will be teh syndrome. Set U0 = I. Define

R(X) =
t∑
i=0

U∗i PiXPiUi.

We know that R is completely positive. Since

t∑
i=0

(PiUi)(U∗i Pi) =
t∑
i=0

P 2
i =

t∑
i=0

Pi = I,

we have that R is trace-preserving.
For ψ ∈ V,

Pi(|Ujψ〉〈Ujψ|)Pi =
{

0, i 6= j,
|Ujψ〉〈Ujψ|, i = j.

Now,
|Ujψ〉〈Ujψ| = Uj(|ψ〉〈ψ|)U∗j .

Therefore,

R(|Ujψ〉〈Ujψ|) = U∗j Pj(|Ujψ〉〈Ujψ|)PjUj
= |ψ〉〈ψ|.

�

Recall the Pauli matrices I,X, Y, Z as above. A tensor of the form

I ⊗ . . .⊗ I ⊗ U ⊗ I ⊗ . . .⊗ I,

where U is a Pauli matrix, is called a 1-Pauli. The set of all 1-Pauli in C2 ⊗
. . .⊗ C2 (nine copies) is a finite set of unitaries. In fact, 39 + 1.

Proposition. Let V = span{|0L〉, |1L〉} ⊆ C29
. Let U, V be 1-Pauli such that

U 6= V . Then UV⊥V V.
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Proof (Sketch). We check a few to convince us of the proof. First off,
suppose U, V occur in the ith, jth tensor, i 6= j, involving one of X,Y, Z. For
example,

U = X ⊗ I ⊗ . . .⊗ I, V = I ⊗X ⊗ I ⊗ . . .⊗ I.

Then,

U |0L〉 = (|100〉+ |011〉)(|000〉+ |111〉)(|000〉+ |111〉),
U |1L〉 = (|100〉 − |011〉)(|000〉 − |111〉)(|000〉 − |111〉),
V |0L〉 = (|010〉+ |101〉)(|000〉+ |111〉)(|000〉+ |111〉),
V |1L〉 = (|010〉 − |101〉)(|000〉 − |111〉)(|000〉 − |111〉).

All of these are perpendicular. It is pretty easy to see that when U, V occur in
the ith,jth tensor with i 6= j, then UV⊥V V. The harder case to see is why, say

U = (X ⊗ I ⊗ . . .⊗ I)V⊥V = (Z ⊗ I ⊗ . . .⊗ I)V.

We saw what U |0L〉, U |1L〉 are. Since,

V |0L〉 = (|100〉 − |011〉)(|000〉+ |111〉)(|000〉+ |111〉),
V |1L〉 = (|000〉+ |111〉)(|100〉 − |011〉)(|100〉 − |011〉),

they are perpendicular.
�

33.3 “Pauli Magic”

Proposition. I,X, Y, Z are orthogonal in M2 and all have 2-norm
√

2.
Proof. We need to compute 〈U, V 〉 = Tr(U∗V ) = Tr(UV ), for Pauli U, V .

Obviously, I⊥X, I⊥Y . Since 〈I, Z〉 = 12 − 12 = 0, I⊥Z. Again, we clearly see
X⊥Z, Y⊥Z. Lastly, 〈X,Y 〉 = i− i = 0. Hence, X⊥Y .

They all have norm
√

2.
�

Proposition. If U ∈M2 unitary and U = a0I + a1X + a2Y + a3Z, then

|a0|2 + |a1|2 + |a2|2 + |a3|2 = 1.

34 Day - 16/Nov/11

34.1 Fixes from Last Time

Set X = ( 0 1
1 0 ), Y =

(
0 i
−i 0

)
, and Z =

(
1 0
0 −1

)
. Now define

X1 = X ⊗ I ⊗ . . .⊗ I, . . . , X9 = I ⊗ . . . I ⊗X,
Y1 = Y ⊗ I ⊗ . . .⊗ I, . . . , Y9 = I ⊗ . . . I ⊗ Y ,
Z1 = Z ⊗ I ⊗ . . .⊗ I, . . . , Z9 = I ⊗ . . . I ⊗ Z.
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So, there are 3 · 9 + 1 tensors.
Let V = span{|0L〉, |1L〉}, where

|0L〉 = (|000〉+|111〉)(|000〉+|111〉)(|000〉+|111〉)
2
√

2
,

|1L〉 = (|000〉−|111〉)(|000〉−|111〉)(|000〉−|111〉)
2
√

2
.

Proposition. (1) V, X1V, . . . , X9V, Y1V, . . . , Y9V, Z1V, Z4V, Z7V are orthog-
onal subspaces.

(2) For v ∈ V,

Z1v = Z2v = Z3,
Z4v = Z5v = Z6,
Z7v = Z8v = Z9.

Proof (Sketch). (1) This involves a lot of checking and we did a few cases
last time.

(2) This involves a lot of checking. For example,

Z1|0L〉 = (|000〉 − |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
= |09〉+ |0613〉+ |031303〉+ |0316〉
−|1306〉 − |130313〉 − |1603〉 − |19〉

= Z2|0L〉
= Z3|0L〉

and

Z1|1L〉 = (|000〉+ |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
= Z2|1L〉
= Z3|1L〉.

Compare this to

Z4|0L〉 = (|000〉+ |111〉)(|000〉 − |111〉)(|000〉+ |111〉)
= |09〉+ |0613〉 − |031303〉 − |0316〉

+|1306〉+ |130313〉 − |1603〉 − |19〉.

In addition, 〈Z1|0L〉|Z4|0L〉〉 = 0.
�

34.2 Continuation from Last Time

Let
P0, P

X
1 , . . . , PX9 , PY1 , . . . , P

Y
9 , P

Z
1 , P

Z
4 , P

X
7 ,

be the projection onto these subspaces of C29
and
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Q = I− sum of the projections.

Define

R(W ) = P0(W )P0 +X∗1P
X
1 WPX1 X1 + . . .+X∗9P

X
9 WPX9 X9

+Y ∗1 P
Y
1 (W )PY1 Y1 + . . .+ Y ∗9 P

Y
9 (W )PY9 Y9

+Z∗1P
Z
1 (W )PZ1 Z1 + Z∗4P

Z
4 (W )PZ4 Z4 + Z∗7P

Z
7 (W )PZ7 Z7 +QWQ.

Then, R is completely positive and trace-preserving, and if ψ ∈ V and is changed
by any 1-Pauli U to Uψ, then

R(|Uψ〉〈Uψ|) = R(U(|ψ〉〈ψ|)U∗) = |ψ〉〈ψ|.

Recall the following propositions:

(i) Proposition. I,X, Y, Z are orthogonal in the Hilbert space M2 and they
all have 2-norm

√
2.

Proposition. If U ∈M2 is unitary and we write

U = a0I + a1X + a2Y + a3Z,

then
|a0|2 + |a1|2 + |a2|2 + |a3|2 = 1.

Proof. Observe that

U = (
√

2a0)
I√
2

+ (
√

2a1)
X√

2
+ (
√

2a2)
Y√

2
+ (
√

2a3)
Z√
2

is an expression of U with respect to an orthonormal basis. Therefore,

2 = ||U ||22 = 2|a0|2 + 2|a1|2 + 2|a2|2 + 2|a3|2.

�

Theorem. Let ψ ∈ V and U ∈M2 be unitary. Let

Uj = I ⊗ . . .⊗ I ⊗ U ⊗ I ⊗ . . .⊗ I ∈M29 (jth tensor).

Then,
R(|Ujψ〉〈Ujψ|) = |ψ〉〈ψ|.

Proof. Write
U = a0I + a1X + a2Y + a3Z.

This implies
Uj = a0I + a1Xj + a2Yj + a3Zj .

Therefore,

|Ujψ〉〈Ujψ| = Uj(|ψ〉〈ψ|)U∗j
= a0a0|ψ〉〈ψ|+ a0a1|ψ〉〈ψXj

+ . . .+ a3a3Zj |ψ〉〈ψ|Zj .

So
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R(Uj |ψ〉〈ψ|U∗j ) = sum of these 16 terms.

However, for example, |ψ〉〈ψ|Xj = |ψ〉〈Xjψ|. When we do a projection to this,
they all annihilate it, even Q. The only terms not annihilated are the “diagonal
terms:”

|a0|2|ψ〉〈ψ|, |a1|2|Xjψ〉〈Xjψ|, |a2|2|Yjψ〉〈Yjψ|, |a3|2|Zjψ〉〈Zjψ|.

Note that

R(|a0|2|ψ〉〈ψ|) = |a0|2|ψ〉〈ψ|,
R(|a1|2|Xjψ〉〈Xjψ|) = |a1|2|ψ〉〈ψ|,
R(|a2|2|Yjψ〉〈Yjψ|) = |a2|2|ψ〉〈ψ|,
R(|a3|2|Zjψ〉〈Zjψ|) = |a3|2|ψ〉〈ψ|.

So,
R(Sum) = (|a0|2 + |a1|2 + |a2|2 + |a3|2)|ψ〉〈ψ| = |ψ〉〈ψ|.

�

35 Day - 18/Nov/11

35.1 Continuation

Proposition. For V ⊆ Cn, let E : Mn → Mn be the error map and R : Mn →
Mn be the recovery map, which are completely positive, trace-preserving. Then,

R ◦ E(|ψ〉〈ψ|) = |ψ〉〈ψ|

for all ψ ∈ V if and only if R ◦ E(PXP ) = PXP for all X ∈ Mn, where
P : Cn → V.

Theorem 1. Let V ⊆ Cn and E : Mn → Mn, E(X) =
∑r
i=1EiXE

∗
i , be a

completely positive and trace-preserving map. Then there exists a completely
positive and trace-preserving map R : Mn →Mn such that RE(PXP ) = PXP
for all X ∈Mn if and only if there exists αij ∈ C such that PE∗i EjP = αijP .

Theorem 2. Let E ,R be as in Theorem 1. Let Gi ∈ span{Ej}rj=1 such that∑t
i=1G

∗
iGi = I. Let G(X) =

∑t
i=1GiXG

∗
i . Then,

R ◦ G(PXP ) = PXP,

for all X.

Proof of Proposition. (⇐): Let ψ ∈ V with Pψ = ψ. Then P (|ψ〉〈ψ|)P =
|ψ〉〈ψ|. Therefore,

R ◦ E(|ψ〉〈ψ|) = R ◦ E(P |ψ〉〈ψ|P ) = P |ψ〉〈ψ|P = |ψ〉〈ψ|.
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(⇒): If X ≥ 0, then PXP ≥ 0, (PXP )V ⊆ V, and (PXP )V⊥ = 0. So,
non-zero eigenvectors of PXP are all in V. This implies PXP =

∑
|ψl〉〈ψl|,

for ψl ∈ V. Therefore,

R ◦ E(PXP ) = R ◦ E(
∑
|ψl〉〈ψl|)

=
∑
|ψl〉〈ψl|

= PXP.

Given any X ∈Mn, write

X = (P1 − P2) + i(P3 − P4).

Then,

R ◦ E(PXP ) = R ◦ E(PP1P − PP2P + iPP3P − iPP4P )
= PP1P − PP2P + iPP3P − iPP4P

= PXP.

�

Proof of Theorem 1. (⇒): Let R(W ) =
∑
AlWA∗l and

∑
A∗lAl = I. Then,

R ◦ E(PXP ) =
∑
l,i

AlEiPX(PE∗i A
∗
l )

=
∑
l,i

(AlEiP )X(AlEiP )∗

= PXP.

So, we have two ways to write the map X → PXP . Note that the right-hand
side is clearly minimal Choi rank.

By Choi’s theorem, there exists βil ∈ C so that AlEiP = βilP , which we
note is a row vector. This implies

∑
|βil|2 = 1, meaning the same matrix was

an “isometry.” Hence,

(PE∗i A
∗
l )(AlEjP ) = (βilP )(βjlP ) = βilβjlP,∑
l

PE∗i (A∗lAl)EjP = PE∗i EjP.

Therefore,
PE∗i EjP = (

∑
l

βilβjl)P = αijP.

(⇐): Note that

(αijP ) = (PE∗i EjP ) =

(
PE∗1

...
PE∗r

)
(E1P, . . . , ErP ) ≥ 0.
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This implies (αij) ≥ 0. Also,∑
αiiP =

∑
i

PE∗i EiP = P,

implying
∑
αii = 1. So, Tr((αij)) = 1; i.e., (αij) is a density matrix. We

diagonalize by picking a unitary U = (uij) such that

U(αij)U∗ = D = (dij),

where D is diagonal, dii ≥ 0, and
∑
dii = 1. Let

Fi =
r∑

k=1

uikEk, 1 ≤ i ≤ r.

By Choi’s theorem,
∑r
i=1 FiXF

∗
i = E(X). Also,

PF ∗i FjP = P ((
∑
k

uikEk)(
∑
l

ujlEl))P

=
∑
k,l

uikujlPE
∗
kElP

= (
∑
k,l

uikαklujl)P

= dijP.

Therefore,

PF ∗i FjP =
{

0, i 6= j,
diiP, i = j.

When i 6= j, and for ψ1, ψ2 ∈ V, we have

〈FiPψ1|FjPψ2〉 = 〈ψ1|PF ∗i FjPψ2〉 = 0,

which implies
〈Fiψ1|Fjψ2〉 = 0.

Therefore, FiV⊥FjV.
Now, when dii = 0, PF ∗i FiP = 0, which implies FiV = (0). When dii 6= 0,

1
dii
PF ∗i FiP = P,

and for ψ1, ψ2 ∈ V, we have

1
dii
〈FiPψ2|FiPψ1〉 =

1
dii
〈ψ2|PF ∗i FiPψ1〉

= 〈ψ2|ψ1〉.
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Therefore,
1√
dii
FiP : V → Vi

is an isometry.
Let Ri = 1√

dii
PF ∗i when dii 6= 0, and Ri = 0 otherwise. Then

R =
∑

R∗iRi =
∑ 1

dii
FiPF

∗
i

and

R2 =
∑
i,j

1
dii

1
djj

(FiPF ∗i )(FjPF ∗j )

=
∑
i

1
d2
ii

Fi(diiP )F ∗i

= R.

Hence, R is a projection. Let Q = I −R. Define

R(X) =
∑
i

RiXR
∗
i +QXQ.

This is completely positive and trace-preserving since∑
R∗iRi +Q∗Q = R+Q = I.

105


