
In lieu of an apology for my constant cribbing in
Vasanth’s lectures

(A couple of comments before wading into the math discussion in
defense of my constant heckling of Vasanth in his discussion of what
he called λ(G) and M . I want to use slightly different notation: while
Vasanth used λ(G) for a von Neumann algebra, I like to reserve Γ for
countable groups and G for possibly non-discrete topological groups,
and for me, λ(Γ) will denote the group which is the image under
the left regular representation of Γ and LΓ will be the generated von
Neumann algebra. Also, while Vasanth discussed the standard form
only for II1 factors, that notion and subsequent analysis (JMJ =
M ′, etc.) make perfectly good sense for any von Neumann algebra
with a faithful normal tracial state. And finally, like Kunal, I will
write {δt : t ∈ Γ} for the canonical ONB for `2(Γ).)

Let Γ be a countable discrete group, and let `2(Γ) be the (separa-
ble) Hilbert space with orthonormal basis given by {δt : t ∈ Γ}. Let
λ, ρ denote the left- and right-regular (unitary) representations of
Γ on `2(Γ) defined by

λ(s)δt = δst, ρ(s)δt = δts−1 .

Then LΓ =: λ(Γ)” is a von Neumann algebra . Note that λ(Γ) ⊂
ρ(Γ)′, and so LΓ ⊂ ρ(Γ)′. Clearly δ1 is a cyclic vector for LΓ as well
as for ρ(Γ)” (since λ(Γ)δ1 = ρ(Γ)δ1 = {δt : t ∈ Γ}) and hence also
for (LΓ)′. Thus δ1 is a cyclic and separating vector for LΓ. Also

〈λ(s)∗λ(t)δ1, δ1〉 = δs,t = 〈λ(t)λ(s)∗δ1, δ1〉 ,

so we find that and the equation tr(x) = 〈xδ1, δ1〉 defines a faithful
normal tracial statetr on LΓ, which is thus a finite von Neumann
algebra in standard form.

If J denotes the modular conjugation operator JLΓ, we have, by
definition,

Jδt = Jλ(t)δ1 = λ(t)∗δ1 = δt−1

and so,

Jλ(s)Jδt = Jλ(s)δt−1 = Jδst−1 = δts−1 = ρ(s)δt

and Jλ(G)J = ρ(G).
We may deduce that ρ(G)” = λ(Γ)′ = (LΓ)′.

1



Note next that each x ∈ B(`2(Γ)) has a natural representation
as a matrix with respect to the orthonormal basis {δt}t. Thus x =
((x(s, t))) where

x(s, t) = 〈xδt, δs〉.

Direct computation shows that for arbitrary u, s, t ∈ Γ we have

(ρ(u)∗xρ(u))(s, t) = 〈ρ(u)∗xρ(u)δt, δs〉
= 〈xρ(u)δt, ρ(u)δs〉
= 〈xδtu−1 , δsu−1〉
= x(su−1, tu−1)

and hence,

x ∈ (ρ(Σ)′⇔x(s, t) = x(su−1, tu−1) ∀s, t, u⇔x(s, t) = x(st−1, 1) ∀s, t.

In other words, the following conditions on an x ∈ B(`2(Γ)) are
equivalent:

1. x ∈ LΓ.

2. x ∈ ρ(Γ)′.

3. The matrix coefficients of x satisfy x(s, t) = x(st−1, 1) ∀s, t.

*********************************************

The purpose of the following result is to show that - even when Γ = Z
- one should be wary of hastily deducing from the previous assertion
that one may write x =

∑
s∈Γ x(s, 1)λ(s) or interprest the ‘series’ on

the right as an SOT (or WOT) limit of a sequence
∑

s∈Gn
x(s, 1)λ(s)

where Gn are finite sets increasing to Γ.

Proposition 0.1. There exists f ∈ C(T) such that supn‖Snf‖∞ =
∞ and in particular it is not true that ‖(Snf)g − fg‖2 → 0∀g ∈
L2(T). (i.e., the Fourier series of elements of C(T) need not converge
in the strong operator topology of B(L2(T, 1

2πdθ)); here, of course,
Snf denotes the n-th partial sum of the Fourier series of f .)

Proof. 1 On the contrary, suppose supn‖Snf‖∞ < ∞ for all f ∈
C(T). Then, in particular, we should have supn‖(Snf)(0)‖ <∞ for
all f ∈ C(T). If we define φn ∈ C(T)∗ by φn(f) = (Snf)(0), we find

1I must thank Narayanan (IISc) for this neat proof.
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that {φn(f) : n ∈ N} is bounded for every f ∈ C(T), and hence, by
the uniform boundedness principle, that supn‖φn‖C(T)∗ <∞.

On the other hand φn(f) = 1
2π

∫ 2π
0 f(eiθ)Dn(eiθ)dθ, where Dn

denotes the ‘Dirichlet kernel’ given by Dn(eiθ) =
∑n

k=−n e
ikθ; and so

‖φn‖C(T)∗ =
1

2π

∫ 2π

0
|Dn(eiθ)|dθ

while it is a well-known fact - see https : //en.wikipedia.org/wiki/Dirichlet−kernel
- that supn

∫ 2π
0 |Dn(eiθ)|dθ = +∞. Thus we have arrived at a con-

tradiction, and the proposition is proved. �

Remark 0.2. The point is that any ‘bad’ f ∈ C(T) as in Proposition
0.1 will be such that the inverse Fourier transform f∨ is an element

of `2 which is a bounded ‘convolver’ - because f = (̂f∨) ∈ C(T) ⊂
L∞(T).
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