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PACS 05.45.-a – Nonlinear dynamics and chaos

Abstract – We show how a synthetic gene network can function, in an optimal window of noise,
as a robust logic gate. Interestingly, noise enhances the reliability of the logic operation. Further,
the noise level can also be used to switch logic functionality, for instance toggle between AND, OR
and XOR gates. We also consider a two-dimensional model of a gene network, where we show how
two complementary gate operations can be achieved simultaneously. This indicates the flexible
parallel processing potential of this biological system.

Copyright c© EPLA, 2011

Logic gates, such as AND, OR, XOR, NOR and NAND,
form the basis of universal general-purpose computa-
tion [1]. So different physical principles that can yield
logic outputs, consistent with the truth tables of differ-
ent logic functions (see table 1), are of paramount inter-
est. A new direction in this endeavour uses the interplay
between noise and nonlinearity to enhance the reliabil-
ity of logic gates, a phenomenon named logical stochastic
resonance [2].
In this work we investigate the possibility of obtain-

ing robust logic outputs from a noisy biological system
of considerable interest, namely a synthetic single gene
network. We demonstrate the crucial role of noise in the
enhancement of the logic performance in this system.
We also show that the power of varying noise levels can
flexibly yield different types of logic: namely the genetic
network can effectively behave as a reconfigurable biolog-
ical logic gate with noise acting as a logic pattern selec-
tor. Further, we show the capacity of a higher-dimensional
system for parallel processing logic functions. The latter
observation indicates that more complex systems may
have inherently greater computational capability arising
from greater parallel processing capacity.
First we describe the synthetic single gene network

model below, and then go on to define what constitutes
inputs and outputs in this system.

(a)E-mail: hiroyasu ando@brain.riken.jp

Table 1: Relationship between the two inputs and the output
of the fundamental OR, AND, NOR, NAND and XOR logic
operations. Note that the four distinct possible input sets (0, 0),
(0, 1), (1, 0) and (1, 1) reduce to three conditions as (0, 1)
and (1, 0) are symmetric. Note that any logical circuit can be
constructed by combining the NOR (or the NAND) gates [1].

Input set (I1, I2) OR AND NOR NAND XOR

(0, 0) 0 0 1 1 0
(0, 1)/(1, 0) 1 0 0 1 1
(1, 1) 1 1 0 0 0

Single-gene network model. – We use the quanti-
tative model, developed in [3], describing the regulation
of the operator region of the λ phage, whose promoter
region consists of three operator sites. The chemical reac-
tions describing this network, is given by suitable rescaling
(and considering the total concentration of DNA promoter
sites to be a constant) as [3]:

ẋ=
m(1+x2+ασ1x

4)

1+x2+σ1x4+σ1σ2x6
− γx= F (x), (1)

where x is the concentration of the repressor.
Such equations often arise in modelling genetic circuits.

In its functional form, the right-hand side represents
production of repressor due to transcription. The even
polynomials in x arise due to dimerization and subsequent
binding to the promoter region.
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For the operator region of the λ phage, σ1 ∼ 2, σ2 ∼
0.08 and α∼ 11. The integer m represents the number of
plasmids per cell. It is possible to design a plasmid with
a given copy number. We take it to be 1 in the numerics
here.
The parameter γ is directly proportional to the protein

degradation rate, and in the construction of artificial
networks it can be considered a tunable parameter [3]. The
nonlinearity of eq. (1) leads to a double well potential, and
different γ introduces varying degrees of asymmetry in the
potential.
Generally speaking, cells are intrinsically noisy bio-

chemical reactors, and low reactant numbers can lead to
significant statistical fluctuations in molecule numbers and
reaction rates [4]. So it is of considerable interest to study
properties that may emerge from noisy genetic systems.
With this in mind, consider the above nonlinear system
given by eq. (1), driven by a low-amplitude input signal I,
under noise as follows:

ẋ= F (x)+ I +Dη(t), (2)

where η(t) is an additive zero-mean Gaussian noise with
unit variance and intensity D; the noise is taken to have
correlation time smaller than any other time scale in the
system, so that it may be represented, theoretically, as
delta correlated. Broadly speaking, the inherent stochas-
ticity of biochemical processes such as transcription and
translation, as well as fluctuations in the amounts or states
of other cellular components, leads to variation in the
expression of a particular gene. Specifically, for a single
gene it was found that noise is essentially determined
at the translational level, and that the fluctuations in
the concentrations of a regulatory protein can propagate
through a genetic cascade [4].
Now for a two-input logic gate, the logic inputs can be

either 0 or 1, giving rise to 4 logic input sets (I1, I2):
(0, 0), (0, 1), (1, 0), (1, 1), with (0, 1) and (1, 0) being
symmetric for basic logic functions (see table 1). In our
model, when the inputs are I1, I2, we drive the system
with the signal I = I1+ I2. That is, the system evolves as
ẋ= F (x)+Dη(t)+ I1+ I2.
With no loss of generality, consider two inputs I1,2

to take the value 0 when the logic input is 0, and the
value 0.75 when the logic input is 1. That is, the input
signal I can have 3 distinct levels, corresponding to (0, 0),
(0, 1)/(1, 0) and (1, 1). Also, since the inputs I1, I2 can
stream in any random order, the external driving I is, in
general, completely aperiodic.
The output of the system is determined by its state,
e.g., the output can be considered a logical 1 if it is in
one well, and logical 0 in the other well. Specifically, the
output corresponding to this 2-input set, for a system
with potential wells at xu and xl, is taken to be 1 (or 0)
when the system is in the well at xu, and 0 (or 1) when
the system is in the other well. Hence, when the system
switches wells, the output is “flipped”.
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Fig. 1: Time series of x(t), with γ equal to (upper panel)
5.7 and (lower panel) 6.3, and noise intensity D= 0.15. The
dashed line shows the desired logic response (OR for the upper
panel and AND for the lower panel). Evidently, the upper panel
shows consistent OR and the lower panel consistent AND, for
instance by taking x> 0.75 as logic output 1 and x< 0.75 as
logic output 0 (or alternately, NOR and NAND, by taking
x> 0.75 as logic output 0 and x< 0.75 as 1).

In fig. 1 (upper panel) we show the response of the
system for γ = 5.7 (see footnote 1). We observe that, under
optimal noise, interpreting x(t)<x∗ as logic output 0 and
the voltage x(t)>x∗ as logic output 1 yields a clearly
defined robust logical OR whereas interpreting x(t)>x∗

as logic output 0 and x(t)<x∗ as logic output 1 yields a
clean logical NOR. In a completely analogous way, when
γ = 6.3 in fig. 1 (lower panel), we can realize clean AND
and NAND gates. The output is determined by taking
x∗ to be a point midway between the wells. Specifically
x∗ = 0.75 in the numerics presented here. However, similar
results are robustly obtained with 0.5<x∗ < 1.
In order to rigorously quantify the performance of the

system as a logic gate we calculate the probability of
the system yielding the right gate output, by scanning
a range of input sequences and initial states. Namely,
the consistency of obtaining a given logic output is given
by the probability, P(logic), defined as the ratio of the
number of correct logic outputs to the total number of
runs, where each run samples over the four input sets
(0, 0), (0, 1), (1, 0), (1, 1), in different permutations.

1Here we use the Euler-Maruyama scheme for integrating stochas-
tic differential equations.
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Fig. 2: (Colour on-line) Probability of obtaining logic
operations (see text): (top) P (NAND)/P (AND); (bottom)
P (NOR)/P (OR). The x-axis displays noise intensity D and
the y-axis displays γ.

A run is considered a success if the output is correct over
the entire period of the given input signal (allowing for
small latency after input switching), for all four input sets
in the run.
Figure 2 shows this stringent reliability criterion

obtained from numerical simulations over 100 different
runs, with the input signals being held over t∼ 105 before
switching. We can thus ascertain, both the steadiness of
the logic output over long times, and its robustness with
respect to changing input streams. It is evident that the
fundamental logic operation NAND (and, analogously,
NOR) is realized, consistently, in an optimal band of
moderate noise. Namely, P (logic)∼ 1 in relatively wide
windows of moderate noise. The parameter γ determines
the asymmetry of the wells, and so varying γ results in
the system being driven to different wells. For smaller γ
one obtains the NOR logic operation, and for larger γ one
obtains the NAND logic operation2.
One can also analyse the probability P (x) of obtaining

the system in state x by solving for the steady-state distri-
bution arising from the relevant Fokker-Planck equation,
namely P (x) =A exp(−2φ(x)/D), where A is a normaliza-
tion constant, D is the noise intensity and −∂φ(x)/∂x=
F (x) [4,5]. This analysis yields results completely consis-
tent with the observations (for example see fig. 3).

Alternate input-output association. – Consider
again the above genetic system under the influence of

2Note that the above results are robust with respect to different
types of noise, for instance 1/f noise.
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Fig. 3: (Colour on-line) P (x) (see text) vs. x, for different input
sets, with γ = 5.7 andD= 0.1, reflecting a clean OR/NOR logic
association.

noise: ẋ= F (x)+Dη(t), where F (x) is given by eq. (1)
and the noise intensity

D=Dgate× I,
where I = I1+ I2 is a low-amplitude external input signal
encoding the two logic inputs. So the inputs here deter-
mine the noise intensity, or alternately one can view the
input signal as being modulated by noise.
Specifically, I1 and I2 can have value 0 when logic input

is 0 and value 0.5 when logic input is 1. So the effective
noise amplitude D varies with the inputs, being 0 for input
set (0, 0), 12Dgate for input sets (0, 1)/(1, 0), and Dgate for
input set (1, 1).
In order to obtain a logic operation one needs a clean

one-to-one relation between some physical quantity and
the output. Here we associate the average value of the
repressor concentration x, 〈x〉, with different outputs.
Note that this average can be over very short times for
AND/NAND and OR/NOR determination.
For instance, with no loss of generality, the logic output

can be determined as follows: i) if the average x, 〈x〉<x∗,
then the logic output is 0; ii) if the average x, 〈x〉>x∗,
then the logic output is 1, where x∗ is the critical
output determination level. Specifically, the threshold
level x∗ used to determine the 0/1 output can be chosen
appropriately depending on the well positions, well depths,
well symmetry, etc.
Now, varying the level Dgate yields different kinds of

logic behavior. Representative values ofDgate areDAND =
0.5 for AND gate and DOR = 1.0 for OR gate, using
x∗ ∼ 0.75.
It is also possible, using longer time averages, to adopt

more sensitive cut-offs to obtain a larger variety of gates.
For instance, using x∗ = 1.35, one can obtain the XOR
gate with DXOR = 1, the OR gate with DOR = 0.6 and
the AND gate with DAND = 0.3 (see fig. 4).
So the noise level has a one-to-one correspondence with

the distinct logic input sets that can occur, as well as
the type of logic function. Or another way of viewing this
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Fig. 4: (Colour on-line) The average value of repressor concen-
tration 〈x〉, averaged over t= 50000, vs. noise intensity D. Here
m= 1, γ = 4.75, and the initial state of the system is x= 0
(i.e. the system is in the lower well). The cut-offs x∗ = 0.75
and x∗ = 1.35 are also displayed for reference.

is that the input signal is modulated with superimposed
noise, whose level determines the nature of logic response
obtained. The distinct feature here is the multiplicative
nature of the noise and signal, vis-à-vis the earlier additive
noise [2].
In particular, we have now explicitly shown the example

of parallel AND and XOR on a set of inputs —which
constitutes a half-adder (this is a set of operations that
typically need to be done an enormous number of times
in arithmetic computation). We show how this example of
combinational logic, involving two logic functions, can be
done by a single system here.
Now, in order to gauge the generality of these results

under different types of noise, and the effects of increasing
dimensionality, we will consider a two-dimensional model
genetic system below.

Two-dimensional model of a toggle switch as a
logic gate. – Here we use the model of toggle switch
composed of two repressors and two constructive pro-
moters [6]. Each promoter is inhibited by the repressor
that is transcribed by the opposing promoter. This model
can be described by the following two-dimensional system,
which is slightly modified from original one [7]:

u̇=
α1

1+ vn1
− d1u+ g1, (3)

v̇=
α2

1+un2
− d2v+ g2, (4)

where u is the concentration of one repressor (R1), v is
that of the other (R2). α1 and α2 are the effective rates
of synthesis of R1 and R2, n1(n2) is the cooperativity of
repression of promoter 2 (promoter 1). di and gi (i= 1, 2)
are the degradation rates and the basal synthesis rates,
respectively. We fix the parameters as α1 = α2 = 5, n1 =
n2 = 1.6, d2 = 1, g1 = 0, and we vary the value of d1 and
g2 in the following simulations.
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Fig. 5: (Colour on-line) Null-clines for the system (3) and (4)
in the phase space. We consider three cases for the null-cline of
(4). The open circles are the unstable fixed point and the filled
circles are stable ones. The schematic 1D double-well potentials
are shown corresponding to the condition of each null-cline.

In fig. 5, we show the crossing null-clines in the phase
space of the system (3) and (4), where d1 = 1 and g2 (> 0)
takes three different values (n1 = n2 = 1.8 only for the
figure). There are two stable fixed points and one unstable
fixed point in each case. We must have a two-dimensional
potential with double wells for the system. In the figure,
we also show the corresponding double-well potential in
the one-dimensional case. It is conceivable that one can
tune the shape of the wells in the two-dimensional poten-
tial by varying the parameters of the system. Therefore,
logical stochastic resonance can be observed in the
two-dimensional model too, as we show below.
Here, let us consider the noise is added to the degrada-

tion rates, which means the noise is multiplicative to the
system, i.e. d1u→ (d1+Dη1(t))u, d2v→ (d2+Dη2(t))v.
As in the 1D case, η1,2 are zero-mean white Gaussian
noise with the amplitude D. Further, we consider an input
signal I = I1+ I2 driving eq. (4). With no loss of general-
ity, for logic input 0, the I1,2 take value 0 here, and for
logic input 1, they take value 0.1.
In fig. 6 we show the response of the system with respect

to one of two variables, i.e. v(t) for d1 = 0.9 and different
g2. Interpreting v(t)< v

∗ as logic output 0, and the value
of v(t)> v∗ as logic output 1, gives correct OR (upper
panel) and AND (lower panel) logical operations under
optimal noise. We take v∗ ∼ 1.5 here, but note that the
results are quite robust with respect to small variations
of this level. We take g2 = 0.1 for the OR response and
g2 = 0.0 for the AND. Here the different gates are obtained
by changing the well shape determined by varying g2.
Now, most interestingly, the dynamics of the other

variable u(t) (which evolves simultaneously of course)
yields the complementary logical output. That is, u(t)
operates as NAND or NOR, while v(t) yields AND or OR
response. This is significant, as it allows the system to yield
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Fig. 6: Time series of v(t), with d1 = 0.9 and g2 equal to (upper
panel) 0.1 and (lower panel) 0.0, and the noise intensities are
both D= 0.1. The dashed line shows the desired logic response
(OR for the upper panel and AND for the lower panel). Clearly,
the upper panel shows consistent OR and the lower panel
consistent AND, for instance by taking v > 1.5 as logic output 1
and v < 1.5 as logic output 0. Moreover, NAND (top) and NOR
(bottom) responses are obtained by u(t) simultaneously (not
shown).

a logic operation and its complement in parallel, without
necessitating the additional NOT operation.

Generalized parallel logic. – Above, we were
successful in obtaining complementary logical operations
simultaneously, say OR/AND for v(t) and NOR/NAND
for u(t) in fig. 6. Now, we extend the combination of
parallel logic operations, to realize OR-XOR, AND-OR
and AND-XOR simultaneously for a shared input set.
The AND-XOR combination for a common set of inputs is
particularly important, as it forms the basis of bit-by-bit
addition, which is the most fundamental arithmetic
operation. Further, we will then go on to show parallel
logic operations on two independent input sets. The key
to parallel processing is the higher dimensionality of the
system. For instance, in a two-dimensional dynamical
system, the two variables can give two different logical
outputs in parallel.
The parallel logic output AND-NAND (OR-NOR)

above, could be achieved due to the location of the
potential wells in 2D phase space. Namely, one of the
two potential wells was located at low u and high v,
and the other at high u and low v. Clearly, to obtain a
variety of combinations of parallel operations (not just
complementary logic), we must exploit the location and
depth of the wells in two-dimensional phase space.
Specifically, consider four regions of phase space in a 2D

system: A) (xlow, ylow), B) (xlow, yhigh), C) (xhigh, ylow),
D) (xhigh, yhigh). The “low” and “high” are determined
by appropriate thresholds, for instance, with the “low”
corresponding to less than 3 and “high” corresponding
to greater than 3. So the parallel logic outputs (0, 0)
can be associated with region A), outputs (0, 1) with
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Fig. 7: (Colour on-line) Top: null-clines for the system (5) and
(6) in the phase space, for (I1, I2) equal to (1, 1). Corresponding
pairs of logical outputs are indicated in the region segmented by
the dotted lines. The open circles are the unstable fixed point
and the filled circles are stable ones. Bottom: three trajectories
for D= 0.03, D= 0.3 and D= 0.5 are shown.

region B), outputs (1, 0) with region C) and outputs (1, 1)
with region D). Thus, the different potential well locations
realize different pairs of logic truth tables in parallel.
For a particular realization of such potential wells,

consider the following 2D system with independent sets
of inputs I = I1+ I2 and I

′ = I ′1+ I ′2:

ẋ= f(x)− y+h1(I, I ′)+Dη1(t), (5)

ẏ= x− g(y)+h2(I, I ′)+Dη2(t), (6)

where f , g are cubic functions: f(x) = a1x
3+ b1x

2+ c1x+
d1, g(y) = a2y

3+ b2y
2+ c2y+ d2. η1,2 are zero-mean white

Gaussian noise and with the amplitude D. hi is an
appropriate function to design the location of the well
depending on the inputs. Here, we fix the parameter
a1 =−a2 =−1, b1 =−b2 = 10, c1 =−c2 =−30.5.
In fig. 7, we show the null-clines of the system (5) and (6)

with respect to (I1, I2) = (I
′
1, I

′
2) = (1, 1), and hi(x, y) =

Ai(x+ y)/2+Bis((x+ y)/2, 0.5) with the sigmoidal func-
tion s(x, ε) = 1/(1+ exp(−1000(x− ε))). A1 =−0.3, B1 =
1.5, A2 = 2, B2 =−3.1, and d1 = 29.9 and d2 =−24.4. Here
we consider the case of shared inputs. In the figure, the
deepest potential well corresponding to the bottom-right
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Fig. 8: Time series of x(t) (upper panel) and y(t) (lower panel),
with noise intensity D equal to 0.3. The dashed line shows the
desired logical outputs (AND for the upper panel and XOR
for the lower panel). Almost certainly, the upper panel shows
consistent AND (taking x> 3 as output 1; x< 3 as output 0)
response, and the lower shows XOR response in the same
threshold.

stable fixed point would be located in the region C) (top
panel). Additionally, we show the trajectories with noise
intensity D= 0.03, D= 0.3, and D= 0.5 (bottom panel).
Apparently, under optimal noise, the system goes to the
deepest potential well.
In fig. 8, we show the response of the system for paral-

lelized AND-XOR operations in a window of optimal noise.
This parallelization allows bit-by-bit addition, namely the
“half-adder”, to be implemented in one step.
Now we move on to the case of independent input sets.

In principle, as for shared inputs, the idea again is that
the location of the deepest well is shifted depending on the
inputs, with the only difference being that the well location
is changed by function hi which depends on the combi-
nation of the inputs. For example, in order to operate
parallelized AND-OR gates with independent inputs, we
can choose hi for (I, I

′) as follows: h1(I, I ′) =A1s(I, 1.5)+
B1s(I

′, 0.5) and h2(I, I ′) = A2s(I, 1.5) + B2s(I ′, 0.5).
Figure 9 shows the successful response for AND and
OR parallel operations in response to a sequence of
independent input sets. The input I(I ′) takes three
different levels for (0, 0), (0, 1)/(1, 0), and (1, 1), and
the parameter values are A1 = 0.67, B1 = 0.83, A2 = 0.83,
B2 =−0.67, and d1 = 30.176, d2 =−24.34. Note that the
sigmoidal functions provide the Boolean operations with
regard to locating the deepest well. However, the outputs
are obtained robustly, not directly from the Boolean
operations, but due to the noisy dynamics that prevents
the trajectories from being trapped in shallow wells.
The above-mentioned capacity of a complex system

to operate in parallel as different combinations of
gates indicates exciting possibilities for significantly
increasing computational power, not only in synthetic
genetic networks [8], but also in many other natural and
engineered systems.
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Fig. 9: Time series of x(t) (upper panel) for AND gate and
y(t) (lower panel) for OR gate, with D= 0.3 in the case of
independent input sets. The dash-dotted lines show the inputs
I = I1+ I2 (upper panel) I

′ = I ′1+ I
′
2 (lower panel). The upper

panel shows consistent AND (taking x> 3 as output 1; x< 3
as output 0) response most likely, and the lower panel shows
OR response in the same threshold.

In summary, our results here extend the scope, and indi-
cate the generality of the recently observed phenomena of
logical stochastic resonance (LSR). Further, these obser-
vations may provide an understanding of the information
processing capacity of synthetic genetic networks, with
noise acting as the logic pattern selector. It also may have
potential applications in the design of biological gates with
added capacity of reconfigurability of logic operations and
parallel processing.
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