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Abstract. Here we introduce a model of parametrically coupled chaotic maps on a one-
dimensional lattice. In this model, each element has its internal self-regulatory dynamics,
whereby at fixed intervals of time the nonlinearity parameter at each site is adjusted by
feedback from its past evolution. Additionally, the maps are coupled sequentially and
unidirectionally, to their nearest neighbor, through the difference of their parametric vari-
ations. Interestingly we find that this model asymptotically yields clusters of superstable
oscillators with different periods. We observe that the sizes of these oscillator clusters
have a power-law distribution. Moreover, we find that the transient dynamics gives rise to
a 1/f power spectrum. All these characteristics indicate self-organization and emergent
scaling behavior in this system. We also interpret the power-law characteristics of the
proposed system from an ecological point of view.

Keywords. Self-organization; power-law scaling; chaos control; 1/f noise; coupled map
lattices.
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1. Introduction

Spatially extended systems composed of many interacting nonlinear elements are
capable of displaying rich dynamical behavior and thus have gathered attention in
the field of nonlinear dynamics. Foremost among such models are those of coupled
maps on a lattice. This class of models has provided test-beds for investigating
spatiotemporal patterns in a variety of contexts in physics, biology and engineering
[1].

Here we introduce a model of parametrically coupled logistic maps on a one-
dimensional lattice. In this model, each element has its internal self-regulatory
dynamics, whereby at fixed intervals of time the nonlinearity parameter at each site
is adjusted by feedback from its past evolution. Additionally, the maps are coupled
sequentially, unidirectionally, to their nearest neighbor, through the difference of
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their parametric variations. The coupling propagates only if the variation at a site
exceeds the coupling amount received from the preceding site. This cascade of
coupling is reminiscent of avalanches of activity in models with threshold activated
coupling, such as sandpile-like models, with the nonlinearity parameter of each map
being analogous to height. The specifics of the model are discussed in §2.

2. Model

Let us consider the following system with the two-dimensional map:

xn+1 = f(xn, an), n = 0, 1, . . . , T̃ , (1)
an+1 = g(n, xn, an), (2)

where xn is the state variable at time n and an is the dynamically changing non-
linearity parameter. The function f(·, ·) can be taken to be a one-dimensional
unimodal function, with varying nonlinearity an. Note that an determines the
height of the unimodal map. In this work, we consider the logistic form for f ,
namely f(xn, an) = xn+1 = anxn(1− xn) with 0 ≤ an ≤ 4 and 0 ≤ xn ≤ 1.

The function g is the feedback adjustment function introduced in ref. [2], and it
depends on n, xn and an. It is described explicitly as follows:

g(n, xn, an) =
{

4x̂j if n = jT ,
an if n 6= jT ,

j = 1, 2, 3, . . . , (3)

x̂j = max{xl}(j−1)T<l≤jT , (4)

where T is an integer parameter.
These equations describe how the nonlinearity an changes its value every T steps,

influenced by the largest value of x in the preceding T steps, (j − 1)T < n ≤ jT .
Now the maximum x, x̂, of the logistic map function f(x) = ax(1 − x) is a/4, i.e.
the nonlinearity a is 4x̂. So eq. (3) implies that the nonlinearity adapts to the
‘effective nonlinearity’ of the (finite time) dynamics of the preceding T steps given
by 4x̂. This adaptation of the nonlinearity a will stop when its dynamics reaches
a fixed point, i.e., an+1 = an = a∗, and this will happen only when the T steps
include the maximum point of the logistic function with nonlinearity a∗. Since a
point passing through the maximum has slope zero, it is a point on a superstable
cycle. So this mechanism internally adapts the nonlinearity to a value yielding some
superstable periodic orbit. Note that the value of aj(i) by the update rules (3) and
(4) is always decreasing, because the logistic map is upward humped [2].

Now T gives the length of the time series that determines the change in the value
of the nonlinearity. It also gives the time scale at which the parameter an updates,
namely it sets a time scale for variation of a which is T times slower than the
updating of the state variable. So x can be considered the fast variable and a the
slow variable in this dynamical system.

As mentioned before, after successive iterations of the maps (1)–(4), aj converges
to a value so that the orbit of xn is superstable periodic. Such superstable periodic
orbits mainly exist in the periodic windows observed in the bifurcation diagram
of the logistic map. The mechanism of the convergence is elucidated in detail in
ref. [2].
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Figure 1. The schematic figure illustrating the nature of the avalanche-like
coupling. (a) There is avalanche from site i+1 to site i+2. (b) No avalanche
occurs from site i + 1 to site i + 2.

Now we investigate a spatially extended system of size N , composed of logistic
maps with nonlinearities adjusted by the above feedback mechanism. In our model,
at discrete time n, the state variable of the element at site i and its nonlinearity
parameter is denoted by xn(i) and an(i) (≡aj(i), j = [n/T ]). The site index i =
1, . . . , N , where N is the number of sites in the system.

First, each element is updated by the map (1) for T time steps. Let us call
such updates internal dynamics. Then there is a change in the nonlinearity of the
elements by feedback from the preceding T steps by eq. (4). After this internal
self-regulatory parametric adjustment, there is a coupling among the elements. In
analogy with sandpile-like models, the ‘height’ of each element is given by aj(i),
which determines the maximum of local unimodal function determining the internal
dynamics. Then, the change in the height aj(i) of each element i by eq. (4) is
denoted by ∆i, where ∆i = aj−1(i)− aj(i) and ∆i ≥ 0. This change in height ∆i

is the quantity that influences the neighboring site, and determines the form of the
coupling (see figure 1).

Now we couple the elements in a manner reminiscent of avalanche coupling [3,4],
with the coupling being unidirectional and sequential, occurring from site 1 to N .
In our scheme, for elements i = 2, . . . , N , if the height drop of an element is larger
than the height drop of the preceding element then the difference in the height
drops (i.e. parameter changes) is added to the next element.

Explicitly this gives the following condition for coupling to occur, i.e. for
an avalanche to propagate. Let ∆′

i be defined recursively as follows: ∆′
i =

∆i−1 − ∆′
i−1, i = 2, . . . , N − 1. If ∆′

i < ∆i, then ∆i − ∆′
i is added to aj(i + 1),

and zero otherwise. So coupling is propagated, that is an avalanche occurs, when

Pramana – J. Phys., Vol. 70, No. 6, June 2008 1155



Hiroyasu Ando, Sudeshna Sinha and Kazuyuki Aihara

the parametric variation of a site is larger than that of the preceding element (see
figure 1).

The boundary conditions are given as follows: ∆′
1 = 0 and so ∆′

2 = ∆1, i.e. the
variation ∆1 is always added to aj(2). At the other end, the boundary at element
N is open.

After the sequential coupling finishes, each element is updated again by
the internal dynamics given in eqs (3) and (4). Then, the coupling in-
teractions, giving rise to the next avalanche, start. The number of the
sites influenced by coupling during the avalanche process between chaotic
updates indicates the avalanche size. Here we will study the normalized
avalanche size, i.e., the avalanche size divided by system size N , denoted
by s(j). Note that this quantity is bounded between 0 and 1.

Relevance of the model to food chains: In general, an ecosystem is a web of complex
interactions among species. To understand this complexity, it is necessary to study
basic food chain dynamics. Food chains describe the feeding relationships between
species in an ecological community. They graphically represent the transfer of
material and energy from one species to another within an ecosystem. Organisms
are connected to the organisms they consume, and this determines the direction of
biomass transfer [5–7].

Food chains involving three or more species are then the fundamental building
blocks for ecosystems. While a particular ecosystem may be intractable, simple food
chains can be modeled by coupled nonlinear maps, as in this work. So our class of
models may provide an illustrative paradigm within which food-chain models can
be analyzed, thus shedding light on ecocomplexity in general.

Specifically, organisms in a food chain are usually grouped into trophic levels,
where each trophic level may consist of either a single species or a group of species
that are presumed to share both predators and prey. They usually start with a
primary producer and end with a carnivore. In our model the nodes(sites) can
represent trophic levels. The first site represents photosynthesizing plants and the
open end represents the carnivores at the top of the food chain. The unidirectional
coupling among nodes along the chain can then mimic the connections from one
organism to the next in the food chain.

The dynamics at each site/node in our chain models the population dynamics at
the trophic level through the logistic map [8]. The effective growth rate is given by
the nonlinearity parameter at each node. Now each level has an internal feedback
mechanism that drives the level to stable cyclic population patterns. This is given
by eqs (1)–(4). Now, since the levels are connected, the effective growth rates at
each level must depend on the level below it in the chain. This is reflected in
our coupling scheme, which couples the effective growth rates of the population in
adjacent connected levels.

In our coupling the rate of change of effective growth rates due to the internal
feedback at one level influences the change at the next level in the chain. If this
change is larger than the change at the lower level, it is reduced by an amount
proportional to the difference of the changes of growth rates. This has the effect of
smoothing out differences in growth rate changes, and is akin to threshold activated
coupling in parameter space. Here we will investigate in detail the nature of the
emergent population dynamics of this chain under this coupling.
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Figure 2. Superimposed time series of aj(i), for T = 50, T̃ /T = 2048 and
N = 100. It is evident that after complex transient dynamics (up to j ∼ 1000),
one obtains almost steady aj(i) values.

Further, note that from the theoretical point of view we are distinct from the
more commonly studied class of models which couple state variables [1]. In contrast,
we are coupling the fluctuations of nonlinearity parameters.

In the next section, we show the numerical results of the spatiotemporal behavior
of this system and analyze them from the statistical point of view. Since the attrac-
tor of each individual element is a superstable periodic orbit, the avalanche-coupled
maps are expected to relax to sets of superstable oscillatory states. However, the
interactive effects of the avalanches give rise to long-range correlations, and the
relaxation to periodic orbits is not trivial, unlike the case of a single self-regulatory
element. In fact, our results show that the emergent state is composed of clusters
of superstable periodic orbits, with power scaling characteristics.

3. Results

Figures 2 and 3 show the time evolution of the nonlinearity parameters of the
elements, under self-regulatory internal dynamics and avalanche coupling. It is
clearly evident that the system evolves to clusters of oscillators having different
periodicities. That is, the asymptotic state displays sets (clusters) of contiguous
elements, where each set is characterized by a parameter value determining the
periodicity of the oscillators in that set. Indeed, figure 4 shows the periodic behavior
in one of the clusters observed in figure 3. The phases of the periodic orbits in the
cluster are not the same but the periods, i.e. period 32, are the same.
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Figure 3. Spatiotemporal pattern of aj(i), starting from random initial x(i)
and initial a(i) = 4. The color shows the values of aj(i). T = 50, T̃ /T = 2048
and N = 100.

Figure 5 shows the time evolution of the averaged normalized avalanche size s(j).
Notice that the saturating behavior of s(j) is counterintuitive, since avalanches
still occur at almost all the sites after their relaxation. However, the amount of
coupling arising from such avalanches, namely the ∆’s, are extremely small (see
the inset in figure 5). These small widespread avalanches are due to convergence
processes of each element by the internal feedback dynamics. That is, aj is not
converged completely, but very slowly evolving towards an asymptotic value. Since
aj − aj+1 is very small, the dynamical changes in the system due to the avalanches
is insignificant in the saturated regime. So the system evolves from large coupling
exchanges involving few sites (with very significant dynamical consequences) to very
small coupling transfers involving almost the entire system.

Figure 6 shows the power spectrum of avalanche size s(j). The power spectrum is
averaged over 100 runs of 1024 each, with respect to the time scale of j, and sampled
around the transition of s(j). Low frequency fluctuations are clearly evident from
the spectra, as one finds

P (f) ∼ 1/fα

at the low frequency end, with α ∼ 1.
We also investigate the effect of system size N and T on the time evolution of

the avalanche size. Figure 7 shows the normalized s(j) for six different sizes N and
T = 50, averaged over 8 runs of 2048 each. We define transience time as the time
required to reach the saturation value of s(j). It is clear from figure 7 that the
transition to the saturated value of s(j) gets sharper with increasing system size.
However, the transience time does not appear to be much influenced by N .
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Figure 4. The last 50 steps of time series for xn(i) in one of the clusters
observed in figure 3. The cluster is selected in the range 37 ≤ i ≤ 47. The
color shows the values of xn(i).
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Figure 5. Time evolution of avalanche size s(j) averaged over 100 runs.
(Inset) The sum over coupling amounts in an avalanche (i.e. sum over ∆’s)
as a function of time j averaged over 100 runs. T = 50, T̃ /T = 2000 and
N = 100.
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Figure 6. Power spectrum of avalanches, averaged over 100 runs, with
T = 50, T̃ /T from 1000 to 2024 and N = 100.
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Figure 7. Time evolution of the normalized s(j) averaged over 8 trials for
several sizes N . Red, green, blue, magenta, aqua and yellow correspond to
N = 50, 100, 250, 500, 1000 and 10000, respectively. T = 50.

Figure 8 (top) represents the histograms of the number of converged elements
with respect to time j, for several T values. For T = 50, we can find the peak of
the converged elements at around the saturating time in figure 7, i.e. j ' 1000.
Moreover, the histograms for different T values show exponential dependence of
transience time on T . This is also clearly seen in figure 8 (bottom). Thus, we may
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Figure 8. (Top) Histogram of converged elements at the time j for several
T . Red, green, blue, magenta, light blue, yellow and black represent T = 50,
100, 150, 200, 250, 300 and 400, respectively. (Bottom) The peak position in
the histograms with respect to T . The vertical scale is logarithmic.

conclude that the transience time does not depend on the size N , when N is large
enough. However, the transience time depends crucially on T , with the dependence
being exponential.

As can be seen in figures 2 and 3, the relaxed states consist of oscillator clusters
in the spatial domain. Figure 9 shows the probability of finding a cluster of size c
with respect to c, with the cluster size c determined to an accuracy of ε. It is evident
that the clusters have a power-law distribution, truncated by an exponentially falling
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Figure 9. Distribution of the cluster size c with T = 100 and N equal to
100 (above) and 1000 (below), for several values of precision ε. The red,
green, blue, magenta and light blue represent ε = 0.001, 0.0005, 0.0001,
0.00005 and 0.00001, respectively. The fitting function in the bottom panel
is P (c) ∼ cγ1 exp(−c/γ2). The dashed (γ1 = 0.9, γ2 = 27), dashed-dotted
(γ1 = 0.9, γ2 = 7) and dotted (γ1 = 1.0, γ2 = 4.5) curves fit red, magenta and
light blue points, respectively.

tail. In figure 9 (bottom), we also show the fitting function which can be described
as P (c) ∼ cγ1 exp(−c/γ2). This function represents a power-law with exponential
cut-off in the higher degree.

It should be noticed that the slope of the region showing power-law scaling in
figure 9 is almost 1. Moreover, we also find the 1/f fluctuation in the time evolution
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of s(j) in figure 6. These results imply that our model has analogy with the sandpile
model proposed in ref. [9].

4. Discussion and conclusion

We have presented a simplified picture of interacting population dynamics with
adaptive self-regulatory feedback. Nevertheless our abstract model provides a sce-
nario where the adaptive populations can, under coupling, lead to organization into
clusters characterized by power-law distributions.

4.1 Interpretation 1: Power-law scaling of trophic links

The general direction of the internal adaptive change is to ensure regular stable
cyclic population dynamics. When a species undergoes a parametric change, it
changes the adaptive process of the species in its neighbouring level. In the be-
ginning the nonlinearities (growth rates) at each level, are unrelated to each other,
but the coupling soon ensures that long-range correlations develop. So from ran-
dom distributions, the system naturally organizes into clusters, whereby contiguous
levels have population cycles of the same period. This correlation in population dy-
namics can be regarded as an effective link. Since c species are strongly correlated
in the cluster of size c− 1, each of them can be considered to have c links.

Note that when we redraw the relation between the cluster with c links (i.e., the
cluster of size c− 1) and the probability distribution of P (c), it also has power law
distribution (not shown here).

Recently, truncated power-law relation between the number of trophic links and
their cumulative distribution have been observed in empirical food webs [10]. Thus
the above interpretation, based on the ansatz that the oscillator clusters effec-
tively have strong links among themselves, provides a reasonable scenario for the
emergence of power-law scaling in the distributions of trophic links. Further, the
power-law relations are truncated at high degrees, just as the power-law distribu-
tions arising in our model (as is evident in figure 9).

4.2 Interpretation 2: Power-law scaling in taxa–subtaxa distributions

From the viewpoint of biological diversity, the self-organized clusters may be inter-
preted as taxa with different number of subtaxa which have emerged as a result
of co-evolutionary processes. Here, the size of subtaxa in a taxon is represented
by the number of elements in the cluster. As mentioned above, the clusters are
naturally organized from the initially random states, due to correlations arising
from inter-species interactions. Therefore, the time evolution of our system can be
interpreted as co-evolutionary adaptive processes.

As a matter of fact, an examination of size–frequency distributions of taxa with
different numbers of subtaxa has shown power-law scaling characteristics in refs
[11]. If the size of our clusters is considered as the number of subtaxa within the
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taxon, the size–frequency distribution of taxa with subtaxa in our model also shows
power-law in their size distributions in lower degree.

4.3 General relevance

Lastly, this model is of general interest as it involves the coupling of chaotic systems
through variations in their parameters, rather than the usual diffusive coupling of
their state variables. Here the interaction arises from the influence of the (slow)
adaptive changes of the nonlinearity parameter of the individual systems, on each
other. So as a theoretical construct it is quite distinct from the usual coupled map
lattice models that have been extensively studied in literature [1]. From the view-
point of model-building, the results of this case study are of considerable interest.

In summary, we have investigated parametrically coupled logistic maps with in-
ternal self-regulatory feedback mechanisms. We find an emergent state character-
ized by clusters of superstable orbits. These clusters display power-law scaling,
suggesting an interesting organization of the interactive populations.
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