
Self Organized Criticality

Self-organized critical phenomena is exhibited by driven
systems which reach a critical state without the tuning of
any control parameter

The signature of SOC phenomena (power law distributions,
fractality) are ubiquitous in Nature
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Critical state is a term common in thermodynamics

A critical point is a point at which a system
radically changes its behavior or structure

For instance: phase transitions

( example, the pressure-temperature phase space of a
liquid-solid system )
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In standard critical phenomena, there is a control parameter
which an experimenter can vary to obtain this radical
change in behavior

In the case of melting, the control parameter is temperature

Critical states of a system are signaled by a power-law
distribution in some observable
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Two widely occuring phenomena in nature

Spatial Fractality: self similarity in space

1/f noise : Low Frequency Noise

Occurs spontaneously

Evidence of the lack of a natural scale :

Existence of Power Laws

Wide range of natural length and time scales play a role
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It is observed that many functional dependences, arising in
a variety of contexts, look like straight lines when plotted on
a log-log scale

So these functions do not have natural length/time scales :

They are scale invariant or self similar
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Spatial fractality is ubiquitous in Nature

Present in spatial structures as diverse as :

Mountain Ranges

Coastlines

Clouds

Colloidal Aggregates

Patterns of fracture

Dielectric Breakdown

Porosity of Soil

Branching of roots
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“Fractality” in the temporal regime: 1/f noise

S(f) ∼
1

f

where f is the frequency and S(f) is the spectral power

Also known as flicker noise in astronomy:

in the context of light from quasars; sunspots

Such “noise” (or from some viewpoint “signal”) is
characterized by variations on all timescales
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It is quite unlike white noise

S(f) ∼ 1/f0

Equal Power in every unit of bandwidth

Infinitely choppy or discontinuous everywhere

White noise has a well defined mean : the value converges
as we average over longer and longer times

But its instantaneous value is undefined
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For White Noise spectrum S(f) ∼ 1/f0:

We can integrate the power from some finite frequency
down to zero

But will meet divergences as we integrate up from a
finite frequency to infinity
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The 1/f noise is also unlike 1/f2 noise

S(f) ∼ 1/f2

Integral of white noise : can be generated for instance by
random walk noise

That is a running sum incremented by random steps
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The 1/f2 noise is very smooth

Has as a well defined value at every point

But its mean is not well defined: as the value of the function
wanders further and further away from its intial value

That is, the integral of power down to zero is divergent
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Now 1/f noise is somehow in between and more interesting
than either 1/f0 or 1/f2 noise

It is neither too rough nor too smooth

It has rapid fluctuations down to numerical resolution
limits

Also posseses strikingly global trends :

which the eye may be tempted to interpret as “cyclic”
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It is divergent when integrated either to zero or to infinity

It has neither a well defined mean nor a well defined
instantaneous value

But these divergences are logarithmic, and thus slow
enough, so that even to very high or low cutoffs the
appearance of the noise hardly changes

Hence its scale invariance or self similarity
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Examples of low frequency noise are widespread

It appears in events as varied as:

Resistance fluctuations

Sand flow in an hourglass

Solar Flares

Stock Market Fluctuations (so says Per Bak)
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The generality and ubiquity of these two phenomena have
puzzled scientists for a long time

The study of fractality is often confined to the level of
characterization (for example plotting results of experiments
on log-log scales and associating the slope with some kind
of fractal dimension)

What theorists would really like to do is to find the
dynamical origin of these phenomena

Construct models that yield space-time fractality from very
simple local rules and interactions
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Self-organized critical phenomena, by contrast to
(thermodynamic) crtical phenomena, is exhibited by driven
systems which reach a critical state by their intrinsic
dynamics, independent of the value of any control
parameter

In SOC the system self-organizes to the critical point

Quite unlike, say, a system’s pressure and temperature
being carefully tuned so that it was exactly at the critical
point

Spontaneously yields space-time fractality
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The sand pile model is a cellular automata model which
allows an intuitive understanding of the principles of the
theory of self organized criticality

The underlying algorithm for sandpile models is simple

In essence, the algorithm keeps track of numbers
associated with points on a grid

Numbers on the grid can increase, decrease or stay the
same

If a number on the grid gets too big then the algorithm
decreases that number, and subsequently increases
numbers elsewhere
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Consider a two-dimensional grid

Each point (x, y) in the grid has an integer z(x, y)
associated with it

This number is a counter for the point (x, y)
(say running from 0 to 4)

In terms of the sand pile, it can be thought of as the
average slope of the sand pile at that point (on the grid)
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External Driving

In the course of running the program, the number at a
random point within the grid is increased by one unit:

z(x, y) → z(x, y) + 1

In other words, the average slope of the sand pile at that
point is increased by one unit

After the perturbation if z(x, y) becomes larger than a
threshold : triggers an avalanche
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If z(x, y) > z∗ (e.g. threshold z∗ = 3)

Re-distribution (Spill-over; Toppling) occurs :

z(x, y) → z(x, y) − 4

z(x ± 1, y) → z(x ± 1, y) + 1

z(x, y ± 1) → z(x, y ± 1) + 1

In other words, the slope of the sand pile at that point
becomes too steep and grains of sand roll down the sand
pile to nearby grid points
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If this redistribution causes z to be too big at one of the
nearby grid points : then the process continues

In other words, if the sand rolls to a point that was already
poised for an avalanche then the avalanche continues

If the redistribution does not cause z to be too big at one of
the nearby points : then the process stops
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One can imagine that for each point in the grid there is a
domain D, which is the set of all points whose state was
changed as a result of the perturbation

Each domain D has a finite size s, which is the aerial extent
of an avalanche

D as a function of s : clearly shows a power law distribution

Implying the system has self-organized to a critical state
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The self organized state is Metastable

Non-Equilibrium Steady State

Edge of Chaos
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As more grains are added the slope of the pile increases

Eventually, the slope locally reaches a critical value such
that the addition of one more grain results in an avalanche

With the addition of still more grains the sandbox will
overflow: Sand is thus added and lost from the system

When the count of grains added equals the count of grains
lost (on average) then the sand pile has self-organized to a
nonequilibrium steady state
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The next avalanche can be of any size:

ranging from a single grain to a catastrophic collapse of
the sand pile

The size distribution of the avalanches will follow a
power law

e.g. if one were to count the size of avalanches over
some period, one would most likely find that there was
1 avalanche of size 1,000, 10 avalanches of size 100,
100 avalanches of size 10, and so on
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Simple physical laws dictate the interactions of
individual components: The specifics of these laws are
not important, however, as the system will robustly
self-organize to a critical state for a variety of laws

Highly specific physical laws are not necessary for the
generation of the power law distribution

Power Law distributions generated for a variety of
conditions

The surface of the sand pile will have a fractal
dimension
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The theory of self-organized criticality (SOC) seeks to
explain how the multitude of large interactive systems
observed in nature develop power law relationships from
simple rules of interaction

The most commonly used paradigm of, and perhaps the
best way to understand the theory is the sand pile

Their macroscopic behaviour displays the spatial and/or
temporal scale-invariant characteristic of the critical point of
a phase transition, but, unlike the latter, in SOC these
features result without needing to tune control parameters
to precise values
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