
Models of Spatiotemporal Phenomena

Two ingredients:

Local Dynamics :
gives change of state locally (at a site/node)
Source of local temporal patterns

Interactions :
Spatial transmission of energy and information
Source of global spatial patterns
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Broad classification of models can be obtained by different
possible discretization schemes

Model Time Space Variables
Partial Differential Equations C C C

Oscillator Chains C D C
Lattice Dynamical Systems D D C

Cellular Automata D D D

State variable(s) corresponds to the physical variable of
interest

e.g. temperature, pressure, velocity field, concentrations,
populations, electric fields
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Choice of local dynamics

Typical examples:

Logistic Maps f(x) = rx(1 − x)

Circle Maps f(x) = ω + x + k sin(2πx)

Piecewise linear functions;
Such as tent maps or shift maps

Higher-dimensional maps (eg. Henon map)
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Choice of Coupling Classes

Local : couples with neighbours

Global : couples with all ( mean-field type )

Non-local : can couple (randomly) with sites far-away

Allows short-cuts in spatial conections

Homogeneous (independent on site/node)

Heterogeneous (varies with site/node)
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Boundary Conditions

Fixed

Periodic

Free

Noise driven

Periodically driven
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Initial Conditions

For instance:

(i) Random distribution

Selects out a statistically probable pattern

generic behaviour

Problem: does not admit a natural continuum limit

(ii) Spatially periodic
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Characterization

Visualization of dynamical phases

Space-time plots

Time evolution of a generic site

Bifurcation Diagram

Quantitative Measures

Fourier Transforms (Space and Time)

Eigenvalue Spectrum; N Lyapunov Exponents
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Lattices to Networks

Spatiotemporal Consequences of Random Nonlocal
Coupling

Synchronous Evolution (“Global Clock”)
vis-a-vis

Random Updating
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Strong reasons to re-visit the fundamental issue of
interactions defined on a regular lattice-like structure in
Coupled Map Lattices

Some degree of randomness in spatial coupling can be
closer to physical reality than strict nearest neighbour
scenarios

Many systems of biological, technological and physical
significance are better described by randomising some
fraction of the regular links
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What are the spatiotemporal consequences of rewiring
some of the coupling connections randomly

What happens to the dynamics of an extended system
comprised of a collection of elemental dynamical units with
varying degrees of randomness in its spatial connections
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Consider a one-dimensional ring of coupled logistic maps

The sites (nodes) are denoted by integers i = 1, . . . , N
where N is the linear size of the lattice

On each site is defined a continuous state variable denoted
by xn(i)

Corresponds to the physical variable of interest
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The evolution of this lattice in discrete time n
under standard nearest neighbour interactions :

xn+1(i) = (1 − ε)f(xn(i)) +
ε

2
{xn(i + 1) + xn(i − 1)}

Strength of coupling : ε

The local on-site map is chosen to be the fully chaotic
logistic map:

f(x) = 4x(1 − x)
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Now consider the system with its coupling connections
rewired randomly in varying degrees dynamically

At every update we will connect a fraction p of randomly
chosen sites in the lattice to two random sites

That is, we will replace a fraction p of nearest neighbour
links by random connections

p = 0 : corresponds to the usual nearest neighbour
interaction

p = 1 : corresponds to completely random coupling
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Explore the full range of p (0 ≤ p ≤ 1)

Try to determine what dynamical properties are significantly
affected by the way connections are made between
elements
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Coupled logistic maps with regular nearest neighbour
connections
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Bifurcation diagram clearly shows that the standard nearest
neighbour coupling does not yield a spatiotemporal fixed
point anywhere in the entire coupling range 0 ≤ ε ≤ 1
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Coupled logistic maps with completely random connections
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Creates windows in parameter space where a
spatiotemporal fixed point state gains stability

Onset of spatiotemporal fixed point : εbifr

For completely random coupling p = 1 : εbifr ∼ 0.62

For all p > 0 : there is a stable region of synchronized fixed
points

– p. 18



In the stable region of synchronized fixed points

namely, in the parameter interval εbifr ≤ ε ≤ 1.0 :

All lattice sites i are synchronized at xn(i) = x∗ = 3/4

Where x∗ = f(x∗) is the fixed point solution of the individual
chaotic maps

x∗ : strongly unstable in the local chaotic map
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Analyse this system to account for the much enhanced
stability of the homogeneous phase under random
connections

Only possible solution for a spatiotemporally synchronized
state :

All xn(i) = x∗ only when x∗ = f(x∗)

For the case of the logistic map at r = 4:

Fixed point solution of the local map x∗ = 4x∗(1 − x∗) = 3/4
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To calculate the stability of the lattice with all sites at x∗ we
will construct an average probabilistic evolution rule for the
sites :

mean field version of the dynamics

Some effects due to fluctuations are lost, but as a first
approximation we have found this approach qualitatively
right, and quantitatively close to to the numerical results as
well
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All sites have probability p of being coupled to random sites,
and probability (1 − p) of being wired to nearest neighbours

Then the averaged evolution equation of a site j is

xn+1(j) = (1 − ε)f(xn(j)) + (1 − p) ε
2
{xn(j + 1) + xn(j − 1)}

+p ε
2
{xn(ξ) + xn(η)}

where ξ and η are random integers between 1 and N
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Linear Stability Analysis of the coherent state:

Replacing xn(j) = x∗ + hn(j), and expanding to first order
gives

hn+1(j) = (1− ε)f ′(x∗)hn(j) + (1− p) ε
2
{hn(j + 1) + hn(j − 1)}

+p ε
2
{hn(ξ) + hn(η)}

≈ (1 − ε)f ′(x∗)hn(j) + (1 − p) ε
2
{hn(j + 1) + hn(j − 1)}

i.e., to a first approximation one can consider the sum over
the fluctuations of the random neighbours to be zero

This approximation is clearly more valid for small p
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For stability considerations one can diagonalize the above
expression using a Fourier transform

hn(j) =
∑

q

φn(q) exp(ijq)

where q is the wavenumber and j is the site index

This finally leads us to the following growth equation:

φn+1

φn
= f ′(x∗)(1 − ε) + ε(1 − p) cos q

with q going from 0 to π
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Clearly the stabilization condition will depend on the nature
of the local map f(x) through the term f ′(x)

Considering the fully chaotic logistic map with f ′(x∗) = −2,
one finds that the growth coefficient that appears in this
formula is smaller than one in magnitude if and only if

1

1 + p
< ε < 1

i.e.

εbifr =
1

1 + p
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The range of stability R = 1 − εbifr is

R = 1 −
1

1 + p
=

p

1 + p

For small p (p << 1) standard expansion gives

R ∼ p

Regular nearest neighbour couplings ( p = 0 ) gives a
null range for spatiotemporal regularity

Fully random connections ( p = 1 ) yields the largest
stable range

– p. 26



The stable range R, within which spatiotemporal
homogeniety is obtained, with respect to the fraction of
randomly rewired sites p
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The different points are obtained from numerical
simulations over several different initial conditions, for 4
different lattice sizes, namely N = 10, 50, 100 and 500

Lattice size has very little effect on this synchronization

The solid line displays the analytical result

It is clear that for a large range of p there is very good
agreement with the analytical formula
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Clearly evident : random coupling leads to large parameter
regimes of regular homogeneous behaviour, with all lattice
sites synchronized exactly at x∗

The synchronized spatiotemporal fixed point gains stability
over some finite parameter range for finite p,

Namely, whenever p > 0, however small, we have R > 0

So any degree of randomness in spatial coupling
connections opens up a synchronized fixed point window
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Results from Other Models

Coupled tent maps, with the local map given as:

f(x) = 1 − 2|x − 1/2|

Unstable fixed point : x∗ = 2/3

Local slope : f ′(x∗) = −2
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Coupled circle map networks, where the local map is

f = x + Ω −
K

2π
sin(2πx)

A representative example: Ω = 0,K = 3

Unstable fixed point : x∗ = 1

2π
sin−1(Ω/K)

Local slope : f ′(x∗) = −2

In both systems random rewiring yields stable
spatiotemporal synchronisation
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Coupled sine circle maps with strictly regular nearest
neighbour connections
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Coupled sine circle maps with completely random
connections

– p. 33



Since f ′(x∗) = −2 for both the tent map and the circle
map, we expect from our analysis that their εbifr and R

will be the same as for the logistic map

This agrees with simulations :

Numerically obtained εbifr values for ensembles of
coupled tent, circle and logistic maps fall
indistinguishably around each other, even for high p
where the analysis is expected to be less accurate
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Coupled tent maps (open squares)
Coupled circle maps (open triangles)
Coupled logistic maps (open circles)
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Outlook

The regularising effect of random coupling can help in
designing efficient control methods for spatially
extended interactive systems

It also suggests a different mechanism for regulation in
natural physical and biological systems
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The standard time evolution of coupled map lattices employ
parallel (or synchronous) updates in which all individual
maps of the lattice are iterated forward simultaneously

Asynchronous Updating of Coupled Maps

Updates are not concurrent, but sequential
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2-dimensional square lattice

Sites : denoted by two sets of integers i and j,
i, j = 1, . . . , N , where N is the linear size of the lattice

State variable : denoted by xn(i, j)

Local on-site map:

f(x) = rx(1 − x)

The nonlinearity parameter r is chosed to be 4,
i.e. the local dynamics is completely chaotic
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Break the lattice into Nc disjoint randomly chosen subsets

Update the sites belonging to each subset simultaneously,
while updating the different subsets sequentially

Nc = 1 : Parallel/Synchronous updates

Nc = N : Completely Asynchronous Random update

Value of Nc indicates varying degrees of asynchronicity
in the evolution
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For instance, in a lattice of 9 elements (lattice size = 3 × 3),
say we wish to update in 3 unequal subsets (Nc = 3), with
the subsets being of size 3, 4 and 2

Update the lattice between time n and n + 1 in 3 sequential
steps: first we choose at random 3 sites (i, j) and update
them, then we update 4 sites randomly chosen from the
remaining 6 sites, and finally we update the remaining 2
sites belonging to the last subset

In the subsequent unit of time, from n + 1 to n + 2 we again
choose at random, first 3 sites and update them, then 4
sites from the remaining sites and update them, followed by
the update of the last 2; and so on...
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Dynamics on Lattices/Networks : rich in phenomena

Therefore they have great potential as models

Variations in connectivity and updating rules : dynamical
consequences may be profound
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