
Models of Spatiotemporal Phenomena
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Aim:

To model the diversity of pattern generation in spatially
extended systems

Provide suggestive conceptual frameworks for
understanding complex phenomena which are generic in
physical systems
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Construct simple yet effective models which are capable of
capturing the essence of complicated dynamic processes
as they occur in nature

For instance, unimodal maps of an interval on to itself :
versatile paradigm for low-dimensional dissipative systems

Though one-dimensional : neither too simple nor too
specific

In fact it can yield a rich spectrum of dynamical behaviour
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From low-dimensional systems : move towards nonlinear
extended systems

Spatial systems composed of a large number of
low-dimensional units

Build prototypes that can yield a repertoire of behaviours
reminiscent of behaviour widely observed in large
interactive systems where spatial extent is crucial

For instance: turbulence, pattern formation, spatio-temporal
intermittency, josephson junction arrays, optically bistable
devices, neural dynamics
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An important prototype of complex systems:

nonlinear dynamical systems with spatially distributed
degrees of freedom

Lattices or networks of large number of dynamical systems

Two ingredients:

Local Dynamics :
gives change of state locally (at a site/node)
Source of local temporal patterns

Interactions :
Spatial transmission of energy and information : global
organizing principles arises from this interconnectivity
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For instance

Local dynamics may be a chaotic map :
Creation of local instabilty through the local chaos

Mechanism for transmitting information among nodes :
diffusive; threshold-activated

Functional form of the coupling; Strength of the coupling;
Extent of the coupling
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Models of spatiotemporal phenomena

3 quantities are to be accounted for:

Time

Space

State Variable(s)
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Broad classification of models can be obtained by different
possible discretization schemes

Model Time Space Variables
Partial Differential Equations C C C

Oscillator Chains C D C
Lattice Dynamical Systems D D C

Cellular Automata D D D
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Example of Cellular Automata

Sandpiles : model of Self Organized Criticality (SOC)

Examples of Lattice Dynamical Systems

Coupled Map Lattices (CML)
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Identify dynamic processes and concepts that can be
employed to understand large families of complicated
systems

Universality Classes in Pattern Dynamics in Coupled Map
Lattices (CML)

Qualitative universality classes

Holds for a wide range of CMLs

Found in experiments on physical systems
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Size (number of units) : N

In the context of 1-d lattices : “length” of chain/ring

In the context of a network : Number of Nodes

Discrete time : n

Spatial index : i ( nodes/sites i = 1, 2 . . . N )

State of the system : xn(i) or xi
n

i.e. xn(1), xn(2) . . . xn(N)

Can form a pattern or field

On a spatial lattice a local dynamical variable xi
n is assigned
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The evolution of the local variable xi
n is governed by

(i) Local Dynamics : f(x)

e.g. f(x) = rx(1 − x)
where r is the local nonlinearity

(ii) Coupling of strength ε

e.g. Nearest Neighbour Coupling, namely site i is
influenced by sites i − 1 and i + 1
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Choice of local dynamics

Typical examples:

Logistic Maps f(x) = rx(1 − x)

Circle Maps f(x) = ω + x + k sin(2πx)

Piecewise linear functions;
Such as tent maps or shift maps

Higher-dimensional maps (eg. Henon map)
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Choice of Coupling Classes

Local ( couples with “neighbours” )

Non-local ( can couple with sites “far-away” )

Allows short-cuts in spatial conections
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General nearest neighbour interaction evolution function:

xi
n+1 = f(xi

n) + ε0g(xi
n) + εRg(xi+1

n ) + εLg(xi−1
n )

(ε0, εR, εL) : coupling kernel

g(x) is the coupling dynamics
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Linear Coupling : g(x) = x

Future Coupled : g(x) = f(x)

Homogeneous; Heterogeneous
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xi
n+1 = f(xi

n) + ε0g(xi
n) + εRg(xi+1

n ) + εLg(xi−1
n )

Additive Coupling : ε0 = 0; εR = εL

Laplacian Coupling : − ε0
2

= εR = εL

Totalistic Coupling : ε0 = −2

3
; εR = εL = 1

3

Unidirectional Coupling : −ε0 = εL; εR = 0

Asymmetric Coupling : models Open Flows
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Boundary Conditions

Fixed

Periodic

Free

Noise driven

Periodically driven
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Initial Conditions

For instance:

(i) Random distribution

Selects out a statistically probable pattern

generic behaviour

Problem: does not admit a natural continuum limit

(ii) Spatially periodic
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Spatiotemporal periodicity

r = 3.2; ε = 0.1
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Temporal periodicity ; Spatial Coherence

r = 3.2; ε = 0.6
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Fully Developed Spatiotemporal Chaos

r = 4; ε = 0.1
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Spatiotemporal Chaos

r = 4; ε = 0.8
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Spatio-temporal Intermittency : Class of Directed
Percolation
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Transition from an ordered pattern to fully developed
spatiotemporal chaos occurs via spatiotemporal
intermittency

In spatiotemporal intermittency : laminar motion and
turbulent bursts in space time

Laminar motion : periodic or weakly chaotic dynamics with
spatially regular structure

Turbulent bursts: No spatio-temporally regular structure

In space-time plots : black (bursts) and white (laminar)
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2 types of spatio-temporal intermittency

Type I STI : no spontaneous creation of bursts

If a site and its neighbours are laminar : site remains
laminar in the next step

Before onset of STI : stable state with spatial homogeneity
and temporal periodicity

Dynamics very similar to some probabilistic CA with 2
states corresponding to burst (active) and laminar
(inactive/passive)

Directed Percolation analogy
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Type II STI : Spontaneous creation of turbulent bursts when
some coarse grained reduction of states is used

Finite probability of creation of bursts at a site even if all
neighbours are laminar

Before onset of Type - II STI : there is spatial structure

This type of STI has been observed as transition from local
to global chaos
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After Coarse-graining
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Bifurcation Diagram with respect to Local Nonlinearity
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Bifurcation Diagram of the state at a single site
with respect to Local Nonlinearity
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Bifurcation Diagram of the state at a single snap-shot in
time : with respect to Local Nonlinearity

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.8  2  2.2  2.4  2.6  2.8  3  3.2  3.4  3.6  3.8  4

x(
i);

 fo
r a

ll 
i=

1,
N

; a
t a

 s
in

gl
e 

in
st

an
t i

n 
tim

e

Local Nonlinearity Parameter   r

– p. 32



Bifurcation Diagram with respect to coupling strength
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Characterization

Visualization of dynamical phases

Space-time plots

Spatial return maps

Time evolution of a generic site

Bifurcation Diagram
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Quantitative Characterization

Fourier Transforms (Space and Time)

Eigenvalue Spectrum

N Lyapunov Exponents

N = ηLd

For a d-dimensional cubic lattice of side L with η local
variables at each node

– p. 35



Given a set y = f(x) of N equations in N variables
x1, x2 . . . xN written explicitly as:

y = (f1(x), f2(x), . . . fN (x))

or more explicitly as :

y1 = f1(x1, x2, . . . xN )(1)

y2 = f2(x1, x2, . . . xN )

.

.

yN = fN (x1, x2, . . . xN )
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The Jacobian (matrix) is defined as:

Determinant of the Jacobian
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Linear Stability of the System

Determined by the Eigenvlaue spectrum of the Jacobian
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Linear Stability Analysis of a spatiotemporal fixed point:

CML:

xi
n+1 = (1 − ε)f(xi

n) +
ε

2
(xi+1

n + xi−1
n )

Solution of spatiotemporal fixed point state x∗:

xi
n+1 = xi

n = x∗

and

xj
n = xi

n = x∗ for all i, j

– p. 39



All xn(i) = x∗ only when x∗ = f(x∗)

For the case of the logistic map at r = 4 :

Fixed point solution of the local map x∗ = 4x∗(1 − x∗) = 3/4

Replacing xn(j) = x∗ + hn(j), and expanding to first order:

hn+1(j) = (1 − ε)f ′(x∗)hn(j) +
ε

2
{hn(j + 1) + hn(j − 1)}

For stability : Small perturbations h(j) should decay with
time
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Vector h is the perturbation around the fixed point solution

hn+1 = {(1 − ε)f ′(x∗) I +
ε

2
C} hn

where I is the identity (diagonal) matrix with 1 as diagonal
entries

C is a circulant matrix with zero diagonal entries and 1’s on
the off-diagonal

Absolute value of the Eigenvalues of the above matrix
should be bounded by 1 for stability

Confined in a disk of radius 1 in complex space
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The first step is to find equilibria

The second step is to linearize the model at the equilibrium
state, i.e., to estimate the Jacobian matrix

The third step is to estimate eigenvalues of this matrix

Condition of Stability:

Continuous models : Stable iff all eigenvalues have
negative real parts

Discrete-time models are stable ifff all eigenvalues lie in the
circle with the radius = 1 in the complex plane
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Any algorithm to compute the lyapunov spectrum must
contain 2 fundamental procedures:

1) Multiply by Jacobian at each step

2) Perform some kind of re-normalization

required to prevent the Jacobian matrix progressively
getting more ill conditioned – until the largest lyapunov
expoent swamps all the others

Gram-Schmidt orthogonalization
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Exists N lyapunov exponents

Lyapunov spectrum is defined as the set of N lyapunov
exponents arranged in decreasing order {λi}

N
i=1

The maximal lyapunov exponent determines the over-all
behaviour

A lot of information in the distribution of the other lyapunov
exponents as well
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Kaplan-Yorke conjecture:

DL = j +
1

|λj+1|

j∑

i=1

λi

where j is the largest integer for which
∑j

i=1
λi > 0
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Kolmogorov-Sinai (KS) entropy h bounded from above by
the sum of the positive lyapunov exponents

h =
∑

λ+

i

KS entropy quantifies the mean rate of information
production in a system, or alternately the mean rate of
growth of uncertainty in a system subjected to small
perturbations
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