
Exploiting Chaos for Computation

A new direction in harnessing chaos

Sudeshna Sinha

The Institute of Mathematical Sciences, Chennai

homepage: http://www.imsc.res.in/∼sudeshna

. – p.1/89

In the past two decades a “new science”, known popularly
as chaos, has given us deep insights into previously
intractable, inherently nonlinear, natural phenomena

Chaos has caused a fundamental reassessment of the way
in which we view the physical world

. – p.2/89

For instance, certain seemingly simple natural nonlinear
processes, for which the laws of motion are known and
completely deterministic, can exhibit enormously complex
behavior

Often appearing as if they were evolving under random
forces rather than deterministic laws

One consequence is the remarkable result that these
processes, although completely deterministic, are
essentially unpredictable

. – p.3/89

Blending of three distinct approaches:

Powerful analytical mathematical methods to treat
functional recursion relations, to solve certain nonlinear
partial differential equations, or to describe complex
geometrical structures

Experimental Mathematics: numerical simulations to
give qualitative insights into problems that are at
present analytically intractable

High precision experimental observations of nonlinear
phenomena in many different natural and man-made
systems arising in a variety of conventional disciplines

Illustration of this tripartite approach : discovery of the
universality in unimodular one-dimensional maps

. – p.4/89

Nonlinear science is inherently interdisciplinary

Impacting upon traditional subjects ranging through all the
physical and biological sciences, mathematics and
engineering

. – p.5/89

Initially the focus was on Suppressing Chaos

With greater understanding came the ability to manipulate
nonlinear phenomena, and so the focus has shifted in
recent times to Exploiting Chaos

Chaos provides a rich variety of behaviors :

Can concievably serve as a versatile pattern generator

Ability to readily switch behaviours may provide
flexibility

. – p.6/89

Need a control mechanism that enables us to exploit the
richness of chaos in a direct and efficient manner

Thresholding (Clipping, Dynamic Range Limiter) as a
strategy for extracting a wide range of stable patterns from

a chaotic system

Sinha & Biswas, Physical Review Letters, 1993;
Sinha, Physcial Review E, 1994;
Murali & Sinha, Physical Review E, 2003

. – p.7/89

Consider a general dynamical system ẋ = F (x)

Choose a state variable to be monitored

Threshold Mechanism is triggered whenever the value of
the variable exceeds a critical threshold x∗

The variable is then re-set to x∗

If x > x∗ then x = x∗

The dynamics continues till the next occurrence of the
variable exceeding the threshold

. – p.8/89

Principle : Restricts available phase space

Dynamic Range Limiter

Prunes chaotic temporal sequences to stable desired
patterns

Chaos advantageous as it possesses a rich range of
temporal patterns which can be clipped to different
behaviours

. – p.9/89

For example for the chaotic logistic map f(x) = 4x(1 − x)

Different regular dynamical patterns obtained for different
thresholds x∗ on the variable x

x∗ < 0.5 : Fixed point

0.5 < x∗ < 0.809 : Period 2

0.809 < x∗ < 0.85 : Period 4

x∗ = 0.86 : Period 6

x∗ = 0.88 : Period 7

x∗ = 0.9 : Period 9

. – p.10/89

Exact calculation of the period corresponding to a
certain threshold

Answer the reverse (important) question as well:
what threshold do we need to set in order to obtain a
certain period

Sinha, 1999

. – p.11/89

Starting point of the analysis : the chaotic system, being
ergodic, is guaranteed to exceed threshold at some point in
time, at which point its state is re-set to x∗

One then studies the forward iterations of the map, starting
from this state x = x∗, i.e.

f0(x
∗), f1(x

∗) . . .

where fk(x
∗) is the kth iterate of the map

. – p.12/89

Specifically for the logistic map f(x) = 4x(1 − x) :

k = 0 ; f0(x
∗) = x∗

k = 1 ; f1(x
∗) = 4x∗(1 − x∗)

k = 2 ; f2(x
∗) = 4(4x∗(1 − x∗))(1 − 4x∗(1 − x∗))

In general

fk(x
∗) = f ◦ fk−1(x

∗) = f ◦ f ◦ . . . f ◦ (x∗)

where threshold value 0 < x∗ < 1

. – p.13/89

When fk(x
∗) > x∗ we have a k cycle : as this implies that

the kth iterate exceeds the threshold x∗ and is re-set to x∗

x∗ = f0(x
∗) is the first point in the cycle

k - Cycle : x∗, f1(x
∗), f2(x

∗), . . . fk−1(x
∗)

. – p.14/89

For instance, for the logistic map, in the range 0 ≤ x∗ ≤ 3

4
,

f1(x
∗) > x∗

So the chaotic system is clipped back to x∗ at every iterate,
yielding a period 1 fixed point

In the range 3

4
< x∗ < 0.9, f1(x

∗) < x∗ but f2(x
∗) > x∗

This imples that the second iterate of the map (starting from
x = x∗) exceeds threshold and is adapted back to x∗, thus
giving rise to a period 2 cycle

. – p.15/89

Thus the cycle at each value of threshold is the smallest
k such that the kth iterate of the map (starting from
x0 = x∗) is greater than x∗, i.e.

fk(x
∗) > x∗

The chaotic element can then yield a wide variety of
regular cyclic behaviour :

Period of the cycle depends on threshold level

Periodicity enforced on the sequences as thresholding
acts as a re-setting of initial conditions

. – p.16/89

In threshold space we can find windows of various
periods

These are intervals where the following is satisfied:

Period P (x∗) = k iff fk(x
∗) ≥ x∗ and fl(x

∗) < x∗ for all
l < k

P (x∗) is a piecewise continuous function of x∗

Can formulate the different solutions using the inverse
map: symbols L and R

. – p.17/89

First iterate xn+1 = f(xn) for the chaotic map under
thresholding (the “be-headed map”)

Intersection of the plateau with the 450 line (i.e. the
xn+1 = xn line) yields a superstable fixed point of period 1

. – p.18/89

Iterates xn+1 (—) and xn+2 (- - -) of chaotic map under
thresholding : x∗ = 0.8

Intersection of the flat portion of the map xn+2 with the 450

line yields a superstable fixed point of period 2
. – p.19/89

Threshold value : 0.922

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Intersection of the flat portion of the map xn+4 with the 450

line yields a superstable fixed point of period 4
. – p.20/89

For chaotic maps it can then be analytically shown :

Thresholding clips chaos to desired time sequences :
yields periods of all orders

The system is trapped in a super-stable cycle the
instant it exceeds threshold

Sinha & Biswas, Physical Review Letters, 1993

Sinha, Physical Review E, 1993; Physics Letters A, 1994;
Also reviewed in Int. J. of Modern Physics, 1995

. – p.21/89

Experimental verification of clipping chaos to periods of
wide ranging orders

Chaotic Trace 6 - Cycle

Circuit Realization of the Logistic Map

Murali, Sinha and Ditto, Physical Review E, 2003

. – p.22/89

Complete agreement with theoretical analysis

. – p.23/89

Exact relations for the position and width of the periodic
windows in threshold parameter space :

Provides a look-up table to directly extract widely
varying temporal patterns

Yields a wide range of response patterns from the
same module

Thus useful for designing components that can switch
flexibly between different behaviours

Requires no run-time computations

Transience is extremely short; Very robust

Controller simple

. – p.24/89

Does thresholding work beyond iterative 1d maps?

Can continuous time higher dimensional (possibly
hyper-chaotic) systems be clipped?

No exact results : must rely on numerics and
experimentation

. – p.25/89

Nonlinear third order ordinary differential equations

d3x
dt3

+ A d2x
dt2

+ dx
dt = G(x)

where G(x) is a piecewise linear function:

G(x) = B|x| − C

with B = 1.0, C = 2.0 and A = 0.6

. – p.26/89

Precision Clipping Circuit for Thresholding

. – p.27/89

Circuit realization of coupled third order nonlinear
differential equations

. – p.28/89

Double scroll chaotic Chua’s attractor given by the following
set of (rescaled) 3 coupled ODEs

ẋ = α(y − x − g(x))(1)

ẏ = x − y + z(2)

ż = −βy(3)

The piecewise linear function

g(x) = bx + 1

2
(a − b)(|x + 1| − |x − 1|)

Parameters: α = 10., β = 14.87, a = −1.27 and b = −0.68

. – p.29/89

Thresholding Chua’s Circuit

Murali and Sinha, Physical Review E, 2003

. – p.30/89

Hyperchaotic electrical circuit

Constitutes a stringent test of the control method since the
system posseses more than one positive lyapunov
exponent, and so more than one unstable eigendirection
has to be reigned in by thresholding a single variable

. – p.31/89

Consider the realisation of four coupled nonlinear
(rescaled) ODEs of the form:

ẋ1 = (k − 2)x1 − x2 − G(x1 − x3)

ẋ2 = (k − 1)x1 − x2

ẋ3 = −x4 + G(x1 − x3)

ẋ4 = βx3

where

G(x1 − x3) = 1

2
b[|x1 − x3 − 1| + (x1 − x3 − 1)]

with k = 3.85, b = 88 and β = 18

. – p.32/89

Hyper Chaotic Attractor Controlled Orbit

Murali and Sinha, Physical Review E, 2003

. – p.33/89

“Library of Patterns”

Simple thresholding selects out a wide variety of patterns
. – p.34/89

Pinsky-Rinzel Neuron : Controlling Spiking
8 coupled ODEs : thresholding one variable

(a)

(b)

Sinha and Ditto, Physical Review E, 2001
. – p.35/89

Laser System:

ẋ = σ(y − x)

ẏ = rx − y − xz

ż = xy − bzr

z variable corresponds to the normalized inversion
x and y variables correspond to normalized amplitudes of
the electric field and atomic polarisations

Parameter values, obtained by detailed comparison with
experiments, for the corresponding coherently pumped
far-infrared ammonia laser system are: σ = 2, r = 15 and
b = 0.25

. – p.36/89

Laser System: Lorenz-like Attractor

 6

 8

 10

 12

 14

 16

 18

 20

 22

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

z

x

. – p.37/89

. – p.38/89

Sinha and Ditto, Physical Review E, 1999

. – p.39/89

Exploiting Chaos to Design Flexible Hardware

Opportunities offered by Chaos:

Chaos has embedded in it a rich variety of temporal
sequences

Can yield a large range of controlled responses from
very simple mechanisms :

Thus can serve as a versatile pattern generator

Exploit this flexibility for implementing computational
tasks

Determinism : allows “designing”

. – p.40/89

Hardware : Threshold activated chaotic elements
Chaotic Chip, Chaotic Processor

Programming these elements consists of fixing thresholds
such that some desired operation is performed

i.e. certain I/O relations are satisfied

Sinha & Ditto, Physical Review Letters, September 1998
Physcial Review E, 1999

. – p.41/89

Aim :

Demonstrate the direct implementation of all the logic gates
which are basic and sufficient components of computer
architecture today

Implement all gates using a single chaotic element : with
the ability to switch between different operational roles

This will allow a more dynamic reconfigurable architecture

Serve as ingredients of a general purpose device more
flexible than statically wired hardware

. – p.42/89

Chaotic system as a Logic Cell

Inputs : State of the chaotic element x → x0 + I1 + I2

Output : Obtained by Threshold Mechanism after Chaotic
Update f(x)

O = f(x) − x⋆ if f(x) > x⋆

O = 0 if f(x) < x⋆

1
I

2
I

After Chaotic update

Output

Excess Emitted

Chaotic

Update

. – p.43/89

The truth table of the basic logic operations :

2 Inputs - 1 Output module

I1 I2 AND OR XOR NAND NOR I NOT
0 0 0 0 0 1 1 1 1

0 1 0 1 1 1 0 0 0

1 0 0 1 1 1 0

1 1 1 1 0 0 0

The 2 (symmetric) inputs for the AND, OR, XOR, NAND
and NOR gates are I1 and I2

The 1 input for the NOT gate is I

. – p.44/89

Necessary and Sufficient conditions to be satisfied
simultaneously

AND OR XOR
f(x0) ≤ x∗ f(x0) ≤ x∗ f(x0) ≤ x∗

f(x0 + I) ≤ x∗ f(x0 + I) − x∗ = I f(x0 + I) − x∗ = I

f(x0 + 2I) − x∗ = I f(x0 + 2I) − x∗ = I f(x0 + 2I) ≤ x∗

NAND NOR NOT
f(x0) − x∗ = I f(x0) − x∗ = I f(x0) − x∗ = I

f(x0 + I) − x∗ = I f(x0) − x∗ ≤ I f(x0 + I) ≤ x∗

f(x0 + 2I) ≤ x∗ f(x0) − x∗ ≤ I

. – p.45/89

Robust solutions exist :

Operation AND OR XOR NAND NOT
x0 0 1

8

1

4

3

8

1

2

x∗ 3

4

11

16

3

4

11

16

3

4

Scheme has been experimentally verified

Sinha, Munakata & Ditto, Phys. Rev. E, 2002
Munakata, Sinha & Ditto, IEEE Trans. on Circuits and Systems, 2002

. – p.46/89

Contrast with periodic elements:

It is not possible to extract all the different logic responses
from the same element in case of periodic components, as
the temporal patterns are inherently limited.

Contrast with random elements:

One cannot design components : need determinism for
“reverse engineering”

. – p.47/89

Only Chaotic dynamics enjoys both

richness
and

determinism

So one can select out all the different temporal responses
necessary to obtain all the different logic patterns with a
single evolution function

This ability allows us to construct flexible hardware

. – p.48/89

Implementation of Parallel Logic Operations

Objective : Obtain N clearly defined logic gate response
patterns from the N components characterizing the state of
a N -dimensional system

This will enable us to implement N operations in parallel
with a single N -dimensional element

Thus one can gain processing power without enhancing
space costs

. – p.49/89

. – p.50/89

Implementation of parallel logic by a 2-dimensional map

Consider a 2-d model for neurons :

xn+1 = x2
n exp(yn − xn) + k

yn+1 = ayn − bxn + c

Implement bit-by-bit addition in parallel

. – p.51/89

. – p.52/89

Necessary and sufficient conditions for parallelized
bit-by-bit arithmetic addition

Initial State XOR AND
x⋆, y⋆ xn < x⋆ yn < y⋆

x⋆ + I, y⋆ + I xn = x⋆ + I yn < y⋆

x⋆ + 2I, y⋆ + 2I xn < x⋆ yn = y⋆ + I

I is a common positive constant for the operations

. – p.53/89

Large bands of solutions exist, satisfying the table of
simultaneous conditions

Similar considerations for other parallel logic operations can
be straight-forwardly formulated

Sinha, Munakata & Ditto, Phys. Rev. E, 2002

. – p.54/89

Morphing Dynamic Logic Cell :

Simple mechanism allows one to switch with ease between
behaviours emulating different logic gates

Universal General Purpose computing device

This Dynamical Logic Architecture is more versatile than
static hardware

. – p.55/89

Building blocks of Programmable hardware ;
Re-configurable hardware

Pre-determined or out-come dependent dynamic logic
configuration

Possibility of the hardware design evolving during the
computation

Arrays of such flexible units can conceivably be
programmed on the run to give the optimal hardware for the
task at hand

For instance, may serve flexibly as an arithmetic processing
unit or a component of memory, as the need demands, and
can be swapped to be one the other

. – p.56/89

The hope is that reconfigurable chaotic computer chips will
enable us to achieve within the same computer chip
architecture :

Flexibility of field programmable gate arrays (FPGA)

Optimization and speed of application specific
integrated circuits (ASIC)

General utility of a central processing unit (CPU)

CHAOLOGIX : developing a VSLI implementation of chaotic
computing in a demonstration integrated circuit chip

First generation of chip: 0.18 µm (January 2007)
. – p.57/89

Exploiting Nonlinear Dynamics to Encode and Process
Information

with Abraham (Aris) Miliotis , William L. Ditto

2007

. – p.58/89

Information storage is a fundamental function of computing
devices

Computer memory is implemented by computer
components that retain data for some interval of time

Storage devices have progressed from punch cards and
paper tape to magnetic, semiconductor and optical disc
storage by exploiting different natural physical phenomena
to achieve information storage

. – p.59/89

For instance, the most prevalent memory element in
electronics and digital circuits is the flip-flop or bistable
multivibrator which is a pulsed digital circuit capable of
serving as a one-bit memory

Namely storing value 0 or 1

More meaningful information is obtained by combining
consecutive bits into larger units

. – p.60/89

Here we will suggest a different direction in designing
information storage devices:

We will implement data storage schemes based on the
wide variety of controlled patterns that can be extracted
from nonlinear dynamical systems

Just as we were able to demonstrate that chaotic systems
can be morphed into flexible reconfigurable logic units, we
will now demonstrate that they can also be morphed into a
more general and versatile version of Content Addressable
Memory (CAM)

. – p.61/89

We will demonstrate the use of arrays of nonlinear
elements to stably encode and store various items of
information (such as patterns and strings) to create a
database

Further we will demonstrate how this storage method
also allows one to efficiently determine the number of
matches (if any) to specified items of information in the
database

. – p.62/89

So the nonlinear dynamics of the array elements will be
utilized for flexible-capacity storage

Also for pre-processing data for exact (and inexact)
pattern matching tasks

. – p.63/89

Encoding information

We consider encoding N data elements (labeled as
j = 1, 2, . . . , N) by N nonlinear elements, with state Xi

n[j]
(j = 1, 2, . . . , N)

Each dynamical element stores one element of the
database, encoding any one of M distinct items (labeled as
i = 1, 2, . . . ,M)

N can be arbitrarily large

M is flexible : determined by the kind of data being stored

. – p.64/89

For instance for storing English text one can consider
the letters of the alphabet to be the natural distinct
items building the database, namely M=26

For the case of data stored in decimal representation
M=10

For databases in bioinformatics comprised typically of
symbols A, T, C, G, one has M=4

One can also consider longer strings and patterns as
the items:

For instance for English text one can also consider the
keywords as the items

. – p.65/89

Now we demonstrate how a single nonlinear dynamical
element can store M items, where M is variable and can be
large

This provides the capability for naturally storing data in
different bases or in different alphabets or multilevel logic

. – p.66/89

Now in order to hold information one must confine the
dynamical system to a fixed-point behavior:

i.e. a state that is stable and constant throughout the
dynamical evolution of the system

We employ a threshold mechanism to achieve this

. – p.67/89

Typically a wide window of threshold values can be found
where the system is confined on fixed points namely the
state of the element under such thresholding is stable at
T i[j]:

i.e. Xi
n[j] = T i[j] for all times n

We will use such a window to encode a stable database

. – p.68/89

So each element is capable of yielding a continuous range
of fixed points

As a result it is possible to have a large set of thresholds
{T 1, T 2, . . . TM} each having a one-to-one correspondence
with a distinct item of our data

So the number of distinct items that can be stored in a
single dynamical element is typically large, with the size of
M limited only by the precision of the threshold setting

. – p.69/89

In particular, consider a collection of storage elements that
evolve in discrete time n according to chaotic tent maps:

Xi
n+1[j] = f(Xi

n[j]) = 2min(Xi
n[j], 1 − Xi

n[j])

with each element storing one element of the given
database (j = 1, . . . N)

Each element can hold any one of the M distinct items
indicated by the index i

. – p.70/89

A threshold will be applied to each dynamical element to
confine it to the fixed point corresponding to the item to be
stored

For this map, thresholds ranging from 0 to 2/3 yield fixed
points with the variable Xi[j] held at T i[j]

This can be seen exactly from the fact f(T i[j]) > T i[j] for all
T i[j] in the interval (0, 2/3) implying that an iteration of a
state at T i[j] will always exceed T i[j] and thus be re-set to
T i[j]

. – p.71/89

In our encoding the thresholds are chosen from the interval
(0, 1/2) namely a sub-set of the fixed point window (0,2/3)

Defining a resolution r between each integer as:

r =
1

2

1

(M + 1)

Threshold T i[j] encoding positive ingtegers i ∈ [1,M] is

T i = i r

Lookup map from the encoded number to the threshold

. – p.72/89

Therefore we obtain a direct correspondence between a
set of integers ranging from 1 to M , where each integer
represents an item, and a set of M threshold values

So we can store N multi-level database elements by
setting appropriate thresholds on N dynamical
elements

. – p.73/89

Processing Information

Once we have a given database stored by setting
appropriate thresholds on N dynamical elements we can
query for the existence of a specific item in the database
using one global operational step

This is achieved by globally shifting the state of all elements
of the database up by the amount that represents the item
searched for

. – p.74/89

Search operation:

Globally applied shift : Xi
n[j] → Xi

n[j] + Qk

where Search Key Qk is

Qk =
1

2
− T k

where k is the number being queried for

i.e. value of the search key is simply 1

2
minus the threshold

value corresponding to the item being searched for

. – p.75/89

[]1T

[]2T

[]NT

[]jT

Q
i …

…

- Dynamical system

[]•T - Database element

Figure 1. Schematic of the

database held in an array of

dynamical systems and the

parallelized query operation.

. – p.76/89

Notice that the information item being searched for is coded
in a manner complimentary to the encoding of the
information items in the database

Much like a key that fits a particular lock

Namely Qk + T i[j] adds up to 1

2

This guarantees that only an item matching the one being
searched for will have its state shifted to 1

2

. – p.77/89

The value of 1

2
is special in that it is the only state value that

on subsequent update will reach value of 1 which is the
maximum state value for the system

So only the elements holding an item matching the queried
item will reach extremal value 1.0 on the dynamical update
following a search query

Note that the important feature here is the nonlinear
dynamics that maps the state 1/2 to 1, while all other states,
both higher and lower than 1/2, get mapped to values lower
than 1: so the matching state is selected out

. – p.78/89

This scheme provides us with a global monitoring operation
on the unsorted database

And pushes the state of all the elements matching the
queried item to the unique maximal point, in parallel

. – p.79/89

The crucial ingredient here is the nonlinear evolution of
the state, which results in folding

Chaos is not strictly necessary here

It is evident though, that for unimodal maps higher
nonlinearities allows larger operational ranges for the
search operation, and also enhances the resolution in
the encoding

For the tent map, specifically, it can be shown that the
minimal nonlinearity necessary for the above search
operation to work is in the chaotic region

Another specific feature of the tent map is that its
piecewise linearity allows the encoding and search key
operation to be very simple indeed

. – p.80/89

To complete the search we now must detect the maximal
state at 1.0

This can be accomplished in a variety of ways

For example, one can simply employ a level detector to
register all elements at the maximal state

This will directly give the total number of matches, if any

So the total search process is rendered simpler as the state
with the matching pattern is selected out and mapped to the
maximal value, allowing easy detection

. – p.81/89

Representative Example: English language text M = 26

- 8 -

. – p.82/89

Figure 3. (a) Threshold levels encoding the sentence “all you need is

love”, (b) the search key value for letter “o” is added to all elements,

(c) the elements update to the next time step. For clarity we marked

with red any elements that reach the detection level.

. – p.83/89

Further, by relaxing the detection level by a prescribed
tolerance we can check for the existence within our
database of numbers or patterns that are close to the
number or pattern being searched for

This allows detection of Inexact Matches

. – p.84/89

Figure 4. (a) Threshold levels encoding the sentence “all you need is

love”, (b) the search key value for letter “m” is added to all elements,

(c) the elements update to the next time step. It is clear that no

elements reach the detection level at 1. (d) By lowering the detection

level we can detect whether “adjacent” items to “m” are present.

. – p.85/89

A significant feature of this scheme is that it employs a
single simple global shift operation

Does not entail accessing each item separately at any
stage : great scope for parallelism

Implies that there is no scale-up (in principle) with size N

In terms of the timescales of the processor the search
operation requires one dynamical step, namely one unit of
the processor’s intrinsic update time

. – p.86/89

So nonlinear dynamics works as a powerful preprocessing
tool:

Reduces the determination of matching patterns to the
detection of maximal states, an operation that can be
accomplished by simple means, in parallel

The search effort is considerably minimized as it utilizes the
native processing power of the nonlinear dynamical
processors

. – p.87/89

One can then think of this method as a natural application
of a computing machine consisting of chaotic modules

It is also equally potent as a special-applications “search
chip”, which can be added on to regular circuitry, and
should prove especially useful in machines which are
repeatedly employed for selection/search operations

. – p.88/89

Outlook

Nonlinear systems are abundant in engineered and
natural systems : ranging from fluids to electronics to
optics

Attempted to harness the abundantly available chaotic
phenomena for the development of a reconfigurable
computing device (morphing chip)

. – p.89/89

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

