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A wide range of spatio-temporal dynamical phenomena
occur in nature, in the laboratory and in numerical
simulations :

From Fixed points to Chaos

From Coherence (such as in synchronised
oscillator arrays)
to Disorder (such as seen in fluid turbulence)
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AIM :

Devise control strategies capable of achieving the desired
type of spatio-temporal behaviour in complex systems

Find techniques which direct strongly nonlinear,
intrinsically chaotic systems on to regular targets

Enhancement of spatio-temporal chaos also has
important practical applications :

Find algorithms to target Chaos

– p. 3



WISH LIST:

To achieve control without having to monitor a large
number of variables

Must not be measurement intensive

No extensive run-time computation

Low control latency

Robust with respect to noise
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ADAPTIVE CONTROL

This is a class of efficient and easily implementable
feedback methods targetting desired dynamical behaviour
of wide-ranging complexity

Here a feedback loop drives the system parameter(s) to the
value(s) required to achieve the desired state (target)

Implemented by augmenting the evolution equation for the
dynamical system by an additional equation for the
evolution of the parameter(s)
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Consider a general N -dimensional nonlinear dynamical
system described by the evolution equation

Ẋ = F(X;µ; t)

where X ≡ (X1, X2, . . . XN ) are the state variables

µ is the parameter whose value determines the nature of
the dynamics
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The adaptive control is effected by the additional dynamics

µ̇ = γ (P? − P)

where

P is a variable or property (which could be a function of
several variables)

P? is the target value of P

γ indicates the stiffness of control

Error signal : P? −P
Drives the system to the target state.

Extension to many parameters is straightforward
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The scheme is adaptive :

In the above procedure the parameters which determine
the nature of the dynamics self-adjust or adapt themselves
to yield the desired dynamics

Driven by the dynamic feedback
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Prescription for adapative control :

Property P should characterize the desired state well
P should be distinctive : should be significantly different
from states “nearby” in parameter space and phase
space.

The feedback can be spatial or temporal

For instance:
• If the desired target is a specific spatial pattern : the
feedback should be spatial

• If spatial periodicities are associated with concurrent
temporal periodicity, e.g. spatio-temporal fixed points :
either spatial or temporal feedback would be effective
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A parameter capable of effecting large dynamical
changes is chosen to be controlled

Feedback drives its value to a regime which naturally
supports the desired spatio-temporal dynamics

Property P must be simply defined without the explicit
knowledge of the system’s equations of motion
i.e. without involving the explicit form of F(X) :

• Leads to considerable utility in experimental
applications

• Ensures low run-time computation
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Controlling the Pinsky-Rinzel Model Neuron

Based on extensive physiological data, Pinsky and Rinzel
developed a 8 variable 2 compartment model of a pyramidal
cell from the CA3 region of the hippocampus of the brain

Strongly Nonlinear

Highly Coupled

Multi-dimensional

We will use this neuronal model to demonstrate control of
the responses of a complex system
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Target different spiking behaviors

i.e. states with different Inter Spike Intervals (ISI)

So P ≡ ISI, P? ≡ ISI?

The parameter most accessible to quick external
manipulation is the applied soma current is
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Procedure for reaching and maintaining a particular ISI, by
adjusting the applied current is via adaptive feedback is as
follows:

is(n + 1) = is(n) − γ(ISIn − ISI?)

where ISIn is the current inter spike interval

i.e. the time difference between the current spike and its
immediately preceding one
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(a) Uncontrolled Neuron
(b) Under Feedback Control : with target ISI∗ = 15 msec
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(a) Time evolution of the soma current is
(b) Time evolution of the Inter Spike Interval

Dashed line : target ISI of 15 msec
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This control algorithm has the desired effect of tuning
the value of is such that :

the dynamics of the combined equations yields a
steady state with ISI = ISI?

The control algorithm does not require a priori
knowledge of the governing equations of the system

The only information necessary to implement adaptive
control is the current ISI value

i.e. the difference in the time at which the current spike
occurs and that at which the previous one had occured
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Once the system achieves the target :

It remains there and the control equation is switched off
As the error signal is zero

If the parameters begin to drift (for instance, due to
environmental fluctuations) :

The control automatically becomes effective again
As the error signal becomes non zero again

And this readily brings the system back to the desired
state
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The stiffness γ determines how rapidly the system is
controlled

The control (recovery) time : defined as the time required to
reach the desired state

Crucially depends on the value of γ
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Time evolution of the controlled Inter Spike Interval :
With stiffness of control γ : (a) 0.05 and (b) 0.005
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Targetting an irregular firing state :

Set a large target ISI ( > 30 msec )

As the system can only support irregular firing beyond that
ISI, the adaptive mechanism leads to fluctuating current is,
which in turn leads to irregular firing around a mean ISI∗

Thus we can achieve the desired effect of obtaining a state
with very irregular spikes
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(a) Uncontrolled neuron
(b) Under feedback anti-control
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Robustness ?

In real experiments it is conceivable that the ISI may not
measured very accurately

In order to be useful the technique should be robust with
respect to noise in ISI determination

Checked that the method indeed is successful even if the
ISI information in the feedback loop has a noisy spread
amounting upto 5 percent of the targetted ISI
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Caveat: If the system does not have any parameter
regime yielding the targetted dynamical behaviour –
adaptive control will fail
So the method is capable of achieving only those
targets that have a stable basin of attraction somewhere
in parameter space

Not too limiting, as nonlinear systems generically
support many different dynamical behaviours in
different parameter regimes :
evident from the rich bifurcation structure in parameter
space of nonlinear systems

Adaptive control then works like an efficient search
algorithm for varied dynamical characteristics in
parameter space

– p. 23



Controlling Extended Systems

A wealth of complex patterns have been observed in a
variety of extended systems :

Chemically Reacting Systems

Nonlinear Optics

Oscillating Fluid Surfaces and Granular Layers

Electroconvection in Liquid Crytals

Coupled josephson junction arrays

Morphogenesis, Self replication of living cells

Cardiac tissue and Neural systems

Population dynamics
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Thus control techniques capable of stabilising complex
patterns are of much potential use

We will now show that adaptive control techniques are
sufficiently general and versatile, and are capable of
achieving spatio-temporal targets of wide-ranging
complexity :

Spatio-temporal fixed points

Spatial patterns

Spatio-temporal Chaos
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Demonstrate this control principle on a
2-dimensional lattice of coupled logistic maps

This system is capable of exhibiting a rich variety of
spatio-temporal patterns as well as spatio-temporal chaos:

Thus it provides a good testing ground for the technique

Note that the method is quite general and can be directly
applied to other extended systems as well
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Evolution equations:

xn+1(i, j)) = f(α, xn(i, j)) +
ε

4

∑

nn

{g(xn(inn, jnn) − g(xn(i, j))}

where

nn denotes the 4 nearest neighbours of site (i, j)

Local map f(x) = 1 − αx2 with α indicating the strength
of the nonlinearity

Parameter ε gives the strength of coupling among
neighbours

Different coupling forms used: e.g. g(x) = x and
g(x) = f(x)
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Controlling Spatio-temporal fixed points

Target: Synchronised lattice – with each element invariant
in time as well

Situations where such a control is relevant, include the
maintenance of steady states in biophysical processes
under fluctuating environmental conditions :

Biological Thermostats

Regulation of Cell Reactions

Maintenance of Homeostasis (i.e. the relative
constancy of the internal environment with respect to
blood pressure, pH, blood sugar, osmolarity and
electrolytes)
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To reach and maintain a stable spatio-temporal fixed point :

Desired value of all lattice sites x(i) is x? at all times

Then the control equation has P ≡ x and P? ≡ x?

αn+1 = αn − γ(xn(ic, jc) − x?)

where (ic, jc) is the single site chosen for monitoring
feedback

Note that the controlled parameter α is changed globally
here
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The random initial lattice with parameter value far from what
yields the target :

Under control dynamics rapidly reaches the desired
spatio-temporal state
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The stiffness γ determines how rapidly the system is
controlled

Numerical experiments show :

For small γ , recovery time is inversely proportional to
the stiffness of control

Recovery time not dependent on lattice size

Recovery time not dependent on dimensionality of the
lattice
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Variation of the controlled parameter as a function of time
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Using temporal feedback for control to a spatio-temporal
fixed point

Stiffness of Control γ is : (a) 0.01 (b) 0.05 (c) 0.1
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In certain applications one may want to stabilise such
spatial patterns

To target spatial patterns we must use spatial feedback

This is obtained by measuring the local neighbourhood of a
monitored site

The feedback has to be specifically tailored according to the
distinguishing characteristics of the desired targetted
pattern

Demonstrate this for the case of two distinct patterns : the
chequerboard (squares) and stripes
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In order to target chequerboard patterns, one can use its
simplest characteristic, which is the requirement that

x(i, j) − x(i + 1, j − 1) = 0
x(i, j) − x(i − 1, j + 1) = 0
x(i, j) − x(i + 1, j + 1) = 0
x(i, j) − x(i − 1, j − 1) = 0

for all i,j

Utilizing the above to construct an error signal:

∆x = |{x(ic, jc)−x(ic +1, jc−1)}+{x(ic, jc)−x(ic−1, jc +1)}

+{x(ic, jc)−x(ic+1, jc+1)}+{x(ic, jc)−x(ic−1, jc−1)}|

where (ic, jc) is the site monitored for feedback
– p. 34



Controlling to a spatial chequerboard pattern by using
spatial feedback
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Control Equation :

αn+1 = αn − γ∆x

– p. 35



If one wanted to target a striped pattern the demand is:
x(i, j) − x(i + 1, j − 1) = 0
x(i, j) − x(i − 1, j + 1) = 0

This gives the following error signal :

∆x = |{x(ic, jc)−x(ic +1, jc−1)}+{x(ic, jc)−x(ic−1, jc +1)}|

where (ic, jc) is the site monitored for feedback
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Controlling to a spatial striped pattern by using spatial
feedback
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Spatial periodicity achieved by targetting spatial patterns does not
necessarily imply temporal periodicity :

As feedback does not have any temporal information here and no specific
temporal pattern is demanded by the control mechanism
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Control method drives the lattice to the targetted
patterns very effectively

One obtains the first (stable) configuration which
satisfies the demand of error being zero

Driven by spatial gradients, the parameter evolves in a
manner such that the desired spatial correlations
emerge

In a sense then, varied pattern formation occurs in this
augmented dynamical system, dictated by the driving
equation for the parameter(s)
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Targetting Spatio-temporal Chaos

Another application of practical importance is in enhancing
spatio-temporal chaos

Examples: Mixing Flows and Chemical Reactions – where
the Enhancement of Chaos leads to Improved Performance

Possible biological applications as well : Neural Systems
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If the desired state is chaotic rather than periodic, one
needs to choose an appropriate property P which reflects
the chaotic nature of the target state

An appropriate adaptive strategy is to take P to be the
instantaneous local stretching rate ∆x, in space or time

The local stretching ∆x in time is given by

∆x = |xn(ic, jc) − xn−1(ic, jc)|

where (ic, jc) is the site monitored for feedback
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One can also use a spatial feedback

For instance, one can demand local spatial roughness
(or local stretch in space) :

∆x = |
∑

nn

xn(ic, jc) − xn(inn, jnn)|

where nn denotes the 4 nearest neighbours of the
monitored site (ic, jc)

When target ∆x = 0 : spatio-temporal fixed point is obtained

When target ∆x is large : leads the system to
spatiotemporal chaos
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Control Equation : αn+1 = αn + γ(∆xtarget − ∆x)
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The controlled parameter rapidly evolves in time to a
suitable range and then fluctuates within a range of values,
so as to keep the targetted stretch rate, on an average,
satisfied
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Variation of the controlled parameter as a function of time

0 1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

time

Target : spatio-temporal chaos
The stiffness of control γ is 0.001 (—–) and 0.01 (. . . .)

The range of values within which the parameter fluctuates
increases with increasing stiffness γ
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Outlook

We have presented several adaptive algorithms : utilizing
both spatial and temporal feedbacks

The techniques are rapid, powerful and robust

We have applied the scheme to successfully achieve a wide
range of spatio-temporal targets, from synchronisation and
spatial patterns to spatio-temporal chaos

These techniques then have the potential for application in
systems such as coupled oscillator systems, chemical
reactions and Josephson junction arrays
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Significant features of these methods are:

They work with limited information of the state of the
system

None of the control algorithms required a priori
knowledge of the governing equations of the system

Since they can be implemented without explicit
knowledge of the dynamics, which can be treated
effectively as a black–box :

Useful in experimental applications
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The only information necessary to implement adaptive
control (or adaptive anti-control) is either the difference
between the current value of a variable and its previous
value or the value of the monitored sites and a suitable
set of neighbours

One arbitrarily chosen site in the bulk of the lattice
(and/or its local neighbourhood) is monitored for
measuring the error signal

Thus only one site provides the global feedback which
drives the entire lattice to the target

So the schemes are not measurement intensive
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Adaptive Feedback Control is a versatile tool for controlling
inherently chaotic systems to a variety of target states
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