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We consider a random network of nonlinear maps exhibiting a wide range of local dynamics, with the links
having normally distributed interaction strengths. The stability of such a system is examined in terms of the
asymptotic fraction of nodes that persist in a nonzero state. Scaling results show that the probability of survival
in the steady state agrees remarkably well with the May-Wigner stability criterion derived from linear stability
arguments. This suggests universality of the complexity-stability relation for random networks with respect to
arbitrary global dynamics of the system.
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The relation between the structure of a network and its
dynamical properties has been a problem of long-standing
importance in many fields, especially in theoretical ecology
f1g. A major advance in this area was the suggestion by May
that the stability of a network can be inferred from an analy-
sis of the interactions between the network elementsf2g.
Confining attention only to the local stability of an arbitrary
equilibrium of the dynamics, one can ignore explicit dynam-
ics and look at only the leading eigenvalues of the linear
stability matrix. Assuming that the network interactions are
random, rigorous results on the eigenvalue spectra of random
matrices can be appliedf3g. If the stability matrix is com-
prised of elements from a normal distribution with zero mean
and variances2, then the network is almost certainly stable if
NCs2,1, and unstable otherwise.N is the number of nodes
in the network andC is the network connectivity, i.e., the
probability that any two given elements of the network are
coupled to each other, as reflected in the sparsity of the ma-
trix f2,4g. This result is often referred to as the May-Wigner
stability theoremf5g.

May’s suggestion that increasing network complexity
leads to decrease in stability was supported by earlier nu-
merical simulationsf6g, but it ran counter to the empirically
established conventional wisdom that biodiversity promotes
ecosystem stability. The original result has been criticized on
the ground that it is obtained by linearizing about an as-
sumed equilibrium, and so is inapplicable when either the
perturbations from the equilibrium are large, or, the dynam-
ics does not settle down to a fixed point attractorse.g., they
might undergo periodic oscillations as in a Lotka-Volterra-
type systemd. The ensuing stability versus diversity debate in
ecology has resulted in a large body of literature attempting
to resolve this issue one way or anotherf7g. Although much
of the controversy may have been due to the methods that
different groups used to measure complexity and stability
f8g, and the two apparently opposing conclusions have been
resolved in the specific context of a community assembly
modelf9g, the general question of whether network complex-

ity is conducive to the long-term persistence of the nodes
remains unresolved. In addition to ecological networks, phe-
nomena where the survival of nodes in a network may be of
relevance are power grid breakdown, financial market
crashes, etc.; in short, any system that is susceptible to sud-
den collapse. Further, since the present problem is related to
the persistence of a trajectory in a high-dimensional space
with absorbing boundaries, it is also of considerable rel-
evance to the general question of persistence in nonequilib-
rium systems that has seen a huge spurt of interest recently
f10g.

In this paper, we report results on the role that network
complexity plays on global stabilitysin contrast to local sta-
bility d of a network, by looking at the persistence of indi-
vidual nodes in a network of randomly coupled nonlinear
maps undergoing a wide range of local dynamics. We ob-
serve that the results of the May-Wigner theorem seem to be
valid universally, namely, increasing the number of interac-
tions per node or increasing interaction strength will give rise
to increased likelihood of extinction. This evidence of uni-
versality sin the sense of being independent of the local dy-
namics at the nodesd has bearing on network problems in
generalf11,12g, as it addresses an issue which arises in many
different contexts, namely:What is the significance of local
dynamics on network stability, especially in situations where
the dynamics can be widely varying?

Previous work on including explicit dynamics in network
models mostly involved generalized Lotka-Volterra-type or-
dinary differential equationssODEsd f13g. However, in the
absence of interaction between the nodes, the local dynamics
in such a system is trivial. In contrast, considering randomly
coupled maps as a model for the dynamical network allows
us to considervery general local dynamics, including chaos.
In the specific context of ecological networks, this is a rea-
sonable assumption for the population dynamics of indi-
vidual species. In addition, the use of coupled maps allow us
to work with much larger networks, compared to models
incorporating realistic consumer-resource configurations
used to analyze simple communities with very few species,
whose results are difficult to scale to larger ecosystemsf14g.

Our model hasN dynamical elements in a network with
random nonlocal connectivity, for instance, representing an
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ecological network ofN interacting species. Each node
i s=1. . .Nd is associated with a continuous state variablexnsid
which represents the relative population density of theith
species at timen. The interaction between two species is
represented by Lotka-Volterra-type relation, with the sign of
the coupling coefficientJij determining either a predator-prey
relation sJij .0,Jji ,0d, competitionsJij ,Jji ,0d, or mutual-
ism sJij ,Jji .0d. The time evolution of the system is given by

xn+1sid = ffxnsidh1 + S jJijxns jdjg, s1d

wheref represents the local on-site dynamics. For the results
shown in this paper we have chosenf to be the exponential
map,

fsxd = xers1−xd, if x . 0; = 0, otherwise, s2d

with r being the nonlinearity parameter leading from peri-
odic behavior to chaosf15g. This is a much more realistic
model of population dynamics than the logistic map, and in
contrast to the latter, is defined over the semi-infinite interval
f0,`g rather than a finite, bounded interval. Our results also
hold for other models of population dynamics such as the
Bellows map, fsxd=rx / s1+xbd f16g. These maps have the
property that they do not go extinct in the absence of cou-
pling, as we are interested not in intrinsic instability of the
species, but rather in the instability induced by network in-
teractions.

The connectivity matrixJ=hJijj is a sparse matrix with
probability 1−C that an element is zero. The diagonal entries
Jii =0 indicate that in the absence of interaction with other
species, the exponential maps2d completely determines the
population dynamics of each species. The nonzero entries in
the matrix are chosen from a normal distribution with mean
0 and variances2. Note that we have also used uniform
distribution over the intervalf−s ,sg without any qualitative
changes in the results. The results reported below are for
parallel updating; similar results hold for random sequential
updating. Also, our results hold for interaction couplings
other than the one used above. For example, the following
type of coupling:

xn+1sid = f fxnsidg + S jJij f fxnsidg f fxns jdg,

gives results similar to that reported in this paper.
The linear stability criteria for random networks provides

a relation between the parametersN, C, and s. However,
since we are considering explicit local dynamics, we have an
additional parameter,r. In our work, instead of looking at
linear stability, we shall consider persistence, i.e., the prob-
ability that a site has a nonzero value ofx, as the measure of
stability of the system. Although some early work on sur-
vival and extinction of species in a coupled network were
done in restricted contexts of exclusively competitivef17g or
cooperative interactionsf18g, no systematic study has been
previously made on whether the May criterion is valid in the
presence of local dynamics, incorporating all kinds of inter-
actions between species.

Initially, all the N species have population values ran-
domly distributed aboutx=1. Immediately after starting the
simulation the number of persistent speciessi.e., with x.0d

decreases rapidly, but eventually attains a steady-state value
which is a function of the system parameters. Note that, if
xø0 for any species, it is removed from the system and
subsequently plays no further role. After a series of such
extinctions, the effective number of interacting species de-
creases and, consequently, the intensity of such extinction-
inducing fluctuations is also reduced. We have continued the
simulations for up to 104 iterations, when the probability of
further extinctions was found to become extremely small. We
then look at the fraction of species which survives as a func-
tion of the model parameterssFig. 1d. The results qualita-
tively agree with the May criterion for stability, in that, in-
creasing complexitysin terms of size, connectivity, and
interaction strength of the networkd decreases stability, with
a larger proportion of species liable to get extinct. Note that
the May criterion was derived on the basis of local stability,
whereas here we are considering the species’ persistence, a
measure of global stability.

Figure 1sad shows the ratio of persistent speciesNperswith
respect to the initial number of speciesN. This ratioNpers/N
appears to vary as 1/N for large N. This indicates that the
number of surviving species is independent ofN. Agreement
with Wigner-May stability results is also seen for the 1/C
variation of the surviving fraction with connectivityfFig.
1sbdg. Figure 1scd shows that the fraction of survivors depend
on the interaction strength parameters as 1/sz where the
exponentz is an increasing function of the connectivityC.
This dependence is expected because, ifC is decreased while

FIG. 1. The fraction of persistent nodes plotted against the
model parameters:sad the initial number of nodes,N ss=0.1; s:
C=0.1,r =2, h: C=0.1,r =4, n: C=1,r =2, ,: C=1,r =4d; sbd
connectivity,C sN=100, s=0.15; s: r =2, h: r =3, n: r =4d; scd
standard deviation,s sN=100, r =4; n: C=0.1, h: C=0.25,,: C
=0.5, s: C=1d; sdd the nonlinearity parameter,r sN=100, s=0.1;
s: C=0.1, h: C=0.5, n: C=0.9d. The data is obtained after 104

iterations and averaged over 5000 realizations.
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keepingN fixed, the effective number of other species that a
species interacts with, is decreased. In the limitC→0, every
species is independent of all other species, and will persist
with probability 1. Finally, we display the survival fraction
against the nonlinearity parameterr of the local map. It is
clearly evident that one obtains a smooth monotonic varia-
tion of the survival fraction with respect tor fFig. 1sddg. This
a priori may seem surprising, since the local map has a sig-
nificant range of diverse dynamics including windows of pe-
riodic and chaotic behavior and this is not reflected at all in
the figure.

To understand these results, we analyze the probability of
survival of any species in the steady state. A speciesi will
become extinct if its populationxi becomes negative at a
particular time. By looking at the equations describing the
system, one notes that this is only possible ifS jJijxj ,−1.
Therefore, the probability of survival of a species is essen-
tially equivalent to PsS jJijxj .−1d. The distribution of
PsS jJijxjd has a power-law distribution about its peak at zero,
and Gaussian tails. We now scale this distribution with re-
spect to the different network parameters, as scaling in non-
equilibrium phenomena is the most sensitive and stringent
test of universality.

Figure 2 shows the scaling ofPsS jJijxjd with the connec-
tivity C which goes as,C−1gcsC−bS jJijxjd, wheregc is the
scaling function independent ofC, implying CPsS jJijxj .
−1d,constant. Therefore, the probability of survival varies
as,1/C, in exact agreement with the results obtained from
linear stability analysis. The exponentb=0.2±0.02 for a
wide range of values ofs and r. Similar agreement is seen
for the variation of the probability of survival withs sFig. 3d.
The scaling data show thatPsS jJijxjd,s−2gsss−aS jJijxjd,
wheregs is the scaling function, so that the survival prob-
ability varies as,1/s2. The exponenta varies in the range
0.1–0.2, decreasing withr and withC.

The variation with the map nonlinearity parameter, how-
ever, has no analog in the previous work on random net-

works. We observe that the relevant parameter is the image
of the critical point of the map, rather thanr itself. This point
xr

max=esr−1d / r gives a measure of the width of the chaotic
attractorf19g. Since this increases the interval over which the
probability of sS jJijxjd is observed, we have normalized
the argument of the scaling function by dividing it
by xr

max. Figure 4 shows the scaling ofPsS jJijxjd
,sxr

maxd−ggrfsxr
maxd−1S jJijxjg, where gr is the scaling func-

tion. Therefore, the probability of survival varies assxr
maxd−g,

with the exponentg=3.1±0.1 for a wide range of values of
C ands. Interestingly, when the local dynamics is given by
the Bellows map, we again obtaing,3.

FIG. 2. The scaling ofS jJijxj with connectivityC for N=100,
s=0.1, andr =4. The data is obtained after 104 iterations and aver-
aged over 5000 realizations.

FIG. 3. The scaling ofS jJijxj with s, the standard deviation of
normal distribution from which the connection weights are chosen
sN=100, C=1, andr =4d. The data is obtained after 104 iterations
and averaged over 5000 realizations.

FIG. 4. The scaling ofS jJijxj with the width of the attractorxr
max

for N=100, C=0.5, ands=0.1. The inset shows the power-law
scaling behavior of the probability distribution of populations
x sN=100,C=1, ands=0.1d. The data is obtained after 104 itera-
tions and averaged over 5000 realizations.
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The above scaling results show that the complexity-
stability relations obtained by May hold true not only quali-
tatively, but also quantitatively, when we introduce explicit
local dynamics of the network elements. The exact nonlin-
earity of the map, as would be reflected in, e.g., the
Lyapunov exponent, does not enter any of the results, which
suggests that these relations are universal and independent of
details of the local dynamics. In addition, the results remain
valid even if the local nonlinearity parameterr for all the N
maps is not a constant, but varies according to a uniform
random distribution betweenr =2 andr =4.

The power spectra of quantities such as the total system
population,Si=1

N xi swhich can be identified with “biomass” in
the ecological contextd, has a low-frequency scaling given
by: Ssfd, f−a with 1,a,2. In addition, the distribution of
populationsPsxd is a clear power law:Psxd,x−f, with f
,1 for sufficiently highr sFig. 4 insetd f20g.

In summary, our work addresses one of the strong criti-
cisms against the wider applicability of the May-Wigner re-
sults, namely their assumption of an equilibrium. Here we
have a range of dynamics at the local level and certainly no
dynamical equilibrium at the global level, as populations are
always fluctuating. Rather, we have a nonequilibrium steady

state where the survival fraction attains stationarity. The sta-
bility of our dynamically more complex network, however,
still obeys the May criterion, and increasing complexitysin
terms of size, connectivity, and interaction strength of the
networkd leads to greater instability, resulting in a larger pro-
portion of species becoming extinctf21g. Scaling results of
the probability distribution of the interaction term in the sta-
tionary state indicate that the stability of the network varies
as,1/NCs2, very much in agreement with the May-Wigner
results. We also find that the stability of the network scales
with the nonlinearity parameter of the local maps in a
smooth monotonic fashion, with the relevant scaling variable
being the maximum value thatx can takeswhich depends
monotonically on the nonlinearityd. These observations hold
for networks with widely varying local dynamics as well as
for different updating and coupling schemes, underscoring a
remarkable universality and increasing the scope of rel-
evance of the May-Wigner stability theorem.
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