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Classical Resonances and an Arbitrary Trajectory Quantization Scheme for a Chaotic System
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The exponential decay of correlations in chaotic systems is often modulated and shows up as broad
peaks in the power spectrum. For a particle sliding freely on a compact surface of constant negative cur-
vature, we show that these classical resonances are directly related to the quantal eigenenergies of the
system. We use this as the basis for proposing a quantization scheme which requires the knowledge of a
single arbitrary ergodic classical trajectory. Our results are substantiated numerically.
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Chaotic dynamical systems have been the subject of
considerable interest in recent years and a number of in-
teresting results have emerged, both in the classical and
quantum mechanical context. These systems possess un-
stable isolated periodic orbits and are characterized by an
exponential decay of correlations. Interestingly, however,
this decay is often strongly modulated and shows up as
broad peaks in the power spectrum of autocorrelation
functions [1]. The theory of such resonances in case of
hyperbolic or axiom-A4 systems was developed by Ruelle
[2] and Pollicott [3] and attempts at providing physical
interpretations have been undertaken in some cases.
Thus for intermittent systems, Baladi, Eckmann, and
Ruelle [4] provide a dynamical mechanism for these
modulations based on the probabilistic distribution of the
duration of “laps” (time intervals with approximately in-
dependent behavior). Other observations [S] indicate
that the peaks occur close to frequencies of dominant
periodic motion. Physically this implies that the system
preferentially exercises this motion but cannot do so for-
ever due to its instability. The picture, however, is still
not clear. We shall address this question here and show
that for a particle sliding freely on a compact surface of
constant negative curvature, the position of the peaks is
directly related to quantal eigenenergies of the system.

Chaotic systems have also led to a significant develop-
ment in the theory of semiclassical quantization. It is
well known that the Einstein-Brillouin-Keller (EBK)
quantization scheme works only in case of integrable sys-
tems where trajectories live on tori. For nonintegrable
systems where direct methods are not applicable,
Gutzwiller [6] and Balian and Bloch [7] developed a
theory which requires as its input, the lengths, stability,
and focusing properties of all periodic orbits of the system
[8]. The density of states X 6(E —E,) can then be ex-
pressed as a sum of a smooth average part and fluctua-
tions that are comprised of oscillatory contributions from
all the periodic orbits of the underlying classical system.
For chaotic systems, it is expressed as

—E )= 1 T
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xcoslr(S,—¢,)1, (1)
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where the sum runs over each primitive orbit (labeled by
p) and its repetitions (labeled by r). In the above equa-
tion, da (E) refers to the average density of states (the
Thomas-Fermi term), S, and T, the action and time
period of a primitive orbit, ¢, an associated phase which
depends on the focusing properties of the trajectory while
M), is a matrix which describes the stability of the orbit.
In practice, there are two important factors which restrict
a direct use of this result. First, it is generally difficult to
enumerate the periodic orbits of a system or even to gen-
erate its symbolic dynamics. Second and more important,
the resolution, A, of a quantal level is restricted by the
length /imax of the longest orbit used (A~1//11ax) and not
the number N of periodic orbits used. Thus in chaotic
systems where the proliferation of orbits is exponential
[9]1, A~1/In(V). The improvement in resolution is thus
extremely slow. For few chaotic systems [10,11] it has
been possible to generate a large number of periodic or-
bits due to the nature of their symbolic dynamics as well
as pruning laws and for the low lying levels they give a
fairly good approximation to the quantal energies. Im-
proved techniques have, however, emerged involving cycle
expansions of the dynamical zeta function [12] and these
require fewer orbits to generate the desired resolution. In
this Letter, we provide an alternate quantization scheme
for a specific example of a chaotic system comprised of a
particle sliding freely on a compact surface of constant
negative curvature. The method follows from our result
on classical resonances, and requires as its input a single
arbitrary ergodic classical trajectory.

In what follows, we shall introduce the subject of clas-
sical resonances and subsequently establish the connec-
tion with quantal energies for the system under con-
sideration. The quantization scheme follows as a natural
extension and we demonstrate its viability numerically.

Classical resonances are a characteristic feature of
axiom-A systems and these are reflected in peaks of the
Fourier transform of correlation functions, ppc(1)
=(B(f*"**(x))C(f*(x))), —(B).{C), where B and C are
differentiable functions and f’ is the flow of the system.
Further, the position of the peaks is independent of the
functions B and C [1]. A famous example is the geodesic
flow on a manifold of negative curvature.
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According to the theorems of Ruelle [2] and Pollicott
[3] and numerical evidence for other systems, the spec-
trum of a purely chaotic system consists of a series of res-
onances y, of multiplicity gn:

tr.L' =trd(x — f'(y))
= [axstx— 1)) =T gue 7, @

where L' is the evolution operator and y, =a,+iB,. The
connection between the eigenvalues of the evolution
operator and the periodic orbits of the system is quite ob-
vious. Cvitanovic and Eckhardt [13] have evaluated the
contribution of each orbit to tr.L' using a coordinate sys-
tem with the longitudinal coordinate along the direction
of the flow and the others transverse to it. The calcula-
tion is reminiscent of the quantum case [6] and they
finally obtain a zeta function in terms of which tr.L’ is
expressed. We state their result [13] in a form con-
venient for subsequent analysis:

trLi=Y 3 Ty

—L—54—rT,). (3)
s r [2—TrMp]

The eigenvalues of the classical evolution operator are
thus a result of the collective properties of periodic orbits.
It should, however, be noted that Eq. (3) is exact while in
the quantum case, the periodic orbit expansion involves
the stationary phase approximation. (For spaces of con-
stant negative curvature, however, the quantum relation
is exact and is known as the Selberg trace formula [14].)

We shall now deal with the specific example of a parti-
cle sliding freely on a compact surface of constant nega-
tive curvature and establish a connection between classi-
cal resonances and quantal energies.

Compact surfaces of negative Gaussian curvature have
been dealt with quite extensively since it was first sug-
gested by Hadamard [15] that the classical free motion of
a particle constrained to move on it is unstable. It is now
known that the dynamics is in fact Bernoullian and hence
extremely chaotic. In analogy with the sphere (which has
constant positive curvature) such surfaces are also known
as “pseudospheres” and can be globally embedded in a
space endowed with a Minkowskian metric. We shall
deal here with two-dimensional compact surfaces for
which a flat representation (with a different metric) has
considerable advantages especially in constructing the
Hamiltonian dynamics. We give here some details of the
Poincaré disk model which we use in our numerical calcu-
lations. An extensive survey of various models can be
found in Balazs and Voros [16].

The Poincaré unit disk is a stereographic projection of
the pseudosphere onto the (xy,x;) plane. The boundary
of the disk corresponds to points at infinity and the pseu-
dosphere itself is represented by the interior of the disk.
The corresponding metric is ds?=4(dx?+dx3)/(1 —x?
—x3)? and the geodesics are circular arcs (or diameters)
orthogonal to the disk boundary. The metric being con-

formal, the angles are the same as in the Euclidean case
though distances get distorted.
The Hamiltonian in this representation reads as

H=A""pt+p$)/2u, 4)

where A is the conformal factor 4(1 —x? —x%)? and p is
the mass of the particle. Interestingly the free motion in
the entire unit disk is integrable [16] since apart from the
energy, E, there exists another constant of motion in
M =x,p,—x,p;. The orbits are thus diameters or circu-
lar arcs orthogonal to the disk boundary and the radius
and center of the arcs can be conveniently expressed in
terms of the constants of motion [16]. A particle moving
freely thus escapes to infinity (boundary of the disk).

The dynamics, however, becomes extremely complex
on a compact surface. This can be achieved [16] by tiling
the unit disk with replicas of a fundamental domain and
imposing periodic boundary conditions. Conversely one
can choose a discrete subgroup G of the Lorentz group
and identify the points that are connected by a Lorentz
transformation within this subgroup. Thus the infinite
free trajectory passes through different replicas each of
which are superposed on the fundamental domain to gen-
erate a criss-cross pattern. It is simpler, however, to take
the fundamental domain and glue together the sides ac-
cording to the connection rules of the discrete group G.
This space is now compact. Moreover the simplest of
such surfaces with constant negative curvature has genus
two (equivalent to a sphere with two handles).

We consider here this simplest case where the funda-
mental domain is a regular octagon with vertex angles
2n/8 and area 4r, with opposite sides identified. The cor-
responding “‘octagon group” G is generated by four spe-
cial boosts, g =(2 %), and their inverses that exchange op-
posite sides: z'=gz =(az+b)/(cz+d). In this particu-
lar case they are

1+2
87 o —imt(J2+22)

(24 24/2)
1+2 ’
j=0,1,2,3.

The classical dynamics even on this simplest compact
surface is extremely chaotic. The periodic orbits can,
however, be coded quite easily by first noting that each
element of the group corresponds to a periodic geodesic
and using an identity relation satisfied by the generators
and their inverses [16,17]. The exponential proliferation
in this case is a direct manifestation of the noncommuta-
tivity of the Lorentz group. Aurich and Steiner [17] have
constructed the group elements and evaluated the lengths
of more than 2% 108 periodic orbits for this system.

The quantal energies of the octagon are given by the
Schrodinger equation with periodic boundary conditions,
w(z) =y(gjz). The levels are discrete and the ground
state E¢=0. Interestingly, the relation between the
quantal energies {E,} and length spectrum {/,} is exact in
this case and is given by the Selberg trace formula [14]:
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;h(p,,)=%f_mdpptanh(7cp)h(p)
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where A4 is the area of the fundamental domain,
pi=E,—1/4, h(p) is a (nearly) arbitrary even function
that is holomorphic in the strip |Imp| < 1/2+¢, £> 0 and
vanishes asymptotically for |p|— o faster than 1/p2,
and g(x) is its Fourier transform. For convenience, we
shall assume A =2u =1 in the rest of this paper.

Starting with h(p,) =cos(p,/)e *?
[18] that for g— 07

ln
- ; 4sinh?(rl,/2)

", it is easy to show

§U—rly)

=coth(//2) +sinh ~'(//2) Zl cos(p,l), (6)

where we have neglected the term cosh(//2)/[2
xsinh3(//2)] on the right-hand side. Note that for this
system |2—TrM}|=4sinh?(r/,/2). Thus using Eq. (6)
in Eq. (3), and noting that t =//2VE, we have

tr.L!=coth(//2)+sinh ~1(//2) Z cos(p,/) . @)
n=1

Equation (7) forms the central result of this paper. For /
sufficiently large, this reduces to

=1+ Xe

n=1

-0/2xip, ) (8)

which is identical in form to Eq. (2) with a, =a=% and
Bn = £ p,. Thus the classical Ruelle-Pollicott resonances
for a particle sliding on a compact surface of constant
negative curvature are directly related to the quantal en-
ergies, E, =p2+ .

We reserve a discussion on the general case (where the
Gutzwiller trace formula is applicable) until later and in
the following, proceed with the quantization scheme
which follows quite logically.

In order to observe these resonances in classical corre-
lation functions, it is necessary to consider an ergodic tra-
jectory which induces an invariant measure u, such that

<X>=T1me T_'J:]Ter(x(r)) =fu(dx)X(x) )

Then the Fourier transform, pg(f) =fdte*'pg(1) of
the autocorrelation function pg(s) =(B(f'**(x))B(f*
x(x))), —(B)? should display broad peaks at = p,
[ps(f) is the power spectrum of the signal, B(x(7))].
Note that the peaks are not strictly Lorentzian since Eq.
(8) involves an approximation. However, the resolution
of the peaks is determined by the full width 2a, also
known as the “entropy barrier” [19]. Thus, the quantum
levels can be determined using an arbitrary, ergodic tra-
jectory up to an accuracy determined by the topological
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entropy.

We use the Poincaré disk representation to generate
the Hamiltonian dynamics and choose the fundamental
domain as a regular octagon. As mentioned earlier, each
segment of a trajectory is a circular arc whose center
(x§,x%) and radius R can be determined in terms of the
constants of motion in the entire unit disk (the unbound-
ed case). Thus we have [16] R=\/—/|M| =B,/M,
x§$=B,/M where Bi=(—x{ —xz)p2/2+Mx1 and
B,=—(—x{—x3)pi1/2+Mx,. As the trajectory hits
the boundary of the fundamental domain, the transfor-
mation g;z carries it to the opposite side from where the
trajectory emerges once more as a circular arc but with a
different radius and center coordinates. In order to use a
fast Fourier transform (FFT) algorithm to evaluate the
power spectrum, we have determined the position and
momentum coordinates at equal time intervals, Af.

For the plot displayed in Fig. 1, we consider a long tra-
jectory with energy E =0.000001 (this is chosen so that
the time required in traversing the smallest arc is not too
small; the dynamics at any other energy is equivalent
since the system is homogeneous) and time interval

=7.2, undergoing 4371 hits at the boundary. This is
broken up into 30 segments with 16384 points in each.
The power spectrum displayed is the average over these
30 segments as a function of p =xf/~E for the function
B=cos(x,x2p1p2). The quantal energies for this system
have been evaluated by Aurich and Steiner and are listed
in [20]. We have marked the approximate positions of p,
with arrows in Fig. 1.

The lower part of the spectrum clearly displays prom-
inent sidebands which make it difficult to distinguish the
second excited state at p,=2.25 [21]. This is primarily
due to the pronounced peak at zero (not shown in the
figure; it is several orders of magnitude higher than the
peaks shown in Fig. 1) and its rapidly decaying sidebands
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FIG. 1. Power spectrum, S(p), of the function B(x,p)

=cos(x1x2p1p2). The arrows mark the position of the quantal
energies [20].
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which interfere with the lower part of the spectrum. The
other levels (third excited state onwards) are quite prom-
inent in general considering the limitations in resolution
discussed earlier. Strangely, there is a pronounced peak
at around 3.3 which persists for other initial conditions as
well. Moreover, this and other peaks corresponding to
quantal energies can be observed for various other func-
tions, B(x,p). The possibility of a missing level thus can-
not be ruled out.

Our results therefore bear out the viability of this “ar-
bitrary trajectory” quantization scheme for this system
and can be compared profitably with the results obtained
from a direct application of periodic orbits [10,18]. Fur-
ther work along this direction is currently in progress and
aimed at eliminating sidebands [21] and improving the
resolution by “overcoming” the entropy barrier. A possi-
ble method is to evaluate first the autocorrelation func-
tion, multiply it by e'/2, and then compute its Fourier
transform so as to get sharp peaks with a resolution limit-
ed only by the length of the data set (of course at the cost
of greater computational time). These and other related
details will be communicated in due course.

A generalization of this scheme to other chaotic sys-
tems is not immediately obvious since the orbit dependent
phases and stability indices that occur in the Gutzwiller
trace formula prevent a direct inversion. A recent result
[22] for the density of lengths, 28(/ —/;) of chaotic bil-
liards is, however, encouraging since it shows that leading
order (in /) fluctuations in the density are indeed due to
the quantal energies. The influence of the oscillatory
corrections (which arise due to differences in quantal en-
ergies) on the power spectrum, however, needs to be in-
vestigated.

In conclusion, we have been able to show that for a
particle sliding freely on a compact surface of constant
negative curvature, the position of the peaks in the
Fourier transform of classical autocorrelation functions
are directly related to the quantal eigenenergies. A
quantization scheme using a single arbitrary ergodic tra-
jectory thus follows logically and we have demonstrated

its viability in this Letter.
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