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We provide a sum rule for the length spectrum of pseudointegrable systems in terms of the quantal en-
ergies. Further, we derive an expression for the form factor and infer the dependence of spectral fluctua-
tions on the geometry of the system. Our analysis allows us to explain various numerical results obtained

in recent years.
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An important aspect of dynamical studies in recent
times has been to explore the manifestations of the under-
lying classical dynamics on quantal stationary state prop-
erties. Investigations carried out on certain statistical
measures of the eigenvalue spectra reveal the existence of
universality classes [1]. It is now known [2,3] that their
origin lies in the nature of the corresponding classical
counterpart. Most of the current understanding is based
on the semiclassical periodic orbit theory [4], which al-
lows one to express the density of states as a sum of a
smooth average part and fluctuations arising from contri-
butions of all the periodic orbits of the system. While the
average part is system dependent, the fluctuations exhibit
universalities governed by the nature of classical dynam-
ics and thus form the object of statistical analysis.

The simplest statistical measure is the nearest-
neighbor-spacing distribution (NNSD) P(s). For gener-
ic integrable systems P(s) is the Poisson distribution,
exp(—s). The spectrum is thus characterized by near
degeneracies. Chaotic systems, however, display level
repulsion and the spacing distribution is well approx-
imated by the Wigner distribution, P(s)=(xs/2)
xexp(— + 7s2). Of the higher-order correlations, the
one most commonly encountered is the spectral rigidity
A(L). Given a substretch of length L, A(L) measures the
mean of the least-squares deviation of the spectral stair-
case, >, O(E — E;), from the best fitting straight line. For
an uncorrelated (Poisson) spectrum, A(L)=L/15, while
for the chaotic systems with time reversal symmetry,
A(L) =(1/2*)In(L) —0.007. Most of these results are
now understood in the framework of the periodic orbit
theory (POT) [2,3].

Pseudointegrable systems are the nearest step away
from classical integrability since their invariant integral
surface is NV dimensional but has a genus, g > 1. For in-
stance, polygonal billiards with internal vertex angles
a; =m;r/n; (m;#=1) belong to this category. The period-
ic orbits here are similar to those of integrable billiards in
that they occur in V—1 parameter families. Moreover,
the asymptotic proliferation of these orbits is identical to

b0=J:dEJg(\/Ex)exp(—ﬁE) fj—z—+$§aon(\/Elj) :
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that in the integrable case [5]. Interestingly enough
though, numerical computations on the quantal spectra
[6-10] show fluctuations closer to chaotic systems. This
enigmatic result has generated considerable research in-
terest in recent years and has so far defied explanation in
terms of the POT.

Our purpose in this Letter is to resolve these seemingly
contradictory observations. Our analysis is based on an
expression for the length spectrum, N(/)=X6(—1;),
that we derive by a suitable inversion of the trace formula
[4,11]. We show that the proliferation rate is in fact
different from integrable billiards for lengths that con-
tribute significantly to the spectral rigidity, A(L), or a re-
lated measure, the number variance £2(L). Using this,
we arrive at an expression for the form factor which gives
a theoretical basis for understanding several past numeri-
cal results and explains the dependence of A(L) on the
geometry of the system.

We shall first derive an expression for N(/). The start-
ing point of our analysis is the function

i Jo(/Enx)exp(—BE,)

n=|]

=LwdEJ0(\/Ex)exp(—ﬁE)26(E—E,,), m

where the summation is over the quantal energies E,, Jo
is the Bessel function, and ¢<E;. Now the density of
states can be expressed as (A =2m =1, where m is the
mass)

Ss(E—E)=2 413 0 5(EL),
n 1

2
4r  4rm j= @)

where /; refers to the lengths of the periodic orbits, a; is
the projected phase-space area of the jth family, and A is
the area of the billiard. Substituting expression (2) in
Eq. (1), and choosing e— 0% [12] we have in the limit
B— 0% [13]

S Jo(WEmx) ==X a;6(x —1)/(l) P =by,  (3)
2 5 4 4

n=l|

where x > 0 and

4)
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Multiplying by 2zx and integrating in the range [/o,/]
where /g is smaller than the length of the shortest period-
ic orbit, we obtain

1l
Sa =b0n12+2nﬁ02x10(\/EnX)dx , (5)
<l "

where the summation is over those orbits for which /; </
and by is a constant [14]. We shall later give a value for
bo from other considerations.

Clearly, for integrable billiards a;’s are identical
(aj =ain) and hence

!
aimN () =b07r12+27rj;02x10(\/E,,x)dx. 6)

For pseudointegrable systems we have a very different sit-
uation, since the a;’s are not identical. This in fact is a
characteristic property of such billiards and has very
significant consequences as we shall now show.

Note that for any given /, we can always write
2y <1aj=a()N(l), where a(l) is the average projected
area for orbits up to length /. It then follows that

borl!?
N({) =
o) ) a(l) f ZXJ()(-\/ X )dx
=Na()+ N (D) . @)

The behavior of N (/) thus crucially depends on the form
of a(l). The area q; is the configuration space area of the
jth band (or family) X number of independent directions,
nj, of the jth orbit. Clearly a; [and hence the average
a(l)] is bounded between @min and @max. Here amin corre-
sponds to a bouncing ball family covering the smallest
configuration space area Amin and is equal to 2 A min. The
quantity @max is due to the generic (long) orbits which
cover the entire billiard and possess the maximum num-
ber of directions 2N, allowed by the genus,

_1+_Z[m,—l]

l

where WV is the least common multiple of the integer set
{n;} and the sum is over all polygonal vertices. Then we
have amax=AXQ2N). Thus @(/) is an increasing func-
tion connecting these two limits and asymptotically
reaches amax. Thus the / dependence of N (/) in pseudoin-
tegrable systems is different from that in integrable sys-
tems. This has been corroborated for the case of the bar-
rier billiard, using a different procedure [15].

For large lengths, however, N(I) ~I? since a(/) satu-
rates. This is in conformity with Gutkin’s asymptotic re-
sult [5] for almost-integrable systems which are a subset
of pseudointegrable systems.

We shall now use the above analysis to arrive at a form
for the spectral rigidity A(L),

/dnv
A(L)—<mm1 f L/zd“dx[N(Eo+x)—a—bx]2> (8)

for pseudointegrable systems, where d,, =d.,(E) = A/4x.
We shall concern ourselves with the behavior of A(L) in
the region L < Lpyax, where Lyax (=hday/Tmin) is the
outer scale of the spectrum.

The density of energy eigenstates in billiards, as given
in Eq. (2), can be expressed in the semiclassical limit as

2 S(E—E,)=d.(E)+ Z Ajexp(S;), 9)
n=1
where the amplitude A4; =(l/327r3\/—1,~ 122q;, and the ac-
tion Sj=\/b_“lj. Using Eq. (9) the spectral rigidity is
given as [3]

A(L) =2 (10)

0
where T =1/(2~/E,) and
o(T) =<ZTZ*A,»A,cos(S,~ —S,-)&(T—(T,+T,-)/2)>.
i

AT (T)G(LT/2d o (Eo))

an

The superscript T denotes that we have taken into ac-
count the conjugate terms in Eq. (9). The selection func-
tion G (y) picks orbits that contribute substantially and is
given by (1 —F2(y) —3[F'(y)1?), where F(y)=sin(y)/
y. For y < /4, G(y) is nearly zero, while in the interval
n/4 <y <3m/2, it climbs steeply until it saturates to a
value =1 for y > 3x/2. [For a plot of G(y), see Berry
[31]

Here, as in the case of integrable systems [3], the ac-
tion differences (S; —S;) in ¢(T) are always large com-
pared to unity as the proliferation rates are comparable
and thus the off-diagonal terms in Eq. (11) can be
neglected due to the averaging in Eq. (11). So
¢#(T)=¢p(T). (In contrast, for chaotic systems, the in-
crease is exponential and hence for long orbits, the
differences in actions are small compared to unity and the
off-diagonal terms cannot be neglected.)

We shall thus evaluate the quantity

¢D(T)=<ZA,~26(T—T,-)>. (12)
i=1
It is instructive to study the function F(T)

=[JdT ¢p(T") in order to deduce the nature of ¢p(T).
A reasonable estimate of F(T) (and the correct T depen-
dence) can be obtained by substituting the relevant ex-
pressions for 4; and T in Eq. (12) and using Eq. (3).
Thus we have

F(T) = (13)

al _(a() ¥ ai
16 3 2,: l; 1673 z,: L’
where we have introduced the quantity <(a(/)) and the
sum now goes over all orbits up to a period 7. For
sufficiently high energies [large Eo in Egs. (8) and (10)]
the selection function, G(y), does not pick up contribu-
tions from the short orbits. Thus, neglecting the fluctuat-
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ing part of Eq. (3), we have F(T) = (boT/872)a(l)).

Clearly the function {a(/)) lies between ami, and the
largest area, a; included in the sum. As / increases all
subsequent entries in the sum approach am. (.e., g
=dmax, for 1 >1;>19). Thus

a; a;
Z s = Z —j_+amax Z

1
n=tli 1< 1 o<h <t lj’
Therefore, it is easy to see from above and Eq. (3) that
(a(1))=amax— Uo/I) [amax —CaU))] .

Hence (a(/)) smoothly increases with / and saturates
asymptotically at amax. Further, note that the slope de-
creases as 1//2. Thus on differentiating F(7") [and using
the fact that (a(/)) is a slowly varying function of /] we
have ¢p(T) =(bo/87%){a(l)). Further, from the semi-
classical sum rule of Berry [3] we have

_du(E)

o(T) for T>d,(E). (14)

Comparing the value of ¢p(7T) with Eq. (14) at large T,
where {(a(/)) saturates to @max, it follows that the con-
stant bo=A/amax. Thus, for integrable billiards bg= %,
which can also be obtained from the Poisson summation
formula. Now using the expression for bg and (a(/()) we

have [16]
| Lalo) ] }

A max

¢(T)=¢<a(l)>=i2{l—ﬁ
8r

72 max T

(15)

This forms the central result of this paper. Equation (15)
yields the correct value, d,,(E)/2x, [2,3], for integrable
billiards since (@(/)) =amax =ainr. Note that ¢(T) is a
constant for integrable systems, while for the chaotic case
it initially increases linearly [¢(7') =T/47?%] and then sat-
urates to d.(E)/2n at large T. For pseudointegrable
systems ¢(7T') rises with a slope decreasing as 1/7°2, and
saturates at A/87x>.

It is evident from Eq. (10) that the behavior of the
spectral rigidity is determined completely by the nature
of the form factor ¢(7). In our subsequent analysis we
will thus focus on ¢(7) and explain past numerical re-
sults on the basis of this.

The above form for ¢(7T") [Eq. (15)] suggests the fol-
lowing features: (i) When Ami, decreases (due to the
shape of the billiard), with A and W remaining invari-
ant, ¢(T') drops further due to a decrease in the value of
(a(lp)) and thus A(L) will depart more from L/15. (ii)
When the number of directions, W, increases keeping A
and A, constant, for instance, by changing the angles
of the polygonal billiard slightly, the value of {a(/¢))/amax
must decrease due to an increase in amax. (Note that the
short periodic orbits are not so sensitively dependent on
N in this case, as A and Ay, are held constant, and
thus {a(/¢)) is roughly independent of W). Hence it is
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clear from Eq. (15) that ¢(7), and thus A(L), will fall
further from the Poisson result. (iii) With an increase in
energy [Eo in Eq. (8)] the selection function G(») picks
longer orbits for which ¢(T) is closer to d,/2x compared
to that at a lower energy where shorter orbits contribute.
Thus A(L) shifts towards the Poisson result with an in-
crease in Eo. (This is in contrast to the integrable or
chaotic cases where the fluctuations are invariant with
energy.) In the limiting case of very large energy, the
selection function G will choose orbits of large length and
so {a(/)) will saturate at amax. Thus ¢p(7T) will be a con-
stant (d,/2n) from where it follows that A(L) will show
a linear dependence.

Numerical studies on polygonal billiards corroborate
the above observations. Cheon and Cohen [7] have stud-
ied the spectral fluctuations of a class of pseudointegrable
systems which approximate the chaotic Sinai billiard by a
series of steps replacing the circle. As the number of
steps increase (the number of directions, N, remains con-
stant, but A, decreases) the approximation to the Sinai
billiard gets better and they observe a shift towards the
chaotic result. This follows quite simply from case (i)
above.

Biswas [9] has carried out a similar study on a family
of rational rhombus billiards with angles that approxi-
mate 27/(/5+1) increasingly well. Here too there is
shift towards the chaotic result. In this case the genus in-
creases, resulting in an increase in N, while A and Ay
remain constant. The nature of the fluctuations can
again be understood in terms of case (ii) above. Further,
it was observed [9] that A(L) evaluated at smaller ener-
gies was lower compared to that evaluated at higher ener-
gies. This is consistent with the energy dependence pre-
dicted by our theory [case (iii) abovel.

In summary, we provide a sum rule for the length spec-
trum of pseudointegrable systems in terms of the quantal
energies, analogous to that for the eigenvalue spectrum,
by a suitable inversion of the trace formula [17]. We find
that the proliferation rate of the periodic orbits differs
from the integrable case for lengths that are relevant for
the spectral fluctuations. In the asymptotic case, howev-
er, we recover Gutkin’s result for almost-integrable sys-
tems. Using this analysis, we derive an expression for the
form factor and infer from it the dependence of spectral
fluctuations on the geometry of the system. The theory
allows us to explain various numerical results obtained in
recent years [18].

The authors wish to thank Dr. M. Azam for stimulat-
ing discussions.

Appendix.— We can also use a local approximation for
the function (a(/)) to obtain a form of the spectral rigidi-
ty via Eq. (10). This is valid since for values of L smaller
than the outer scale L., (defined earlier) the interval of
lengths which gives the L dependence of spectral rigidity
is restricted by the selection function G(y). Hence only
the local behavior of ¢(7) [and hence {a(/))] is relevant.
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[In the rest of the interval we do not need to assume any
form for ¢(T) as will be clear from the analysis below.]
Thus using the local form {a(/)) =CI® where § (=8k,) is
a small constant whose value depends on Eq [where E
determines the interval of lengths contributing to the
spectral rigidity, see Eq. (8)], we can arrive at the follow-
ing expressions:

op(T) =BE®2T?% (A1

where B=b¢C2%/87% Equation (A1) yields the correct
value [2,3] for integrable billiards since C =44, §=0,
and bo=%. Defining t =T/2nd(E) and writing ¢(T")
=d.(EYK(t)/2x, it follows that K(z)=Dt?% for 7min
«7<1 and K(z)=1 for t>>1, where D=BQx)?%*!
x E%243; 1. Substituting the relevant quantities in Eq.
(10) we obtain [3]

L *d
A(L)=2—”f0 ;{—K(y/nuc(y), (A2)

where y=nLt. For L <1, K(z)=1, which gives A(L)
=L/15 [3]. When 1 KL < Lay, it is possible to divide
the range of integration in Eq. (A2) into two parts by
choosing a value of Y that satisfies | K Y < L. Using the
above expression for K(z) we get

AlL)=CL'7%+D, (A3)
where

D Y 4 Y 4 ,
-5 |-, —Ly2_6F2(y)—3f() o

and
1 * dx d | Kx)
D= — .
27%(1 —8) j:) x'7% dx { x? }

Since D is L independent we do not need to approximate
K(x) [and hence ¢(T)] in the interval (Y,o) in order to
infer the L dependence of the spectral rigidity. (This is in
the same vein as in chaotic systems [3].) The form in Eq.
(A3) has been observed in previous numerical studies on
the rhombus billiards [19]. Arguments similar to those
for ¢(T) can be put forward for the variation of & to ex-

plain the dependence of A(L) on the geometry of the sys-
tem.
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