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We study the spatiotemporal dynamics of a network of coupled chaotic maps modelling neuronal activity,
under variation of coupling strength � and degree of randomness in coupling p. We find that at high coupling
strengths ����fixed� the unstable saddle point solution of the local chaotic maps gets stabilized. The range of
coupling where this spatiotemporal fixed point gains stability is unchanged in the presence of randomness in
the connections, namely �fixed is invariant under changes in p. As coupling gets weaker ����fixed�, the spa-
tiotemporal fixed point loses stability, and one obtains chaos. In this regime, when the coupling connections are
completely regular �p=0�, the network becomes spatiotemporally chaotic. Interestingly however, in the pres-
ence of random links �p�0� one obtains spatial synchronization in the network. We find that this range of
synchronized chaos increases exponentially with the fraction of random links in the network. Further, in the
space of fixed coupling strengths, the synchronization transition occurs at a finite value of p, a scenario quite
distinct from the many examples of synchronization transitions at p→0. Further we show that the synchroni-
zation here is robust in the presence of parametric noise, namely in a network of nonidentical neuronal maps.
Finally we check the generality of our observations in networks of neurons displaying both spiking and
bursting dynamics.
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I. INTRODUCTION

One of the important prototypes of complex phenomena
are systems composed of large numbers of low dimensional
nonlinear dynamical units. The basic ingredients of such sys-
tems are �i� creation of local chaos or local instability by a
low dimensional mechanism and �ii� spatial transmission of
energy and information by coupling connections of varying
strengths and underlying topologies.

The central question of interest here is the following: how
do collections of entities which display complex chaotic be-
havior when isolated �such as cardiac or neuronal cells� man-
age to yield coherent regular behavior when coupled. It is
known that diffusive coupling regularizes spatiotemporal dy-
namics of coupled chaotic systems �1,2�. Here we demon-
strate another mechanism for inducing regular spatiotempo-
ral dynamics: the presence of random nonlocal coupling.

We focus on the coupled map lattice �CML�, which is a
model capturing the essential features of nonlinear dynamics
of extended systems �1�. This model is defined on a lattice,
the dynamics of whose nodes is given by a local �commonly
nonlinear� map. Over the past decade, research centered
around CML has yielded suggestive conceptual models of
spatiotemporal phenomena, in fields ranging from biology to
engineering. In particular, this class of systems is of consid-
erable interest in modelling phenomena as diverse as Joseph-
son junction arrays, multimode lasers, vortex dynamics, and
even evolutionary biology. The ubiquity of distributed com-
plex systems has made the CML a focus of sustained re-
search interest.

A very well-studied coupling form in CMLs is nearest
neighbor coupling. While this regular network is the chosen
topology of innumerable studies, there are strong reasons to
revisit this fundamental issue in the light of the fact that
some degree of randomness in spatial coupling can be closer
to physical reality than strict nearest neighbor scenarios. In
fact, many systems of biological, technological, and physical

significance are better described by randomizing some frac-
tion of the regular links �3–7�. So here we will study the
spatiotemporal dynamics of a CML of relevance to biology,
with some of its coupling connections rewired randomly, i.e.,
an extended system comprised of a collection of complex
elemental dynamical units with varying degrees of random-
ness in its spatial connections.

In the context of synchronization �8�, it has recently been
found that random coupling yields spatiotemporal synchro-
nization in a network of chaotic one-dimensional local maps
�9�. That is, the strongly unstable fixed point of the local
maps �such as logistic, circle and tent maps� were stabilized
under increasing randomness in the coupling connections.
Thus interestingly, the inherent chaos present in the indi-
vidual local units is suppressed by the coupling, giving way
to a stable global attractor. Further, the range of stability of
this spatiotemporal fixed point increased monotonically with
increasingly random coupling �10�.

In this work we will study a network of model neurons,
and try to discern the effect of random coupling on the spa-
tiotemporal dynamics. Note that there have been many stud-
ies on coupled one-dimensional maps �1,9�. However the
dynamics of coupled higher dimensional maps could be
qualitatively different, and they may display certain behav-
iors that are not obtained in one-dimensional maps. There
has been considerable success in realistically modelling neu-
rons �11,12� and lasers �13� by higher dimensional maps.
Thus studying coupled systems of higher dimensional maps
could be more relevant for practical applications.

The primary questions we address here are the following:

�i� Does random coupling enhance the parameter region
yielding a stable global fixed point?

�ii� Does random coupling yield spatial synchronization?
�iii� How do the synchronization properties change with

respect to increasing randomness? The issue here is the fol-
lowing: is there some optimal value of randomness for ob-
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taining dynamical regularity and/or synchronization, or is
this a monotonic function of some measure of the random-
ness, interpolating smoothly between the regular and random
limits �14�.

�iv� Does the synchronization transition occur when we
have a finite fraction of random nonlocal connections? This
question is significant in the following context: while there is
much evidence that random nonlocal connections, even in a
small fraction, makes a big difference to geometrical proper-
ties like characteristic path length, its implications for dy-
namics is still unclear and even conflicting. So it is important
to determine what dynamical changes occur at very low val-
ues of disorder, namely does the behavior change as soon as
nonlocal shortcuts are put in place �as observed in equilib-
rium models �5��, or do the transitions occur at significantly
higher degrees of disorder.

�v� Is the synchronization robust with respect to param-
eteric noise, namely is it present in networks of nonidentical
components �albeit in a weaker form�?

In this work we will probe all the above issues. In the
sections below, we will first describe the model in detail, and
then we will present the results and conclude with a sum-
mary and discussions.

II. NETWORK OF MODEL NEURONS

Here we consider a one-dimensional ring of neurons mod-
elled by maps. In certain parameter regimes this neuronal
map exhibits chaotic behavior about one of its fixed points.
In our system the local model neurons operate in this chaotic
regime, and we will show the transition of such chaotic maps
to a synchronized state, under varying coupling strengths and
randomness in coupling connections.

Specifically, our local dynamical unit is the two-
dimensional model neuron map, proposed by Chialvo �11�.
This map determines the local dynamics in our network, and
is given as

xn+1 = f1�xn,yn� = xn
2 exp�yn − xn� + k ,

yn+1 = f2�xn,yn� = ayn − bxn + c , �1�

where n is discrete time.
As appropriate in the context of excitable biological sys-

tems, here xn is the activation variable �analogous to mem-
brane potential� and yn is the recovery variable �11�.

Parameter a is the rate constant for yn and b is the acti-
vation dependence of the recovery variable �as it relates yn to
xn�. Parameters k and c are offsets to the xn and yn variables,
respectively. In this work we choose the parameter values
a=0.89,b=0.18,c=0.28.

The nullclines of this neuronal system are given by, xn+1
=xn leading to

x* = x*2 exp�y* − x*� + k , �2�

and yn+1=yn leading to

y* = ay* − bx* + c , �3�

whose simultaneous solution gives

y* = ln x* − k − 2 ln x* + x*, �4�

y* =
c − bx*

1 − a
. �5�

When k�0.03, this map has very interesting dynamics.
Here, the phase flow spirals towards the fixed point ��1,1�
and then suddenly bursts out. This leads to chaotic spiking
behavior about the saddle node. We use this regime for our
local dynamics.

When these neuronal maps are coupled to nearest neigh-
bors through the x variable �namely the membrane potential�,
the dynamics of the network is given as

xn+1�i� = �1 − ��f1�xn�i�,yn�i�� +
�

2
�g�xn�i + 1�� + g�xn�i − 1��� ,

yn+1�i� = f2�xn�i�,yn�i�� , �6�

where index n denotes iteration steps and i is the site index
on the lattice with periodic boundary conditions. Here
f1�x ,y� and f2�x ,y� are given by the local evolution map at
each site �Eqs. �1��. The coupling function g�x� can take
different forms. In this work we use the linear coupling form
g�x�=x. The parameter � gives the coupling strength.

Now on this regular lattice we introduce varying degrees
of randomness, namely we introduce some fraction of ran-
dom links replacing the regular nearest neighbor connec-
tions. This mimics real life situations in which nonlocal con-
nections exist along with predominantly local ones �15�.

The evolution is given by

xn+1�i� = �1 − ��f1�xn�i�,yn�i�� +
�

2
�g�xn���� + g�xn����� ,

yn+1�i� = f2�xn�i�,yn�i�� , �7�

where �= i+1 with probability 1− p and is a randomly cho-
sen integer such that 1���N with probability p. Similarly
�= i−1 with probability 1− p and is a randomly chosen inte-
ger such that 1���N with probability p. In this work, �
and � are chosen randomly at every time step. This is unlike
the case of quenched randomness, more usually studied in
literature, where � and � do not change in time. Clearly the
p=0 case corresponds to regular nearest neighbor coupling
and p=1 to completely random connections. This scenario is
much like small world networks at low p, namely p→0.
Note however that we explore the full range of p �0� p
�1� here. So the study is inclusive of, but not confined to,
small world networks. As mentioned above, the connections
are rewired dynamically and we are not using quenched ran-
domness here. Rather the network switches the random links
from time to time.

The focus of this work is to determine what dynamical
properties are significantly affected by the way connections
are made between elements. We present our results below.

III. RESULTS FOR HOMOGENEOUS NETWORKS

Now we numerically examine the phenomenology of this
network of neurons under variation of coupling strengths and
degrees of randomness in coupling. The spatiotemporal pat-
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terns of this network are clearly evident from the phase dia-
gram displayed in Fig. 1 �16� and the bifurcation diagrams in
Fig. 2. The following are the salient features of this system.

Regularity at high coupling strengths. The chaotic spiking
behavior of the local maps occurs about the saddle fixed
point at ��1,1�. Under strong coupling this fixed point be-
comes a stable global attractor. That is, when the coupling
strengths are in the range �fixed���1 ��fixed�0.361�, the
dynamics of the network is attracted to the spatiotemporal
fixed point: xn�i�=1, yn�i�=1, for all i and n �see Fig. 2�.
Note that the value of �fixed observed numerically matches
that obtained analytically in the section above.

For coupling strengths smaller than �fixed, the spatiotem-
poral fixed point loses stability. For regular coupling one
then obtains spatiotemporal chaos. However if there is some
degree of randomness in the coupling connections �namely
p�0�, one obtains ranges of coupling strengths ��sync��
��fixed� where spatial synchronization occurs. This is evi-
dent through Fig. 2 displaying the spatial pattern obtained
for different coupling strengths, for different degrees of ran-
dom coupling p. These bifurcation diagrams display the state
of all the sites at a given instant of time, and it clearly shows
that p�0 opens up a window of coupling strengths where
spatial synchronization occurs, i.e., all nodes in the network
have the same state, seen simply as a point in the bifurcation
diagram.

Also note that the randomly rewired network has large
spikes in the temporal evolution of the membrane potential,
as compared to the regular ring of model neurons �see Fig.
3�.

We study the degree of synchronization in the systems
quantitatively through an average error function defined as

Z�n� =
1

N
	
i=0

N

�xn�i� − xn�N/2��2 �8�

averaged over time n and over different initial realizations of
the network. Figs. 4 and 5 display this quantity for different

rewiring probabilities and different coupling strengths. 
Z�
=0 indicates complete synchronization.

It is evident from Fig. 4 that the transition to synchroni-
zation occurs at coupling strengths higher than �sync. It is
clear that for higher p, �sync is lower. So random links in the
network enhance the range of synchronization.

Figure 5 shows the average synchronization error for a
fixed coupling strength, with respect to varying p. Clearly
the transition to synchronization occurs at a finite psync, with
the value of psync decreasing with increasing coupling
strengths �psync�0.4 at �=0.3 in Fig. 5�. This is quite distinct
from p→0 synchronization transitions observed in many
systems �5,17�. Thus one obtains long-range order only at
some finite degree of disorder p in the coupling connections.

Further, study of the window of synchronized chaos, R
=�fixed−�sync, shows that the range of synchronization in-
creases monotonically with the fraction of random links p
�see Fig. 6�. The functional dependence of this range R on p
is exponential over a large range �0.1� p�0.8�, with satura-
tion occuring at p→1. For p=0, the links will be completely
local and synchronized chaos cannot exist. Thus for very
small values of p, we see that the range goes to zero con-

FIG. 1. We plot the phase diagram of coupled Chialvo maps in
the two parameter space of coupling strength � and rewiring prob-
ability p. The abbreviation SC, STC, and SFP denote synchronized
chaos, spatiotemporal chaos, and synchronized fixed point,
respectively.

FIG. 2. Bifurcation diagrams of the spatial pattern in the net-
work, at an instant of time �after transience�, with respect to cou-
pling strength �, with fraction of random links p=0 �top� and p
=1 �bottom�.
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tinuously. Our study then indicates that synchronization
properties interpolate smoothly between the limits of regular
and random connections without in any sense being “opti-
mal” or more pronounced at some intermediate �low� value
of p �14�.

Also note that coupling through such dynamically up-
dated random links is effectively similar to global coupling

with appropriate strength, as every site interacts with all
other sites over a period of time. Taking a clue from the law
of large numbers, we conjecture that the total contribution
due to k randomly chosen neighbors is k
x�t��, where 
x�t�� is
the mean value of x. So the dynamics can be mimicked well
by an averaged evolution equation �see Eq. �B1� of Appendix
B�. The spatiotemporal fixed point obtained from such an
effective time-averaged system is exactly the same as that
from our randomly rewired network. The results are also
markedly similar for the range of spatial synchronization for

FIG. 3. Time series of a representative model neuron in a net-
work with �i� p=0 �upper panel� and �ii� p=1 �lower panel�. Cou-
pling strength �=0.3 here. It is evident that random networks yield
large spikes in the membrane potential, as compared to the regular
ring of model neurons.

FIG. 4. Average synchronization error vs coupling strength �,
for rewiring probability �i� p=0 �fully regular� and �ii� p=1 �fully
random�. Clearly the fully random network achieves zero synchro-
nization error at a much smaller value of coupling strength, and
hence gives rise to a larger range of synchronization in coupling
parameter space.

FIG. 5. Average synchronization error vs rewiring probability p,
for the network of model neurons with coupling strength �=0.3.

FIG. 6. Continuous range of coupling � over which synchroni-
zation is observed, plotted as a function of the rewiring probability
p, on a semilogarithmic scale �circles�. Note that in this synchro-
nized regime the fixed point solution is unstable and we get syn-
chronized chaos or synchronized oscillations. We carry out simula-
tions for network size N=500, averaging over 10 configurations, to
find the continuous parameter range over which synchronization is
obtained. For smaller p, we clearly see an exponential growth. Also
shown is data for the same quantity obtained via Eq. �B1� �black
squares�.
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the two cases �see Fig. 6�. Further we can use this mean-field
analogue to obtain good analytical estimates of the coupling
range �see details in the appendix�.

IV. NETWORK OF NONIDENTICAL NEURONS

Now we consider the network of nonidentical neurons,
with a spread in the individual values of the parameters:
a ,b ,c ,k. It is evident from the neuronal time traces dis-
played in Fig. 7 that such inhomogeneity has a very small
effect on the synchronization properties of the network. In
fact, synchronization is surprisingly robust to parameteric
noise in its individual neuronal components.

In particular, consider a spread of �k in the parameter k.
The resulting average synchronization error increases with
increasing strength of parametric noise, namely increasing
network inhomogeneity, as a power law,


Z� � �k
2, �9�

where 
Z� is Z�n� �defined by Eq. �8�� averaged over time
and over a large number of network realizations. Note that
the average synchronization error is very small �of the order
of �10–8� even when the spread in parameters is as large as
10% of the parameter value �see Fig. 8� �18�.

The �k
2 dependence of the synchronization error in the

saptiotemporal fixed point regime can be rationalized from
the fact that 
Z� �from Eq. �8�� approximately varies as

FIG. 7. Time trace of 10 neurons superposed in a network of
nonidentical neurons. In this figure the strength of parametric fluc-
tuations were 0.005 for parameters a, b, and c, and 0.001 for pa-
rameter k �approximately up to 1% of the parameter value for all
four parameters�. Clearly, though complete synchronization is lost
due to inhomogeneity, the neurons are still phase synchronized.

FIG. 8. Average synchronization error �Z� vs parametric noise
strength �k �up to 10% of the parameter value�, for four different
sets of coupling strength � and rewiring probability p. The top set
belongs to the synchronized chaos phase, while the bottom three lie
in the spatiotemporal fixed point phase. Here N=50 �but note that
system size makes no discernible difference to the average synchro-
nization error�. The case of �k=0 yields �Z�=0.

FIG. 9. Average synchronization error vs rewiring probability p,
for the network of model Rulkov neurons with coupling strengths
�=0.5,0.9, for parameter sets �i� 	=4.0, �=0.01, �ii� 	=4.5, �
=0.14, and �iii� 	=6, �=0.386. These parameter sets include both
spiking and spiking-bursting regimes of neuronal activity.

FIG. 10. Representative wave forms of 10 neurons superposed
in a network of model Rulkov neurons with coupling strengths �
=0.5, and 	=4.5, �=0.14. It is clear that the bursting pattern of all
the neurons is perfectly in-phase, while the amplitudes are not ex-
actly matched.
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�
xi
*�2 where 
xi

* is the variation in the fixed points of the
individual neuronal maps. Since, from Eq. �2�, this variation
goes as �k, 
Z���k

2. This indicates that the source of syn-
chronization error in the spatiotemporal fixed point regime in
the network of heterogeneous components, arises only from
the variation in the fixed points of the nonidentical individual
maps.

Computing the average synchronization error with respect
to noise in the other parameters, a, b, and c, also yields a
relationship like Eq. �9�. Note that the Newton-Raphson so-
lution of Eqs. �2� and �5� show that the variation in the fixed
point of the system also has a linear relation with variation in
parameters a, b or c �just as in the more obvious case of
parameter k�.

V. NETWORK OF MODEL RULKOV NEURONS

In order to check the generality of the qualitative results,
we now briefly consider a network comprised of neurons
described by a different model: the Rulkov map. This model
of neurons replicates both the spiking and spiking-bursting
activity of neurons. We will again show that increasing ran-
domness in coupling connections in this network enhances
synchronization.

Specifically, the local dynamical unit now is the two-
dimensional model neuron map proposed by Rulkov �12�. It
is given in discrete time n as

xn+1 = f�xn,yn + �� ,

yn+1 = yn − ��xn + 1� + �� . �10�

The xn is the fast and yn is the slow dynamical variable.
The slow evolution of yn arises from small values of param-
eter �=0.001. The function f�x ,y� is discontinuous, and is
given by

f�x,y� = 	/�1 − x� + y when x � 0,

f�x,y� = 	 + y when 0 � x � 	 + y ,

f�x,y� = 1 when x  	 + y , �11�

where 	 is the control parameter of the map.
Figure 9 shows the synchronization error as a function of

the degree of disorder p of the underlying network. Depend-
ing on the activity patterns of the individual neurons, the
network goes to a spatiotemporal fixed point �e.g., at 	=4,
�=−0.01�, or to a completely synchronized or a phase syn-
chronized state �19� �see Fig. 10�. It is generally observed
that the average synchronization error monotonically de-
creases with increasing p. This behavior is observed for
many different regimes and for many different individual
activity patterns occuring at varying time scales, including
both spiking and bursting, as is evident from the representa-
tive examples in Fig. 9.

VI. CONCLUSIONS

We have studied the spatiotemporal dynamics of a net-
work of model neurons, under variation of coupling strength
� and degree of randomness in coupling p. We find that at

high coupling strengths ����fixed� the unstable saddle point
solution of the local chaotic maps gets stabilized. The range
of coupling where this spatiotemporal fixed point gains sta-
bility is unchanged in the presence of randomness in the
connections, namely �fixed is invariant under changes in p. As
coupling gets weaker ����fixed�, the spatiotemporal fixed
point loses stability, and one obtains chaos. In this regime,
when the coupling connections are completely regular �p
=0�, the network becomes spatiotemporally chaotic. Interest-
ingly however, in the presence of random links �p�0� one
obtains spatial synchronization in the network.

We have demonstrated that synchronization properties,
such as the range of synchronized chaos, increases exponen-
tially with the fraction of random links in the network, up to
�nearly� completely random networks. So we find no evi-
dence of synchronization peaking or saturating at dilute ran-
dom rewiring �that is, small world networks do not show
enhanced or optimal synchronization effects�.

Further we find that in the space of fixed coupling
strengths, the synchronization transition occurs at a finite
value of p. So here long-range order is obtained at a finite
degree of disorder in coupling connections, unlike expecta-
tions from models where one obtains long-range order even
at infinitesimal rewiring probability in the infinite size limit.

Finally, in order to check the generality and reach of our
observations, we have investigated networks of nonidentical
neurons, as well as networks of neurons displaying both
spiking and bursting dynamics. Both these studies clearly
show that random rewiring does indeed enhance synchroni-
zation, even in networks with inhomogeneous components,
as well as in networks where the nodal dynamics has mul-
tiple time scales such as spiking-bursting.
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APPENDIX A: STABILITY ANALYSIS OF p=0

Now we analyze the stability of synchronized fixed point
for regular nearest neighbor coupling topology, i.e., the p
=0 case whose evolution is given by Eq. �6�.

For the homogenous solution of Eq. �6�, the stability cri-
terion is that the norm of eigenvalues of 2N�2N stability
matrix J have magnitude less than unity. The onset of syn-
chronization is characterized by the crossover of eigenvalues
past unity for different coupling strength �. The Jacobian
matrix J for the synchronized fixed point for the
2N-dimensional system is given by
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J =�
�1 − ��a1 �1 − ��a2

�

2
0 0 0 . . .

�

2
0

a3 a4 0 0 0 0 . . . 0 0

�

2
0 �1 − ��a1 �1 − ��a2

�

2
0 . . . 0 0

0 0 a3 a4 0 0 . . . 0 0

] ] ] ] ] ] � ] ]

�

2
0 0 0 0 0 . . . �1 − ��a1 �1 − ��a2

0 0 0 0 0 0 . . . a3 a4

 ,

where

a1 =
�f1�x,y�

�x
= 2x* exp�y* − x*� − x*2

exp�y* − x*� ,

a2 =
�f1�x,y�

�y
= x*2

exp�y* − x*� ,

a3 =
�f2�x,y�

�x
= − b ,

a4 =
�f2�x,y�

�y
= a . �A1�

The above values are a1=1.004 358± �0.000 002� and a2

=0.933 357± �0.000 002�. In principle, x* and y* are func-
tions of �. However they turn out to be very slowly varying
functions. �Using feedback to stabilize the fixed point in its
unstable range, we tracked down the values of x* and y* over
the entire range of �.� The values of a1 and a2 hardly change
over this range and error bars are given above. The general
form of the above matrix is

J =�
A B 0 . . . B

B A B . . . 0

] ] ] � ]

B 0 0 . . . A
 .

The matrix J is block circulant matrix, where each block
is 2�2 matrix, where

A = ��1 − ��a1 �1 − ��a2

a3 a4
�, B = � �

2
0

0 0
 ,

A block circulant matrix can be set into a block-diagonal
form by a unitary transformation. The unitary matrix which
affects the block diagonalization is a direct product of Fou-
rier matrices of sizes N�N and 2�2, the entries of which
are roots of unity, independent of the matrix being diagonal-
ized �20,21�.

The block diagonal form is

D =�
M0 0 . . . 0

0 M1 . . . 0

] ] � ]

0 0 . . . MN−1

 ,

where the matrix, Mr; r=0,1 ,2 , . . . ,N−1 are 2�2 matrices
given as Mr=A+�rB+�r

N−1B, �r=ei� and �r
N−1=e−i�r, �r

=2�r /N,

Mr = ��1 − ��a1 + � cos �r �1 − ��a2

a3 a4
� �A2�

and, for r=0, the matrix is

M0 = ��1 − ��a1 + � �1 − ��a2

a3 a4
� . �A3�

Now it is evident that one must check the eigenvalues of
M for �r between 0 to 2� to obtain the stability criterion for
all values of N. Actually, it is sufficient to check for 0��r
��. Eigenvalues of the stability matrix could be real or
complex. First we consider the case of real eigenvalues and
check if their absolute value ever exceeds unity. We consider
the matrices S±= �M ± I�. The eigenvalues of these matrices
are simply the eigenvalues of M shifted by ±1. Now if ei-
genvalues of S+ are positive and eigenvalues of S− are nega-
tive, the eigenvalues of M must be bounded between
�−1,1�. �We drop the subscript r for simplicity.�

Consider the determinant of matrix S+, det S+= �a4+1�
���1−��a1+ �� cos �r+1��−a2a3�1−��. We see that the de-
terminant is always positive for any value of � as �1
+� cos��r�� will always be positive since ��1. Let us con-
sider matrix S−. Its determinant is det S−= �a4−1���1−��a1

+� cos �r−1�−a2a3�1−��. It is also positive as the last term
is positive and is greater than the first term.

Similarly, Tr S+= �1−��a1+� cos �r+a4+2= �a1+a4+2�
+��cos �r−a1�, which is also positive for both �r=0 and �r

=�. So, the eigenvalues of the matrix S+ are positive. Now
the trace of matrix S− is given by Tr S−= �1−��a1+� cos �r

+a4−2= �a1+a4−2�+��cos �r−a1�. Since �a1+a4−2� and
�cos��r�−a1� are negative for all �r, the trace of the matrix S−
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is negative. Thus the eigenvalues of this matrix must be
negative. This implies that the real eigenvalues are within the
interval �−1,1�.

Now consider the possibility of complex eigenvalues. In
this case, the stability criterion is that the norms of the ei-
genvalues are less than unity. �Or alternatively, square of the
norm is less than unity.� For a two-dimensional matrix, the
square of the norm of the eigenvalues is the same as deter-
minant of the matrix. Now considering the determinant of
the matrix equal to unity to find the � where synchronized
fixed point becomes stable, we have

det Mr = �1 − ��a1a4 + a4� cos �r − a3a2�1 − �� = 1 �A4�

then, �=1− �a1a4−a2a3� /a4 cos �r− �a1a4−a2a3�= �1−z1� /
�a4 cos �r−z1�, where z1=1.0618. Thus the maximum value
of � is obtained for �=0, i.e., �fixed�0.36. Second, it is easily
seen that the eigenvalues are always complex for the full
range of � for �r=0. The determinant is a decreasing function
of � for a given cos��r� and an increasing function of cos��r�
for a given �. Thus the maximum value of � above which
stability is guaranteed is the same as the bound obtained for
M0, i.e., if ���fixed. This is in agreement with the numerical
results �see Fig. 1�.

APPENDIX B: STABILITY ANALYSIS FOR FINITE p

Stability analysis for finite p is relatively complicated
even for the synchronous fixed point since it will involve
diagonalization of random matrices which are not in a known
class.

We employ an approximation similar to that employed by
Pandit and Amritkar �22� while studying random walks on a
small-world network. They treated the random part as a kind
of global coupling with appropriate strength and they get
results which are comparable to ones numerically obtained.
Taking a clue from the law of large numbers, we conjecture
that the total contribution due to k randomly chosen neigh-
bors is k
x�t��. Now the averaged out evolution equation
could be written as

xn+1�i� = �1 − ��f1�xn�i�,yn�i�� + �1 − p�
�

2
�g�xn�i + 1��

+ g�xn�i − 1��� +
�p

N
	
i=1

N

�g�xn�i��� ,

yn+1�i� = f2�xn�i�,yn�i�� . �B1�

The Jacobian matrix J�, for a two-dimensional map with
random rewired network is given by

J� =�
�1 − ��a1 +

�p

N
�1 − ��a2 �1 − p�

�

2
+

�p

N
0 . . . �1 − p�

�

2
+

�p

N
0

a3 a4 0 0 . . . 0 0

�1 − p�
�

2
+

�p

N
0 �1 − ��a1 +

�p

N
�1 − ��a2 . . .

�p

N
0

0 0 a3 a4 . . . 0 0

] ] ] ] � ] ]

�1 − p�
�

2
+

�p

N
0

�p

N
0 . . . �1 − ��a1 +

�p

N
�1 − ��a2

0 0 0 0 . . . a3 a4

 ,

where, the values of constants a1 ,a2 ,a3 ,a4 are the same as in Eq. �A1�.
The matrix J� is a block circulant matrix, where each block is a 2�2 matrix. The unitary matrix which affects block

diagonalization of the block circulant matrix is a direct product of Fourier matrices of sizes N�N and 2�2, the entries of
which are roots of unity, independent of the matrix being diagonalized �20,21�. The general form of the block circulant
Jacobian here is

J� =�
A� + C� B� + C� C� C� . . . C� B� + C�

B� + C� A� + C� B� + C� C� . . . C� C�

] ] ] ] � ] ]

B� + C� C� C� C� . . . B� + C� A� + C�
 ,

where

A� = ��1 − ��a1 �1 − ��a2

a3 a4
�, B� = ��1 − p�

�

2
0

0 0
, C� = � �p

N
0

0 0
 .
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The block diagonal form is

D� =�
M0� 0 . . . 0

0 M1� . . . 0

] ] � ]

0 0 . . . MN−1�
 ,

where the matrix Mr�; r=0,1 ,2 , . . . ,N−1 are 2�2 matri-
ces given as, Mr�= �A�+C��+�r�B�+C��+�r

2C�+ ¯

+�r
N−1�B�+C��, where, �r=ei�r and �r

N−1=e−i�r, �r

=2�r /N. Therefore, Mr�=A�+B��ei�r +e−i�r�+C��1+ei�r

+e2i�r + ¯ +e�N−1�i�r�=A�+2B� cos �r+C��1+ei�r +e2i�r + ¯

+e�N−1�i�r�.
Here we must to consider two cases, viz. �r=0 and �r

�0. In the first case, it is easily checked that the form of the
matrix Mr�=A�+2B�+NC� is exactly the same as that ob-
tained for the p=0 case in the preceding appendix, i.e.,

M0� = ��1 − ��a1 + � �1 − ��a2

a3 a4
� . �B2�

The eigenvalues are both real and complex, and synchro-
nization is obtained at ��fixed, as observed numerically as
well.

For the r�0 case, the matrix is slightly different and is
given as Mr�=A�+2B� cos �r,

Mr� = ��1 − ��a1 + ��1 − p�cos �r �1 − ��a2

a3 a4
� . �B3�

As previously mentioned, one checks the eigenvalues of
Mr� for cos��r� between −1 to 1 �or equivalently �r between 0
to ��. We note that �1→0 in the thermodynamic limit N

→�. Eigenvalues of the stability matrix could be real or
complex. We again consider the matrix S±�= �M�± I�. Now,
the determinant of matrix S+� is, det S+�= �a4+1���1−��a1
+ �1+ �1− p�� cos �r��+ �−a2a3�1−���. We see that determi-
nant is always positive for extremum values of �r=0,
�, since all the terms are positive. Similarly, for matrix
S−�, det S−�= �a4−1���1−��a1+ ��1− p�� cos �r−1��+ �−a2a3�1
−���. Here the determinant is positive because the product of
the curley brackets is positive. The trace of matrix S+� is
Tr S+�= ��1−��a1+a4�+ �2+��1− p�cos �r�. It is positive due
to the fact that both the brackets are positive for both �r
=0,�. But the trace of matrix S−� is Tr S−�= ��1−��a1+a4�
+��1− p�cos �r−2= �a1+a4−2�+���1− p�cos �r−a1�. Since
a1+a4−2 and ��1− p�cos��r−a1�� are both negative, Tr S−� is
negative. Thus we can say that the eigenvalues of matrix Mr�,
if real, are within interval �−1,1�. Now in the case of com-
plex eigenvalues there are two bounds �r=0 and �r=�. We
can see that at finite p, the case for �r=0 is the same as in
p=0. The determinant of matrix M� is

det Mr� = ��1 − ��a1 + � cos �r�1 − p��a4 − a2a3�1 − �� .

�B4�

Comparing det Mr� in Eq. �B4� with det Mr in Eq. �A4�,
we observe that det Mr��det Mr�det M0� for cos��r��0.
Since M0=M0�, stability is guaranteed for ��0.36 for any
value of p. For cos��r��0 the maximum value of determi-
nant is reached for �r=� and p=1 and in that case, the de-
terminant does not exceed unity for ��0.05. It can be easily
seen that the determinant is a decreasing function of �. So we
can conclude that the range of the synchronized fixed point
remains at �fixed even at finite p. This is in complete agree-
ment with the numerics presented in this work.
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