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Random coupling of chaotic maps leads to spatiotemporal synchronization

Sudeshna Sinha*

Institute of Mathematical Sciences, Taramani, Chennai 600 113, India
~Received 8 March 2002; published 18 July 2002!

We investigate the spatiotemporal dynamics of a network of coupled chaotic maps, with varying degrees of
randomness in coupling connections. While strictly nearest neighbor coupling never allows spatiotemporal
synchronization in our system, randomly rewiring some of those connections stabilizes entire networks atx* ,
wherex* is the strongly unstable fixed point solution of the local chaotic map. In fact, the smallest degree of
randomness in spatial connections opens up a window of stability for the synchronized fixed point in coupling
parameter space. Further, the couplingebifr at which the onset of spatiotemporal synchronization occurs, scales
with the fraction of rewired sitesp as a power law, for 0.1,p,1. We also show that the regularizing effect of
random connections can be understood from stability analysis of the probabilistic evolution equation for the
system, and approximate analytical expressions for the range andebifr are obtained.
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I. INTRODUCTION

The coupled map lattice~CML! was introduced as a
simple model capturing the essential features of nonlin
dynamics of extended systems@1#. Over the past decade re
search centered around CML has yielded suggestive con
tual models of spatiotemporal phenomena, in fields rang
from biology to engineering. In particular, this class of sy
tems is of considerable interest in modeling phenomena
diverse as Josephson junction arrays, multimode lasers,
tex dynamics, and even evolutionary biology. The ubiqu
of distributed complex systems has made the CML a focu
sustained research interest.

A very well studied coupling form in CMLs is neare
neighbor coupling. While this regular network is the chos
topology of innumerable studies, there are strong reason
revisit this fundamental issue in the light of the fact th
some degree of randomness in spatial coupling can be c
to physical reality than strict nearest neighbor scenarios
fact, many systems of biological, technological, and phys
significance are better described by randomizing some f
tion of the regular links@2–7#. So here we will study the
spatiotemporal dynamics of CMLs with some of its coupli
connections rewired randomly, i.e., an extended system c
prized of a collection of elemental dynamical units wi
varying degrees of randomness in its spatial connections

Specifically, we consider a one-dimensional ring
coupled logistic maps. The sites are denoted by integei
51,...,N, whereN is the linear size of the lattice. On eac
site is defined a continuous state variable denoted byxn( i ),
which corresponds to the physical variable of interest. T
evolution of this lattice, under standard nearest neighbor
teractions, in discrete timen is given by

xn11~ i !5~12e! f @xn~ i !#1
e

2
$xn~ i 11!1xn~ i 21!%.

~1!

The strength of coupling is given bye. The local on-site map
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is chosen to be the fully chaotic logistic map,f (x)54x(1
2x). This map has widespread relevance as a prototyp
low dimensional chaos.

Now we will consider the above system with its couplin
connections rewired randomly in varying degrees, and try
determine what dynamical properties are significantly
fected by the way connections are made between eleme
In our study, at every update we will connect a fractionp of
randomly chosen sites in the lattice, to two other rand
sites, instead of their nearest neighbors as in Eq.~1!. That is,
we will replace a fractionp of nearest neighbor links by
random connections. The case ofp50 corresponds to the
usual nearest neighbor interaction, whilep51 corresponds
to completely random coupling@2–7#.

This scenario is much like small world networks at lowp,
namely, p;0.01. Note, however, that we explore the fu
range ofp here. In our work 0<p<1. So the study is inclu-
sive of, but not confined to, small world networks.

II. NUMERICAL RESULTS

We will now present numerical evidence that random
wiring has a pronounced effect on spatiotemporal synchro
zation. The numerical results here have been obtained
sampling a large set of random initial conditions (;104),
and with lattice sizes ranging from 10 to 1000.

Figures 1 and 2 display the state of the network,xn( i ),
i 51,...,N, with respect to coupling strengthe, for the limit-
ing cases of nearest neighbor interactions~i.e., p50! and
completely random coupling~i.e., p51!. It is clearly seen
that the standard nearest neighbor coupling does not yie
spatiotemporal fixed point anywhere in the entire coupl
range 0<e<1 @8#.

Now the effect of introducing some random connectio
i.e., p.0, is tocreate windows in parameter space where
spatiotemporal fixed point state gains stability, i.e., where
one finds all lattice sites synchronized atxn( i )5x* 53/4, for
all sitesi and at all timesn. Note thatx* 5 f (x* ) is the fixed
point solution of the individual chaotic maps, and is strong
unstable in the local chaotic map. We then have for alp
.0, a stable region of synchronized fixed points in the p
rameter interval,ebifr<e<1.0. The value ofebifr , where the
©2002 The American Physical Society09-1
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spatiotemporally invariant state onsets, is dependent onp. It
is evident from Fig. 2 thatebifr for completely random cou
pling p51 is around 0.62.

The relationship between the fraction of rewired conn
tions p and the range,R5(12ebifr), within which spa-
tiotemporal homogeniety is obtained, is displayed in Fig.
It is clearly evident that unlike nearest neighbor couplin
random coupling leads to large parameter regimes of reg
homogeneous behavior, with all lattice sites synchroni
exactly at x( i )5x* 50.75. Furthermore, the synchronize
spatiotemporal fixed point gains stability over some fin
parameter range underany finite p, i.e., wheneverp.0,
however small, we haveR.0. In that sense strictly neare
neighbor coupling is singular as it does not support s
tiotemporal synchronization anywhere in coupling parame

FIG. 1. Bifurcation diagram showing values ofxn( i ) with re-
spect to coupling strengthe, for coupled logistic maps with strictly
regular nearest neighbor connections. Here the linear size of
lattice isN5100 and in the figure we plotxn( i ) ( i 51,...,100) over
n51,...,5 iterations~after a transience time of 1000! for five differ-
ent initial conditions.

FIG. 2. Bifurcation diagram showing values ofxn( i ) with re-
spect to coupling strengthe, for coupled logistic maps with com
pletely random connections. Here the linear size of the lattic
N5100 and in the figure we plotxn( i ) ( i 51,...,100) overn
51,...,5 iterations~after a transience time of 1000! for five different
initial conditions.
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FIG. 3. The stable rangeR with respect to the fraction of ran
domly rewired sitesp (0.001<p<1). The solid line displays the
analytical result of Eq.~7!, and the different points are obtaine
from numerical simulations over several different initial condition
for four different lattice sizes, namely,N510, 50, 100, and 500
The dotted line showsR5p, and it is clear that for a large range o
p the approximation holds.

FIG. 4. Theebifr ~i.e., the value of coupling at which the onset
spatiotemporal synchronization occurs! with respect to fraction of
randomly rewired sitesp (0.001<p<1). The solid line displays the
analytical result of Eq.~6!, and the points are obtained from nu
merical simulations over several different initial conditions, for fo
different lattice sizes, namely,N510, 50, 100, and 500. The inse
box shows a blow up of 0.1,p<1. Here the numerically obtained
ebifr deviates from the mean field results. The dashed line is the
fit straight line for the numerically obtained points in that region
9-2



pl
ow
ei

-
r

an
m
g

o
ro
n
fo
ge
ca

uc
d
po

r

s
ita
lt

b
ity
e

rm

the
ap-

the

t
ude

,
the
,
d of

of
nec-

is

or
ect
is
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space, whereas any degree of randomness in spatial cou
connections opens up a synchronized fixed point wind
Thus random connections yield spatiotemporal homogen
here, while completely regular connections never do.

The relationship betweenebifr , the point of onset of the
spatiotemporal fixed phase, andp is shown in Fig. 4. Note
that for p,0.1 random rewiring does not affectebifr much.
Only after p;0.1 doesebifr fall appreciably. Further, it is
clearly evident that for 0.1,p<1 the lower end of the sta
bility range falls with increasingp as a well defined powe
law. Note that lattice size has very little effect onebifr , and
the numerically obtainedebifr for ensembles of initial random
initial conditions over a range of lattice sizesN510, 50, 100,
and 500 fall quite indistinguishably around each other.

The robust spatiotemporal fixed point supported by r
dom coupling may have significant ramifications. It has i
mediate relevance to the important problem of controllin
synchronizing extended chaotic systems@10,11#. Obtaining
spatiotemporal synchronization by introducing some rand
spatial connections may have practical utility in the cont
of large interactive systems. The regularizing effect of ra
dom coupling may then help to devise control methods
spatially extended interactive systems, as well as sug
natural regularizing mechanisms in physical and biologi
systems.

III. ANALYTICAL RESULTS

We shall now analyze this system to account for the m
enhanced stability of the homogeneous phase under ran
connections. The only possible solution for a spatiotem
rally synchronized state here is one where allxn( i )5x* , and
x* 5 f (x* ) is the fixed point solution of the local map. Fo
the case of the logistic mapx* 54x* (12x* )53/4.

To calculate the stability of the lattice with all sites atx*
we will construct anaverage probabilistic evolution rulefor
the sites, which becomes a sort ofmean field version of the
dynamics. Some effects due to fluctuations are lost, but a
first approximation we have found this approach qual
tively right, and quantitatively close to the numerical resu
as well.

We take into account the following: all sites have pro
ability p of being coupled to random sites, and probabil
(12p) of being wired to nearest neighbors. Then the av
aged evolution equation of a sitej is

xn11~ j !5~12e! f @xn~ j !#1~12p!
e

2
$xn~ j 11!1xn~ j 21!%

1p
e

2
$xn~j!1xn~h!%, ~2!

wherej andh are random integers between 1 andN.
To calculate the stability of the coherent state, we perfo

the usual linearization. Replacingxn( j )5x* 1hn( j ), and ex-
panding to first order gives
01620
ing
.

ty

-
-
/

m
l
-
r
st
l

h
om
-

a
-
s

-

r-

hn11~ j !5~12e! f 8~x* !hn~ j !1~12p!
e

2
$hn~ j 11!

1hn~ j 21!%1p
e

2
$hn~j!1hn~h!%

'~12e! f 8~x* !hn~ j !1~12p!
e

2
$hn~ j 11!

1hn~ j 21!%, ~3!

as to a first approximation one can consider the sum over
fluctuations of the random neighbors to be zero. This
proximation is clearly more valid for smallp.

For stability considerations one can diagonalize
above expression using a Fourier transform@hn( j )
5(qfn(q)exp(ijq), whereq is the wave number andjis the
site index#, which finally leads us to the following growth
equation:

fn11

fn
5 f 8~x* !~12e!1e~12p!cosq, ~4!

with q going from 0 top. Clearly the stabilization condition
will depend on the nature of the local mapf (x) through the
term f 8(x) in Eq. ~4!. Considering the fully chaotic logistic
map with f 8(x* )522, one finds that the growth coefficien
that appears in this formula is smaller than one in magnit
if and only if

1

11p
,e,1, ~5!

i.e.,

ebifr5
1

11p
~6!

and the range of stabilityR is

R512
1

11p
5

p

11p
. ~7!

For smallp (p!1) standard expansion gives

R;p. ~8!

The usual case of regular nearest neighbor couplingsp
50, gives a null range, as the upper and lower limits of
range coincide. When all connections are random, i.e.p
51 the largest stable range is obtained, and the lower en
the stable windowebifr is minimum, withebifr51/2. So sta-
bility analysis also clearly dictates that enhanced stability
the homogeneous phase must occur under random con
tions, just as numerical evidence shows.

Figure 3 exhibits both the analytical expression of Eq.~7!
and the numerically obtained points for comparison. It
clear that for smallp the numerically obtainedR;p is in
complete agreement with the analytical formula. But f
higherp some deviation is discernable, as the ignored eff
of the fluctuating contributions from random neighbors
9-3
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weighted byp, and hence more pronounced for largep. Here
the numerically obtained result goes as

ebifr;p2f, ~9!

for 0.1,p<1, with f;0.2 ~see Figs. 4 and 7!.
Note that whenp,0.1 the effect onebifr is not significant.

Only when 0.1,p<1 doesebifr fall appreciably. So connect
ing elements in a small world network is not sufficient
make much difference to the onset of the stable spatiot
porally synchronized state@9#.

IV. RESULTS FROM OTHER MODELS

In order to examine the range of applicability of this ph
nomena we have examined coupled tent maps and cou
sine circle maps as well. In the case of coupled tent maps
local map in Eq.~1! is given as

f ~x!5122ux21/2u. ~10!

The tent map has an unstable fixed point atx* 52/3, with
local slope f 8(x* )522. For coupled circle map network
the local map in Eq.~1! is given as

f 5x1V2
K

2p
sin~2px! ~11!

and Eq. 1 is taken mod 1. In the representative exam
chosen here the parameters of the circle map areV50, K
53. Here too the local map has a strongly unstable fix
point at x* 5(1/2p)sin21(V/K), with f 8(x* )522. Numer-
ics very clearly show that both these systems yield the s
phenomena as logistic maps, namely, one obtains a s
range for spatiotemporal synchronization on random rew
ing ~see Figs. 5 and 6 for the limiting cases ofp50 andp
51 in coupled circle maps!.

Since thef 8(x* ) of both the tent map and the circle ma
above is22, we expect from our analysis@Eq. ~4!# that their
ebifr and R will be the same as for logistic maps. This
indeed exactly true, as is evident from Fig. 7 that displays
point of onset of spatiotemporal synchronization for all thr
cases. In fact, the numerically obtainedebifr values for en-
sembles of coupled tent, circle, and logistic maps fall ind
tinguishably around each other, even for highp where Eq.
~4! is expected to be less accurate.

Additionally, one can infer from the stability analys
above, how strongly unstable the local maps can possibl
while still allowing random connections to stabilize the sp
tiotemporal fixed point. From Eq.~4! it follows that the onset
of spatiotemporal regularity is governed by the condition

u f 8~x* !u,
12e1ep

12e
511

ep

12e
. ~12!

Clearly then, locally unstable maps withu f 8(x* )u.1 can be
stabilized by any finitep, i.e., by any degree of randomne
in the coupling connections. As coupling strengthe and frac-
tion of rewiringp increases, maps with increasingly unstab
fixed points can be synchronized stably by random rewiri
For regular coupling (p50) on the other hand the local in
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stability can only be as large as 1, i.e., if and only if the loc
components possess stable fixed points can their networ
stabilized at spatiotemporal fixed points, as numerics h
already shown.

Lastly, in certain contexts, especially neuronal scenar
the randomness in coupling may bestatic. In the presence of
such quenched randomness in the couplings, once again
obtains a stable rangeR for spatiotemporal synchronization
But unlike dynamical rewiring, where theR is independent
of the size and initial preparation of the lattice and its co
nections, here there is a spread in the values ofR obtained
from different ~static! realizations of the random connec
tions. Furthermore, this distribution ofR is dependent on the
size of network. For instance, on an average, networks
size N510 with fully random static connections (p51)
yield ebifr;0.75 and those of sizeN5100 yieldebifr;0.85,

FIG. 5. Bifurcation diagram showing values ofxn( i ) with re-
spect to coupling strengthe, for coupled sine circle maps with
strictly regular nearest neighbor connections. Here the linear siz
the lattice isN5100 and in the figure we plotxn( i ) ( i 51,...,100)
over n51,...,5 iterations~after a transience time of 1000! for five
different initial conditions.

FIG. 6. Bifurcation diagram showing values ofxn( i ) with re-
spect to coupling strengthe, for coupled sine circle maps with com
pletely random connections. Here the linear size of the lattice
N5100 and in the figure we plotxn( i ) ( i 51,...,100) overn
51,...,5 iterations~after a transience time of 1000! for five different
initial conditions.
9-4
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RANDOM COUPLING OF CHAOTIC MAPS LEADS TO . . . PHYSICAL REVIEW E66, 016209 ~2002!
as opposed toebifr;0.62 obtained for allN for dynamically
updated random connections. Figure 8 displays the ave
range^R& with respect to network sizeN, indicative of clear
scaling behavior,

^R&;N2n, ~13!

with n;0.24. This suggests that the range narrowsslowly
with increasing network size. So, while in the limit of infinit
lattices there will be no spatiotemporal synchronization,
finite networks static randomness will lead to stable windo
of spatiotemporal synchronization.

This behavior can be understood by examining the lin
stability of the homogeneous solution:xn( j )5x* for all sites
j at all timesn. For instance, for the case of fully rando
static connectionsp51, considering the dynamics of sma
perturbations over the network one obtains the transfer
trix connecting the perturbation vectors at successive tim
to be a sum of aN3N diagonal matrix, with entries (1
2e) f 8(x* ), and (e/2)C whereC is aN3N sparse nonsym
metric matrix with two random entries of 1 on each ro
Now the minimum of the real part of the eigenvalues ofC,
lmin , crucially governs the stability. Typicallyebifr52/$lmin
14% when f 8(x* )522. Now the values oflmin obtained
from different static realizations of the connectivity matrixC
are distributed differently for different sizesN. For smallN

FIG. 7. Plot ofebifr ~i.e., the value of coupling at which the ons
of spatiotemporal synchronization occurs! with respect to fraction
of randomly rewired sitesp (0.2<p<1). The points are obtained
from numerical simulations over several different initial condition
for lattice sizeN550, for the case of coupled tent maps~open
squares!, coupled circle maps~open triangles!, and coupled logistic
maps~open circles!. The solid line displays the best fit straight lin
for the numerically obtained points.
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this distribution is broad and has less negative averages~;
21!. On the other hand, for largeN the distribution gets
narrower and tends towards the limiting value of22. This
results in a larger range of stability, and greater spread inebifr
for small networks. In fact, for smallN, certain static real-
izations yield a larger range of stability (R;1/2) than dy-
namic rewiring.

V. CONCLUSIONS

In summary then, we have shown that random rewiring
spatial connections has a pronounced effect on spatiotem
ral synchronization. In fact, strictly nearest neighbor co
pling is not generic, in that it does not support any spatiote
poral fixed point phase, while the smallest degree of rand
rewiring has the effect of creating a window of spatiotemp
ral invariance in coupling parameter space. Further, the re
larizing effect of random connections can be understo
from stability analysis of the probabilistic evolution equatio
for the system, and approximate analytical expressions
the range and onset of spatiotemporal synchronization h
been obtained. The key observation thatrandom coupling
regularizesmay then help to devise control methods for sp
tially extended interactive systems, as well as suggest na
regularizing mechanisms in physical and biological syste
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FIG. 8. Plot of the average stable range^R& of spatiotemporal
synchronization obtained in the case of static random connect
with respect to network sizeN, for rewired fractionp51. Here we
averageR over 104 different realizations of static random conne
tions. The solid line shows the best fit line to the numerically o
tained data, indicating clear scaling.
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