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We have studied the temporal and spatial characteristics of a model of unidirectional adaptive dynam-
ics on a chaotic lattice, introduced recently [Phys. Rev. Lett. 71, 2010 (1993)]. Our analysis sheds light
on the basic spatiotemporal structure and dynamical reasons underlying the many phases found in the

model.
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1. INTRODUCTION

The dynamics of networks of chaotic elements is im-
portant not only as a model for complex nonlinear sys-
tems with many degrees of freedom, but also from the
viewpoint of possible engineering applications [1]. Here
we analyze in detail a model of unidirectional adaptive
dynamics in a lattice of chaotic elements, proposed very
recently by Sinha and Biswas [2]. The system is spatially
extended, with local nonlinear dynamics along with a
self-regulatory process incorporated as threshold dynam-
ics. Such systems are relevant in the context of a variety
of physical and biological phenomena (and even in social
sciences such as economics). The object of this study is
to investigate analytically the wealth of spatiotemporal
structures this model yields, and characterize its
“phases” and pattern dynamics.

Model

We first recall the model. It is a one-dimensional uni-
directional model where time is discrete, labeled by n,
space is discrete, labeled by i, i =1,N, where N is system
size, and the state variable x, (i) (which in physical sys-
tems could be quantities like energy or pressure) is con-
tinuous. Each individual site in the lattice evolves chaoti-
cally under a suitable nonlinear map f(x). The local map
f(x) was chosen to be the logistic map, which has
widespread relevance as a prototype of chaos. So
f(x)=1—ax? x €[ —1.0,1.0], with the nonlinearity pa-
rameter a chosen in the chaotic regime (a =2.0 in all nu-
merical experiments in Ref. [2]). On this chaotic lattice a
self-regulatory threshold dynamics is incorporated. The
adaptive mechanism is triggered when a site in the lattice
exceeds the critical value x, (—1.0<x, <1.0), i.e., when
a certain site x,(i)>x,. The supercritical site then re-

laxes (or “topples”) by transporting its excess
8x =(x,(i)—x,_) to its neighbor as follows:

x,(i)—>x, ,

" ‘ (1)

x,(i+1)—>x,(i+1)+6x .

This algorithm thus induces a unidirectional nonlinear
transport down the array (by initiating a domino effect).

1063-651X/94/49(6)/4832(11)/$06.00 49

The boundary is open so that the “excess” may be trans-
ported out of the system. Note that the adaptive (“top-
pling”) mechanism in the model is locally conservative,
whereas the intrinsic dynamics of the elements is dissipa-
tive.

The nonlinear threshold adaptive dynamics is reminis-
cent of the Bak-Tang-Wiesenfeld algorithm [3], or the
“sandpile” model, which gives to self-organized criticali-
ty (SOC). This model is, however, significantly different,
the most important difference being that the self-
regulatory mechanism now occurs on a chaotic ‘“‘sub-
strate,” i.e., there is an “intrinsic” or ‘“internal” deter-
ministic dynamics at each site. Further, the state vari-
able analogous to the integer “height” variable z in the
sandpile model is continuous here. All this accounts for
enhanced complexity, and this system is thus capable of
exhibiting a wider repertoire of dynamics. So, unlike
one-dimensional (1D) SOC, the one-dimensional model
here is not trivial and can give rise to many interesting
features, including a host of dynamical phases.

The dynamics depends on the algorithm for auto-
nomously updating each site and propagating threshold
coupling between sites. Here these two evolutionary
steps are carried out separately. The adaptive dynamics
begins after each step in the site dynamics and continues
until the system has reached a steady state where all sites
are less than critical, i.e., all x(i)<x,, and the system is
stationary, after which the next step in the site dynamics
takes place. So the time scales of the two dynamics, the
intrinsic chaotic dynamics of each lattice site and the
adaptive relaxation, are adiabatically separable. The re-
laxation mechanism is much faster than the chaotic evo-
lution, and this enables the system to relax completely be-
fore the next chaotic iteration. The complete dynamical
picture then is as follows: After every time step in the
chaotic evolution, n, the system undergoes a self-
regulatory relaxation leading to stable ‘“‘undercritical”
configurations {x,(i)}, after which the next chaotic itera-
tion of the lattice takes place, governed by the nonlinear
evolution mapping: x, . (/)=f(x,(i)). A random driv-
ing force can also be introduced in our model. Under
this, the system is perturbed at some site j in the lattice:
x,(j)—x,(j)+o0, where o is the strength of the pertur-
bation and j is chosen at random. Likewise, the random
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driving force, operative at times scales comparable to the
chaotic dynamics, is much slower than the adaptive dy-
namics. This scenario is similar to the SOC algorithm,
where the driving force (perturbation) is very dilute.
Thus the system is allowed to relax completely before the
next perturbation and time is usually measured in units of
the perturbing force (for example, in units of grains of
“sand” added in the sandpile model of SOC) and the
configurations studied are the relaxed configurations after
each perturbation step. This is quite different from the
coupled-map-lattice (CML) dynamics [4], where the cou-
pling is incorporated in the map evolution step.

The relevant parameters in the model are the critical
X, the strength of perturbation o, and the system size N.
The simulations were done with random initial conditions
for the x(i), and all transients were allowed to die. The
quantities of interest are the temporal evolution of (a) the
individual sites x, (i), and (b) the “avalanches,” which are
defined as the total number of ‘“active” sites, i.e., sites
that have “toppled” during the adaptive relaxation,
denoted by s. The spatial aspects of interest are the dis-
tribution of x (i) and the presence of clustering and
coherence in space as indicated by the cluster distribution
at any point in time [5].

Numerical simulations showed the presence of the fol-
lowing “phases” in parameter space: The first phase is
the fixed point region which occurs when x, <0.5. Here
the system goes to a coherent state where all sites
x,(i)=x, for all times (after transience). This
phenomenon is independent of the perturbation strength
and system size. Further, all avalanches are equal to sys-
tem size (that is, all sites move in order to relax). In this
parameter regime, then, the adaptive mechanism
suppresses the underlying chaos in the lattice and yields
spatiotemporal regularity.

This algorithm, with x, <0.5, may then be used as a
tool for ‘“controlling” [6] an ensemble of chaotic ele-
ments, as it can very effectively force the system to a tem-
porally invariant and spatially coherent state: x,(i)=x,,
i=1,...,N for all n. Note that this spatiotemporal con-
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trol is robust with respect to system size and perturbation
strengths. Couched in the language of control theory, we
can consider x, to be the desired state of the system [6].
(The algorithm is effective as long as the desired state, or
X., is less than 0.5.) The “error signal” is then deter-
mined by the difference between the existing state and the
desired state. A positive error signal triggers off the self-
regulatory feedback mechanism which drives the system
to adaptively control its dynamics back to the desired
state (when error is zero).

When 0.5 <x, <1.0, the dynamics of each individual
site is attracted to a cycle whose periodicity depends on
x,. For example, by tuning x, one obtains the following
dynamical phases: for 0.5<x,=0.809..., we get dis-
tinct 2 cycles in the temporal evolution of the avalanches
and individual sites, for x, =0.84 we have a 4 cycle, for
x,=0.86 a 6-cycle, for x,=0.88 a 7 cycle, for x,=0.9 a
10 cycle, and for x,=0.98 a 4 cycle again. Now we
proceed to obtain, as far as possible, a detailed analytical
picture of the above dynamical phases.

II. ANALYSIS OF A SINGLE ELEMENT

The behavior of a single element x (the case of N =1)
as a function of time n is very instructive as it sheds light
on the basic structure of the dynamical phases in x,
space. (Note that there is no additional random driving
force here, i.e., 0 =0.) The first step in our analysis is to
study the curves of the various iterates of the map. Let
fa(x.) denote the curve in x, space of the nth iterate of
the map with initial condition x =x.. That is, (i) n =0,
folx)=x,; @) n=1, fi(x)=1—2x2% (i) n=2,
f2(x)=1—=2(1—2x2)?*=—1—8x2+8x2, and so on. In
general,

fox)=fof, _((x )=fofo - 0f(x.).

Figure 1 gives some of these curves. The important thing
is the intersection of the f, curves with f, i.e., the 45°
line. Whenever the f, curve crosses above the f, line we

1 —T T /n —T g T T T
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0.2 FIG. 1. Plot of f,(x.) vs x., for n=0,1,2,3,
o where f,(x.) is the nth iterate starting from
folze) initial condition x =x. of the logistic map:
0.2 Folxe) (——=), f1(x0) (Q), falx.) (+), f3(x.)
(0).
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FIG. 2. The x, 4+, vs x, map for the dynam-
ics of the unidirectional adaptive model, for a
single element (x. =0.75).

have an n cycle, as this implies that the nth iterate
exceeds the critical value x, and therefore is adapted
back to x. (=f,, which is the first point of the cycle).
Thus the threshold mechanism forces a regular “cyclic”
evolution, whose period depends on x, varying, for which
we then get periods of all orders. So the completely chaot-
ic single element can now yield a wide variety of dynami-
cal behavior determined by the critical x.. Further, it is
instructive to construct a map corresponding to the dy-
namics of a single element for any arbitrary initial condi-
tion, at each chaotic update. Figure 2 gives such a local
map. Note that the map is essentially the parabolic curve
X, +1VsXx, ata=2.0, cut off by the x, , ;=x, line.

A. Cycles

The first phase is the fixed-point region that occurs
when f| lies above the f; curve. Clearly, this happens
for values of x,: —1=<x_.=0.5. Here we have a single
point attractor: x*=x,. The second phase is the 2 cycle.
This occurs when f, lies above the f,, i.e., for
0.5<x.<0.809. ... Next we have a 4 cycle when the f,
curve crosses above the f, line. This happens when
0.809...<x,<0.85.... Thus we can find the order of
the cycle at any value of x. by simply finding the smallest
k that satisfies the equation f)(x,)>x,. Likewise, the
end points of the “windows” of parameter x,., supporting
a cycle of order k, are determined by the values of x, that
satisfy the equation f;(x, )=x,.

B. “Stars”

Now x, =1 is a fixed point of the map f(x.)=1—2x2.
So if an iterate is equal to 1, all the subsequent iterates
must necessarily be 3. When the initial point is x, =}
the first iterate itself goes to the fixed point. There exist
other values of x, though, for which the map takes s
(s > 1) iterates to reach the fixed point. For these values

of x., which we shall denote by x* (s=2,3,..., «), all

curves f, fo+ 1 fs+2 - - » [ Will intersect at 1. (Clear-
* — 1

ly, x} =1.) This intersection of curves at points (x, )
on a plot of f,(x.) (n=1,2,..., ) vs x,, has an inter-
secting “starlike” appearance, as evident from Fig. 3.
These “‘stars” are interesting as around them we can have
small parameter ranges of effectively chaotic behavior.

This is because in the neighborhood of a star all the f,,

FIG. 3. lying below
folx.)=x,, in the range (a) x.€[0.51.0], and (b)
x,E€[0.84,1.0]. Note the “starlike” structures and windows.

Diagram of the curves f,(x.)
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n=s,s+1,..., o curves meet and then diverge, and so
close to x.* we have many iterates below x,., which im-
plies that the order of the “cycle” around a star tends to
be very large. It is also easy to see that the larger the
value of x_, the greater the number of iterates below x,,
and thus the dynamical behavior around higher order
stars (i.e., stars with large s) approaches chaos more
closely.

Clearly the location of the sth order stars on the x, axis
is given as a solution of the equation

filx)=1. 2)

A good way of formulating the solution to the above is to
consider the inverse map:

fHx) =1y H1—x) (3)

with the positive (right) branch denoted by R (x) and the
negative (left) branch by L(x). The solution of Eq. (2) is
then simply the inverse map composed s times:

xP=fTlof om0 fTNL) . @)
Various solutions will be obtained, determined by wheth-
er f ~!(x) is the left or right branch, and each solution is
uniquely and completely represented by a sequence of R
and L operators.

Now, we give some useful properties of the R and L
nonlinear operators.

(i) L=—R,ie.,L<R.

(i) For x; <x,, R(x;)>R(x,)and L(x,)<L(x,).

(iii) For x <1, R(x)>1>x [and L(x)< —1], and vice
versa.

(iv) When we compose f ! with itself, there are four
sequences possible: LoL, LoR, RoL, and RoR. Using
the relations above, it is easy to see that these are ordered
as

LoL <LoR <RoR <RoL .
Similarly, at the next stage we obtain the ordering:
LoLoL <LoLoR <LoRoR <LoRoL
<RoRoL <RoRoR <RoLoR <RoLoL .

One can continue this process and obtain an ordered set
of the different sequences generated by the composition
of any arbitrary number of inverse maps.

(v) The number of distinct sequences that can be gen-
erated by composing k maps = 2*. This arises simply
from the fact that any position in the sequence of length
k can take the value R or L (i.e., one of two values) in-
dependently.

Note two additional properties for the case of stars,
which simplify their analysis:

(i) ReR(5)=R(5)=1, which implies R"(})=1, i.e., L
is a fixed point of the right branch of the inverse map.
(ii) LoR({)=L({)=—1

R

Now we would like to generate a sequence of stars that
is guaranteed to be “visible (in Fig. 3), that is, we would
like to eliminate the spurious roots of Eq. (2). A spurious
root is one that has an iterate leading up to | and has a
value greater than itself (i.e., one of the iterates starting
from x* and going on to 1 is >x/*). In the sequence that
determines the value of x*, the subsequences are the in-
termediate iterates. For example, for x; =RoRolL
oL(1), the intermediate iterates are L(L), Lo L(1), and
RoLoL(}). Clearly, LoL(})<L(})<0<x, but
RoLoL(})>x,. So this value of x§ is spurious and will
not be visible in Fig. 3. In this fashion, we can then easily
check to see which x.* are spurious.

It is easy to see that there exists one set of symbols that
is always ‘“‘visible” and also has many interesting proper-
ties. This is the sequence of x* generated by RoL* 1.
Since all the iterates leading up to 1 are negative here,
they all lie below x.*. Further this set is ordered in s as
follows: x*>x*_,. This is because RoL*>RoL*"! as
LoL* '<L* 'and R(x,)>R(x,) when x, <x,.

We can then obtain a set of x.* values, corresponding
to RL*™!: For example, (i) s=1, x} =R ($)=0.5; (i)
s§=2, x3=RoL(1)=0.866...; (i) s=3, x3=RoL
oL(1)=0.966...; (iv) s=4, x3=RoLoLoL(])
=0.991..., and so on. A plot of the logarithm (to base
2) of (1—x/*) vs s clearly is a straight line (see Fig. 4),
with slope equal to —2. That is,

1—x*~47°, (5)
which implies

* — X
R R I s e |
llm _'_*‘_—:_‘_— .
s Xg41 T Xs 4

(6)

This can be obtained from analytical considerations as
follows. First, we would like to get a map connecting x.*
to x.*,,. Since, L=—R, we have

x*=RoL* !(1)=Ro(—R)L* L)=R(—x*_,),
which yields the general recursion relation

xr=1L1+xr ). )

loga (1 —z3)

FIG. 4. Plot of log,(1—x.*) vs 5, where x.* is the sth order
star given by RL*~'(1).
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For example, for s=2, x3}=1/L(1+x})=V3/2
=0.866..., and for s=3, x}=1/1(1+x})
=V/(24+V/3)/4=0.966. . ., and so on. Now the slope of
the map x.* vs x.*_, [given by Eq. (7)] is equal to

1 1

4/ T0+x )
At values close to 1, the slope is then close to +. Thus
Eq. (6) follows.

C. Windows

In the x. parameter space, we can find “windows” of
various cycles. These are intervals on x. where the fol-
lowing equation is satisfied:

T(x,)=k iff,

c

fk(xc)zxc ’ (8)
Sfrlx,)<x, for all k'<k .

Period T(x,.) is a piecewise continuous function of x,.
Now for every cycle of order k there will be many win-
dows (see Fig. 5). The number of windows is determined
by the number of times the f,(x_) curves touch 1.0. It is
evident from Fig. 1 that this is equal to 2 ~! in the inter-
val [—1,1]. If we consider the positive half of the inter-

20 T T T T T T T

18 (@

14

12

0 1 1 1 1 1 1 | 1 1
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

- T
il

Io

VW“V

10

8 F

7 - U

5T — ()

4 1 1 L L 1 1 1 1 1

0.99 0.9999

FIG. 5. Order k of the cycle vs x,, for (a) x. €[0.5,1.0] with
k going up to 20 and (b) x, €[0.99,0.9999] with k going up to
12.
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val, as we shall do henceforth (as this is the relevant sec-
tion of x,), the number of windows of order k is 2% 72 (as
the f, curves are symmetric about 0). (Further, between
every k window there are two k + 1 windows—see Fig. 5.
This is again expected from inspection of f, and f) .,
curves in Fig. 1.)

We can label the windows by index n, where the win-
dow closest to 1.0is # =1, and so on, up to n =2k"2 Let
the location of the midpoint of the nth window be denot-
ed by x,’u‘(n) [7]. As in the case of stars, a good way of
formulating x*(n) is to consider the inverse map given
by Eq. (3), with the positive (right) branch denoted by
R(x) and the negative (left) branch by L(x). The mid-
point of a window of order k (for k large, when windows
are narrow) is given by the condition f(x,.)=1.0, which
implies the condition f), _,(x.)=0. Then the inverse map
composed k — 1 times determines x%:

flof e o f N0 =xk

Now the different combinations of the letters R and L in
the composed inverse mapping determine the different
windows. As mentioned before, clearly there are 2!
distinct sequences that can be generated from the two
letters R and L in a sequence of length k —1. That is,
there are 2% ™! windows. This is exactly the number de-
duced from examination of the f,(x.) curves in Fig. 1.
(When we are considering only positive xX we have half
the number = 2% 72, as half the total number of se-
quences begin with L and thus are negative.)

Now xX(n), has interesting properties, for large k,
where xX(n)— 1.0 (note that 1.0 is the only positive limit
point, or “accumulation point,” of the windows; see
analysis below). Figure 6 shows [1—xX(n)] vs n, for a
series of windows n =1,2, ..., 10 for cycles of the order
k=6, 7, and 8. When plotted on a log-log scale (base 2)
the curves for different k are clearly parallel to each oth-
er, with the difference between the curves equal to 2.
Further, for large n, the curves are quite straight, with
slope approximately equal to 2.

So heuristically, by examination of Fig. 6 we can write
down the relation

0 T T T T T T
a
a
-2+ Ncy ~
2 o
a o
o R
-4 r s 4
p o7
o .
= b +F *
B -6 - o’ . b
by P ot
- & .
= -8 I + ~
$

logz n

FIG. 6. Plot of log,[1—xX(n)] vs log,n, where xX(n) is the
value of x, for the nth window supporting a cycle of period k,
for k =6 (0), 7({), and 8 (+).
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[1—xX(n)]=c,n’* ©

where ¢, /c, 11=4 and 8} is independent of k and also
saturates to a value close to 2, as n grows larger (i.e., the
curves tend towards straight lines on a log-log plot for
large n).

The observation ¢, /c; ;=4 can be obtained from
analytical considerations as follows: First we would like
to get a map connecting xX(n) to xX*'(n). Now, if we
consider a set of N, windows xﬁ(n), n=12,...,N,,
such that all xX(n) are close to 1.0, it is easy to see that
these are generated by composing R with the smallest
windows at the preceding order k — 1 [using property (ii)
of Sec. II B]. Note that the smallest windows are equal to
the negative of the largest windows; i.e., —xu'j_l(n),
n=12,...,N, [in terms of symbols, it implies that
xX(n) is obtained by replacing the first R symbols of
xz ~!(n) by L, and then adding R to the left]. So the gen-
eral recursion relation for the windows is

xk(m)=1/L1+xE"(n)] . (10)

For example, the first window of order %, i.e., with n =1
and closest to 1.0, is the combination giving rise to the
largest value of x_, and this is the sequence RoL* ~%(0).
Explicitly, then the first few cases of k are the following:

(i) For k=2, R(0) gives x2(1)=1/V2.

(ii) For k=3, RoL(0) gives x(1)=1/1[14+x2(1)]
=1/L1+1/V2).

(iii) For k =4, Ro Lo L(0) gives

XA =1/T1+x (D= {1+ TAF1/V]} 2.

The limiting case for the first window is obtained as fol-
lows:

[+ 4+ TF )V =2l

which in the large k limit implies
Vi+xkn=xka), (11)

which gives (taking the positive solution) x*(1)—1 as
k —> 0.
Now the slope of the map xX(n) vs xX ~!(n) is equal to

1 1
4/ 1+xf"Tm]

At values close to 1, the slope is then close to L. It then
follows that

xE*2:n)—xk*(n)

1
xkt n)y—xkin)y 4

(12)

This is exactly what is observed in numerical experi-
ments.
Now we investigate the behavior of the exponent 8}

from the relation
1—xX(n) 8%

1—xkn—1)

n
n—1

(13)

Several 6}’s were generated using Egs. (10) and (13).
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First, we find that for different values of k one obtains al-
most identical values of 8%, which is as expected from the
fact that the curves for different k are parallel in Fig. 6.
Figure 7 shows the relation of 8; with respect to n. It is
clear that, as n increases, 8} tends to saturate to a value
~2.1. That is, for large n we have reasonable scaling
behavior, with an exponent that is independent of k and
n.

Lastly, we would like to discuss the “visibility” of these
windows, that is, focus on the elimination of spurious
roots of Eq. (8). Some windows may be “swallowed” by
lower order windows. That is, a window of order k, at
x,f (n), may fall inside a window of order k', where k' <k,
in which case only the k’ window will be observed. So, in
order to be “visible” (in Fig. 3), by the argument used in
Sec. II B, there should be no iterate leading up to O that
has value greater than itself [i.e., all iterates starting from
xk(n) and going on to 0 must be <xX(n)]. In the se-
quence that determines the value of xX(n), the subse-
quences are the intermediate iterates. One can then easi-
ly check to see which windows are spurious. For exam-
ple, for windows of order 7, generated by sequences,
flof o f 7o f 1o f 1o £ 71(0), we have the following:

(i) n=1, x])(1)=RoLoLoLoLoL(0)=0.9997. ..
(window visible).
(i) n=2, x](2)=RoLoLoLoLoR(0)=0.9973...

(window visible).

(iii) n=3, x](3)=RoLoLoLoRoR(0)=0.9925...
(window visible).

(ivv n=4, x](4)=RoLoLoLoRoL(0)=0.9853...
(window visible).

(v n=5, x](5)=RoLoLoRoRoL(0)=0.9757...
(window visible).

(vij n=6, x!(6)=RoLoLoRoRoR(0)=0.9638. ..
(window visible).

(vii) n=7, x](7)=RoLoLoRoLoR(0)=0.9495. ..
(window visible).

(viii) n=8, x](8)=RoLoLoRoLoL(0)=0.9330...
(window not visible).
Of course, it is easy to see that the first windows of all or-
ders (n =1, k arbitrary) are always “visible” as they are
generated by RoL*~2(0) and all the iterates leading up
to O are negative.

FIG. 7. Plot of the exponent 8} [as determined by Eq. (13)]
Vs n.
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III. SPATIAL ORGANIZATION

We would now like to focus on a generic lattice of size
N, that is, focus on the asymptotic configurations
x={x(1), x(2),...,x(N)} obtained from N elements
evolving with the dynamics described by the map in Fig.
2, from random initial conditions. The important ques-
tion here is the number of “‘states” possible when the sin-
gle element executes a k cycle, k determined by x,.. (By
“states” we mean distinct cycles in phase space, that is,
distinct sets of k stable cyclic configurations, xJ,
n=1,...,k.)

Note, that any configuration x the system does not re-
turn to, that is, anything that is not recurrent, is tran-
sient. We want to weed out all transients and look for the
possible persisting asymptotic configurations x*. A fruit-
ful way of looking at the problem is to realize that the dy-
namics of element x (i) is affected only by elements x(i")
with i’ <i, and not by elements with i’ > i, as transport is
unidirectional [8]. We elaborate the point further here:
Note that the first element, x (1), can be treated as an
effective single element, as its dynamics is independent of
the other elements, since none of the other elements x (2),
x(3),...,x(N) gives any “excess” to x(1). Further,
since each individual local map is chaotic, the iterates
sample all regions of the interval [—1,1] (i.e., is ergodic
on the interval). So sooner or later x (1) will exceed x,
and fall into a k cycle (k determined by x.). Now, the
second element is like the “edge” of the lattice for the
first element. Thus x(2) is influenced by x (1) [as it can
receive “excess” from it, in case x(1) topples], but is not
affected by the other elements x (j), j=3,4,...,N. Simi-
larly, x(3) is influenced by x (1) and x(2), but not by
x(j), j=4,5,...,N, and is like the “edge” for the partial
lattice {x(1),x(2)}. In general then, any element
i is like an “edge” for the partial lattice,
{x(1),x(2),...,x(i—1)}, and the “excess” it receives is
equivalent to the “‘drop rate” [5] of the partial lattice.

Now if the first element is executing a k order cycle:
xt=x., x3=f(x.),...,xf=fr(x.), the excess it
sends to its neighbor as a function of time is also a k or-
der cycle: 8x,0,0,...,0, where &x=(fy (x.)—x.).
We have done a small numerical experiment: we study
the evolution of a map f(x), starting from random initial
conditions, with the dynamics given by Fig. 2 [i.e.,
f(x)=1—2x?% with the additional requirement: if
f(x)>x, then f(x)=x_.]. Now we force this map with
period k [where k is determined by x, via Eq. (8)]. So,
periodically the map gets “kicked” by an amount bx.
Very soon we find that the map is synchronized with the
driving frequency and is executing a k cycle itself. [Note
that the usual logistic map, i.e., simply f(x)=1—2x?
will not get synchronized to the driving frequency as our
adaptively controlled map does, and in fact it most often
goes out of the interval to be attracted to — o0.]

Using this result we then have the following picture:
The second element follows suit and gets into a k cycle,
just as the first element. Now the two elements together
will also eject excess from the edge as a k cycle. This
forcing will drive the third element to a k cycle as well,
and so on. So all the lattice elements will ultimately
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move as a k cycle. Of course, in general, none of the ele-
ments need to be in phase. In fact, their asymptotic
configurations will depend very much on the initial ran-
dom distribution of x,(i), i=1,...,N. One can put an
upper bound on the total number of different states possi-
ble. Since each site, after the first, can take k values in-
dependently, the number of states possible is k¥ ~!. So in
order to estimate the total number of distinct states we
have to consider all these configurations and see under
what conditions they can recur. To illustrate the point
we cite some specific examples below.

The case of the fixed point (x, =1/2) is trivial as dis-
cussed earlier. Only one state is possible here:

x, (iI)=x]=x,
for all sites i, at all times n. (This is also obtained from
the fact that k¥ ~!=1¥"!=1, and so the maximum num-
ber of allowed states for fixed point dynamics in a lattice
of any arbitrary size, is 1.) Let us now look at the sim-
plest nontrivial case: two sites, with x, in the two-cycle
range (0.5<x,<0.809...). Here N=2 and k =2, and
so 227 !1=2 possibilities must be considered. The first is
the coherent one, where both elements are in phase exe-
cuting the 2 cycle: x., x3. So we have

(xerx d—>{x3,x3 > {xesxc
The second set of periodic configurations possible is
(x3,x )= {xoxd +8x)—>{x7,x.} .

All other configurations can never recur, but will lead to
one or the other of these two possible states. (For exam-
ple, the transient configuration {x.,x3 } leads to {x7,x.]}
in the next iteration, which leads to the out-of-phase cy-
cle above.)

Now the out-of-phase cycle will not exist for all values
of x.. We can write down the condition for its existence
analytically. It is simply the requirement:

fi(x3+éx)=zx, .

Figure 8(a) shows curves f'(x.)=x, f*(x.)=x3
=1—-2x3, and fm(xt):x‘z" +6x, in the regions of x,
where they exist. Curves f'!(x,) and f*(x.), which are
the coherent state curves, exist in the entire interval
[0.5,0.809. . . ], whereas the out-of-phase curves, f D(x,)
and f(x,), exist only after x, ~0.67. .. [when the con-
dition f(x,+8x)>x_ is satisfied]. The curves obtained
from simulations lie exactly on top of these. (The simula-
tions are done by evolving around 500 random initial
conditions and plotting the asymptotic values of the
different elements in time.)

These curves indicate that for x.€[0.5,0.67...] we
have only one state, namely, the coherent state where
both elements are in phase and execute a 2 cycle,
(x.,x3). For x,€[0.67...,0.809...] we have two dis-
tinct states. The first is the coherent one and the second
is the out-of-phase state where the first element executes
the 2 cycle, (x.,x3 ), and the second element executes the
two cycle, (x§ +6x,x.). Figure 8(b) shows a phase dia-
gram obtained from the generic initial situation where
(with no loss of generality) x (1)=x, and x(2)E[—1,1].
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The figure gives the initial condition for x(2) on the x
axis, and x, on the y axis. The regions marked with
points yield the out-of-phase state, after transience, while
the white regions yield the coherent state.

Next, we analyze two elements in the four-cycle regime
(0.809...<x,.<0.85...), where the basic 4 cycle is
x?=x.,x3,x3,x;. We now have to consider 427 1=
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possibilities.

(i) The first is {x,,x.}, which is the coherent state, giv-
ing the 4 oycle: {x.x}—{x3.x})—{x,x3]
—{x$,xi}.

(ii) Next we consider the initial condition, {x.,x3 }.
This gives rise to the following sequence:

(x3.x )= {x3x3 > (xdx T ) > {xexd +8x} > {x3,x.] .

The condition for this cycle to exist is f;(x} +8x)=x_. (Note that {x_,x? } is a transient as it can never recur.)
(iii) Next we consider the initial conditions, {x.,x} }. This gives rise to the following sequence:

(x5 x> (x3x = (xdx3 ) o {xex ) +8x ) {x3, /1(x ] +8x)] - {xF,x] .

The condition for this cycle to exist is f,(x$ +8x)>x,. (Note that {x.,x3} and {x],x? } are both transients as they

can never recur.)

(iv) Lastly, we consider the initial condition, {x.,x3 }. This gives rise to the following sequence:

(x3,x3 > {xdxi) = (xdx )= (xox3 +8x ) > (x5, f1(x] +8x)} > {x3,/2(x3 +8x)] —[xF,x.} .

The condition for this cycle to exist is f3(x5 +8x)=x,.
(Note that {x*,x} }, {x5,x3}, and {x],x} are all tran-
sients as they can never recur.)

Now the above conditions give various solution curves
in x, space, indicating the different values of x(i), i=1,2,
allowed in that region of x, [see Fig. 9(a)]. We then have
x,, x3, x3, and x; in the entire four-cycle window,
x 3 +8x [from the fulfillment of condition (ii)] also in the
entire window, (x§+8x) and f(x} +8x) [from the
fulfillment of condition (iii)] after x. >0.837. . ., and last-
ly (x3+8x), fi(x3+8x), and f,(x3+6x) [from
fulfillment of condition (iv)] after x, >0.8425. ... These
analytical curves are matched exactly by numerical simu-
lations from several hundreds of random initial condi-
tions.

These curves indicate that for x, €[0.809...,
0.838...] we have two states. The first state is the
coherent one where both elements are in phase and exe-
cute the 4 cycle, x,, x3, x3, x;. The second state is an
out-of-phase one where the first element executes the 4
cycle, x,, x3, x3, x4; and the second element executes
the 4 cycle, x;+6x, x, x3, x3j. For
x,€[0.838...,0.8425. . . ], we have three distinct states.
The first two are the ones given above, and the third is
the out-of-phase state where the first element executes the
4 cycle, x., x5, x3, x; and the second element executes
the 4 cycle, x3+8x, f,(x}+6x), x,, x3. For
x,€[0.8425...,0.85...], we have four distinct states.
The first three are the ones given above; the fourth is the
out-of-phase state where the first element executes the 4
cycle, x., x3, x3, x;; and the second element executes
the 4 cycle, x3 +8x, f(x3 +86x), f,(x3 +8x), x.. So,
the maximum number of distinct cyclic states realized in
this case is equal to 4 (in the parameter range,
0.84...<x.~0.85...), which is the number expected
from the upper bound given by 42~ !=4. Figure 9(b)
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FIG. 8. (a) Plot of all the different values that the elements of
a lattice, x(i), i=1, ..., N, are allowed to take as they evolve in
time (asymptotically) vs x.. Here N =2, with x. in the two-
cycle regime (0.5 <x. <0.809...). (b) Phase diagram obtained
from the generic initial situation where x(1)=x, and
x(2)€[—1,1]. The x axis gives the initial condition for x(2),
and the y axis gives x.. The regions marked with points yield
the out-of-phase cycle, after transience, and the white regions
yield coherent states.
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shows a phase diagram obtained from the generic initial
situation where (with no loss of generality) x(1)=x_ and
x(2)€[—1,1]. The figure gives the initial condition for
x(2) on the x axis, and x, on the y axis. The regions
marked with the three different symbols yield the three
different out-of-phase states while the white region yields
the coherent state.

In order to examine the increase of complexity with in-
creasing elements, we give one last example with three
elements in the two-cycle regime (0.5...
<x.<0.809...). We now have to consider 2°~'=4 pos-
sibilities.

(i) The first is {x,,x,,x.}, which is the coherent state,
giving the 2 cycle, {x.,x.,x.}—{x3,x5,x3}, where
x¥=1-2x2

(ii) Next we consider the initial condition, {x_,x5,x5 }.
This gives rise to the following sequence:

) =1,..

.81 0.815 0.82 0.825 0.83 0.835 0.84 0.845 0.85 0.855

(6)
0.8 1 |
-1 -0.8-0.6-0.4-0.2 0

L 1 1 1 1 1 1

0.2 0.4 0.6 0.8 1

initial z(2)

FIG. 9. (a) Plot of all the different values that the elements of
a lattice, x(i), i=1, ..., N are allowed to take as they evolve in
time (asymptotically) vs x.. Here N =2, with x_ in the four-
cycle regime (0.809. .. <x,<0.85...). (b) Phase diagram ob-
tained from the generic initial situation where x(1)=x, and
x(2)€[—1,1]. The x axis gives the initial condition for x(2),
and the y axis gives x.. The regions marked with the symbols
yield the three out-of-phase cyclic states, after transience [cyclic
state 2 (O), cyclic state 3 (+), cyclic state 4 (0)] and the white
regions yield coherent states.
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{x3,x.,x, } —>{x.,x5 +8x,x3}—{x3,x.,x.}. The con-
dition for this cycle to exist is f;(x3 +8x)=x,. (Note
that {x_,x3,x5 ] is a transient as it can never recur.)

(iii) Next we consider the initial condition, {x,,x3,x_].
This gives rise to the following sequence:
{x3,x.,x3 +8x]—{x.,x3 +8x,x.} —{x3,x., x5 +8x,]
—{x,,x3 +8x,x.}, where 8x,=f,(x3 +8x)—x,. The
condition for this cycle to exist is condition (ii) plus the
condition that f,(x3 +8x,)>x.. (Note that {x_,x3,x, |
and {x},x,,x3 +8x} are both transients as they can nev-
er recur.)

(iv) Lastly, we consider the initial condition,
{x.,x.,x3}. This gives rise to the following sequence:
(x5, x3,x.}—{x,x.,x5 +26x}—{x},x3,x.}. The
condition for this cycle to exist is f(x3 +26x)=x,.
(Note that {x.,x.,x3}] is a transient as it can never
recur.)

Now the above conditions give various solution curves
in x. space, indicating the allowed values of x(i),
i=1,2,3, in that region of x. (see Fig. 10). We then have
x, and 1—2x2 in the entire two-cycle window (the
coherent state), x5 +8x [from the fulfillment of condition
(ii)] after x, ~0.67. . ., (x5 +6x,) [from the simultaneous
fulfillment of conditions (ii) and (iii)] after x, >0.67. . .,
and lastly (x5 +26x) [from fulfillment of condition (iv)]
after x, >0.75. .. [9].

These curves indicate that for x.€[0.5,0.67...] we
have only the coherent state where all the three elements
are in phase executing the 2 cycle, (x,,x3). For
x,€[0.67...,0.75. .. ] we have three cyclic states. The
first is the coherent state given above. The second is an
out-of-phase state where the first element executes the 2
cycle, (x,,x3); the second element executes the 2 cycle,
(x5 +8&x,x,); and the third element executes the 2 cycle,
(x3,x.). The third state is another out-of-phase state
where the first element executes the 2 cycle, (x,.,x 5 ); the
second element executes the 2 cycle, (x5 +8x,x,); and
the third element executes the 2 cycle, (x.,x3 +8x,).

=1,

z(2),:

FIG. 10. Plot of all the different values that the elements of a
lattice, x(i), i=1, ..., N are allowed to take as they evolve in
time (asymptotically) vs x.. Here N =3, with x, in the two-
cycle regime (0.5 <x,. <0.809. . .).
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For x,€[0.75. . .,0.809. . . ], we have four distinct states.
The first three are the ones given above, and the fourth
state is the out-of-phase state where the first element exe-
cutes the 2 cycle, (x.,x3 ); the second element executes
the 2 cycle, (x,,x3 ); and the third element executes the 2
cycle, (x5 +28x,x,). The maximum number of distinct
cyclic states realized in this case (= 4, in the parameter
range: 0.75...<x,.~0.809...) is again the number ex-
pected from the upper bound given by 237 !=4,

In order to demonstrate the increasingly many distinct
states possible as the lattice size and the order of the
basic cycle of the individual elements increases, we plot
in Fig. 11 the results of numerical simulations on a lattice
with four elements in the four-cycle regime. The figure is
obtained from examining the asymptotic states obtained
from evolving 500 random initial conditions. On the x
axis we have x, and on the y axis we plot all the x, (i),
i=1,2,3,4, over large n, for all initial conditions, after
transience. The maximum number of distinct cycles ob-
tained numerically (at x, ~0.85. . .) is 64, which again is
the number expected from k¥ "1=4*"1  So a larger lat-
tice, with larger k, has a lower chance of coherence, as
the number of possible out-of-phase states grows enor-
mously. Thus, it is clear that generically a lattice will not
be homogeneous spatially. [Interestingly, a larger lattice
has a good chance of developing a large cluster, in the
direction of transport up to the open edge (see Fig. 12).
This is because a cluster of size n_, at some point in time,
will exceed the critical value and eject n.6x to the ele-
ment just adjacent to it. If n, is reasonably large it is
highly probable that this excess will make the neighbor-
ing site topple as well. So we have a “swallowing mecha-
nism” by which the cluster can extend, and the bigger it
is, the faster it grows towards the open edge.]

IV. DISCUSSION

In summary, we have provided an analytical study of a
model of unidirectional transport due to adaptive dynam-
ics on a chaotic lattice, introduced recently (in Ref. [2]).
Our study sheds light on the basic spatiotemporal struc-
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FIG. 11. Plot of all the different values the elements of a lat-
tice take as they evolve in time (asymptotically), from 500 ran-
dom initial conditions, for the case of N =4, with x, in the
four-cycle regime (0.809. .. <x.<0.85...).

ture and dynamical reasons underlying the many phases
found in the model.

We would like to mention here some of the interesting
extensions of this model that we have not yet treated
analytically. The first is the effect of weak noise on the
power spectrum of the unidirectional model. It was ob-
served [2] that certain parameter ranges (x, large), in the
presence of noise, gave rise to 1/f%, 0<¢$ =<1 spectrum.
The effect of finite o was larger for the smaller lattices (as
the ratio of the number of sites affected to total sites is
larger here), while the larger ones were effectively regu-
lar. Note that in the cyclic window of order k the f;
curve touches 1.0 at around the middle of the window.
All the subsequent curves fi ., fk+2--->f« touch
—1.0 at this value of x_, as 1.0 leads to the unstable fixed
point at — 1.0 in its next iteration. So around x* we have
many diverging curves. In case of small perturbation
then, the iterates can be pushed onto these curves, and
will spend some time trapped in a “bottleneck” before it
gets back to its k cycle. So the regular k periodic time

L 1 1 1 L 1 L 1

1

FIG. 12. Plot of x(i) vs i, for a lattice of size
N =5000, where x(i) is the value of the state
variable at site i, i=1,2,...,N. Here
x.=0.98. Note the large cluster towards the
8 edge [x(j)=x.=0.98, j ~ 600 to 5000].
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FIG. 13. x, 4, vs x, map for the dynamics of the bidirection-
al adaptive model, with x, <x., for a single element (x,=0.75,
x0=0.0).

evolution is disrupted by bursts of irregularity. This re-
sults in 1/f% spectrum, 0<¢ <1, at the low frequency
end, in addition to the peak at frequency 1/k, as ob-
served in numerical experiments.

Reference [2] also introduces the bidirectional model.
This is given by the following modified relaxation algo-
rithm: if x,(i)> x_, the supercritical site then relaxes to a
value x, (xy <x_) by transporting the excess [x, (i)—x]
equally to its two neighbors:

x,(i)—x

x,(i+1)—>x,(i+1)+8x , (14)
x, (i—=1)—x,(i—1)+bx ,

where 6x =(x,(i)—x_.)/2. This is more difficult to tackle
analytically, as there is the dynamical possibility of a site,
in the course of self-regulation, to “topple” many times

as the disturbance moves back and forth in the lattice.
Unlike the unidirectional model where the disturbance
propagation is in one direction (so sites can topple just
once), in the bidirectional case the disturbance spreads
like “ripples” and can “refract.” So we cannot use the
argument of Sec. III, which allows us in the case of uni-
directional transport to deduce that the individual ele-
ments of the lattice evolve cyclically (in fact they need
not necessarily do so for all x, in the bidirectional case).
But the dynamics of a single element in the bidirectional
model is still the same as that above, for x,=x_, and so
the basic structure of the dynamical phases is the same as
in the unidirectional case. In fact, the temporal charac-
teristics of the bidirectional model look like a “noisier”
version of its unidirectional counterpart. Also, note that
the case of —1.0=x,<x, can be treated similarly, with
the dynamics of a single element given by the map in Fig.
13, based on which the entire analysis of Sec. II can be
carried through. Another interesting feature of bidirec-
tional transport is that one obtains very distinct 1/f
spectrum [2] here, for certain ranges of x., even when
o =0, i.e., there is no additional noise. (Also the 1/f
spectrum is more distinct for the bidirectional case as
compared to its unidirectional counterpart, for it persists
even at the lowest frequencies.)

In conclusion, the dynamics of this extended adaptive
nonlinear system is amenable to extensive analytical
study, and this contributes considerably to its interest
and usefulness as a model for complex nonlinear phenom-
ena.
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