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Using thresholding at varying intervals to obtain different temporal patterns
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~Received 16 August 2000; published 26 February 2001!

We show how stroboscopic threshold mechanisms can be effectively employed to obtain a wide range of
stable cyclic behavior from chaotic systems, by simply varying the frequency of control. We demonstrate the
success of the scheme in a prototypical one-dimensional map, as well as in a three-dimensional system
modeling lasers where the threshold action is implemented on any one of the variables. It is evident that
thresholding is capable of yielding exact limit cycles of varying periods and geometries when implemented at
different intervals~even when very infrequent!. This suggests a simple and potent mechanism for selecting
different regular temporal patterns from chaotic dynamics.
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I. INTRODUCTION

Mechanisms that enable a system to maintain a fixed
tivity ~the ‘‘goal’’ or ‘‘target’’ ! even when intrinsically cha
otic have many applications@1,2# in situations ranging from
biology ~as in the control of cardiac rhythms@3#! to engi-
neering. It is thus of considerable interest and potential u
ity to devise algorithms capable of achieving the desired t
of behavior in strongly nonlinear systems.

In recent years, there has been intense research ac
devoted to the design of effective control techniques@1,2#. A
large body of work derives from the Ott-Grebogi-York
~OGY! idea @1#, which seeks to use small perturbations
place chaotic orbits onto desired~unstable! periodic orbits.
Since chaotic orbits are ergodic on the attractor they eve
ally wander close to the desired periodic orbit and becaus
this proximity can be ‘‘captured’’ by a small control.

Here we describe an alternate control strategy: the sim
and easily implementablethreshold mechanism. We will
demonstrate the scope of the threshold action impleme
at varying intervalsto yield a wide range of regular orbits
whose period and geometry depend on the frequency of
trol, i.e., we achieve control to different temporal patter
simply by varying the frequency of control.

First we will introduce the general formalism below, an
then we will investigate two representative examples: a o
dimensional map, and a multidimensional system, namel
set of three coupled ordinary differential equations~ODEs!
modeling a laser system.

II. THRESHOLD MECHANISM

Consider a generalN-dimensional dynamical system, de
scribed by the evolution equation

dx

dt
5F~x;t !,

wherex[(x1 ,x2 ,...,xN) are the state variables, and variab
xi is chosen to be monitored and threshold controlled. T
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prescription for threshold action in this system is as follow
control will be triggered whenever the value of the mon
tored variable exceeds a critical thresholdx* and the vari-
ablexi will then be reset tox* , i.e.,

if xi<x* then no action,

if xi.x* then xi→x* . ~1!

The dynamics continues until the next occurrence ofxi ex-
ceeding the threshold, when control resets its value tox*
again. No knowledge ofF(x) is involved, and no computa
tion is needed to implement the threshold action.

All the system parameters are left invariant by th
method as it acts only on a state variable. In fact the met
requires no knowledge of the parameters, which is adva
geous. The moment the thresholding is removed the sys
is back to its original dynamics.

The threshold action is necessarilystroboscopic, as the
threshold condition can be checked only at finite interva
Here we will study the interesting and often unexpected
fects of implementing the threshold action at varying int
vals. We will show that changing the frequency of thresho
ing leads to many different regular temporal patterns. In f
even very infrequent thresholding is capable of yieldi
amazingly simple and regular orbits.

First we will study the one-dimensional example both n
merically and analytically, and then we will investigate
multidimensional laser system through extensive numer
simulations.

III. ONE-DIMENSIONAL MAP

In the case of one-dimensional maps@4,3#, where the evo-
lution of the uncontrolled system is given by

xn115 f ~xn! ~2!

with f being a nonlinear function, the threshold mechanism
simply implemented as the following condition: if variab
xn11.x* then the variable is adjusted back tox* . The
thresholdx* is the critical value the state variable is n
allowed to exceed, and controlling action is triggered whe
ever the state variable grows larger than the prescri
©2001 The American Physical Society12-1
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FIG. 1. The chaotic logistic map@xn11

5 f (xn)5122xn
2#, under threshold control with

threshold value equal to20.5001, 0.1, 0.4, 0.6.
The control acts in intervals ofnc , with nc

51,...,20. The periods of the resultant cyclesp
are displayed vs the interval of control. Note th
marked concentration along thep5nc line
~shown by a dashed line in the figures!, i.e., the
controlled period is often equal to the interval o
control. Such figures can serve as easy look-
diagrams from which one can read off the thres
olding frequency necessary for obtaining a d
sired period.
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threshold@3,5#. It was shown in@4,3# that this simple thresh
old action, implemented after every iteraten, controlled the
fully chaotic map onto orbits of all orders. In this scheme t
trajectory does not have to be close to any particular unst
fixed point before control is implemented. Once the syst
exceeds the threshold, it is caught immediately in a sta
orbit. So control transience is very short.

Now we will implement the threshold mechanism at va
ing intervalsnc , with 1,nc<20, i.e., the thresholding fre
quency ranges from once every two iterates of the cha
map to once every 20 iterates. We find that for allnc in this
range the chaotic map gets controlled onto an exact
stable orbit of periodicityp>nc .

Figure 1 shows the periodsp of the different orbits result-
ing from threshold action on the chaotic map, with t
thresholding implemented at different intervals. Notice th
the periods are concentrated on thep5nc line, i.e., the pe-
riod of the resultant cycle is often equal to the interval
thresholding, especially for thresholdsx* ;20.5 @6#.

It is thus evident that one can fix a threshold and obt
different temporal behavior by simply varying the interval
thresholding. It is very interesting to see how very effect
infrequent thresholding can be in regulating systems. In
it can serve as an extra tool for selecting different cyc
behaviors from the chaotic dynamics.

This has particular utility in obtaining higher order pe
ods, which are difficult to obtain by adjusting the thresho
levels alone, as one has to make finer and finer thres
settings. Here, on the other hand, the threshold level ca
kept invariant, and only the interval of thresholding adjust
in order to obtain the desired orbit.
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This scheme can thus prove useful in applications wh
one does not want to invest effort in changing the thresh
but wishes to obtain different periodic behaviors. Further,
infrequent threshold action, involving infrequent monitorin
and resetting to obtain the result, reduces the cost of con
We will now further analyze the stroboscopic thresho
scheme below.

A. Analysis

For the one-dimensional map the analysis can be d
exactly. That is, one can directly calculate the period cor
sponding to a particular thresholdx* and interval of control
nc .

The starting point of the analysis is the fact that the
godicity of chaos guarantees that the system will exc
threshold at some point in time. At that point its state is re
to x* . One then studies the forward iterates of the m
starting from this state x5 f 0(x* )5x* , i.e.,
f 1(x* ), f 2(x* ),..., where f k(x* ) is the kth iterate of the
map. Specifically, forf (x)5122x2, xP@21,1#, this is

~1! k50, f 0(x* )5x* ,
~2! k51, f 1(x* )5122(x* )2,
~3! k52, f 2(x* )5122@122(x* )2#258(x* )228(x* )4

21,
and so on. In general

f k~x* !5 f + f k21~x* !5 f + f +¯ f +~x* !.

Now let us denote thencth iterate of the chaotic map
f nc

(x* ), by F(x* ). SoFk(x* )5 f nc3k(x* ).
2-2
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The effective action of thresholding at intervals ofnc is to
yield a beheadedF[ f nc

map. This ‘‘flat-top’’ map ofx* to

F(x* ) can yield stable periodic orbits of various orders fo
~1! different threshold values, which determine the level
which the map is chopped off; and~2! different nc values,
which determine the form of the map being beheade
namely, how many crests and troughs the map has. Fornc
51, it is the usual unimodal map, with one hump in th
interval @21, 1# as F[ f . In general F5 f nc

has 2nc
21

maxima in the interval.
The controlling action of the threshold mechanism is be

rationalized through the fixed points of the mapxn1nc
vs xn ,

where xn1nc
5 f nc

(xn)5F(xn), under varying heights of

truncation determined by different thresholdsx* . When the
flat portion of thekth iterate ofF, Fk[ f nc3k , intersects the

45° line we have a superstable periodnc3k, with the points
on the orbit being x* 5 f 0(x* ), f 1(x* ),
f 2(x* ), ..., f nc•k21(x* ). In terms of probability densities,
the chaotic map under threshold mechanism, i.e., with t
flat top, will map large intervals onto a severely contractin
region. This is why the control transience is so short, and t
method is so powerful.

For example, Fig. 2 shows the case ofnc53, i.e., where
the threshold action is implemented every third iterate, f
threshold value 0.4. HereF(x)5 f 3(x). Clearly the 45° line
intersects the flat portion~slope 0! of the beheaded map, and
this yields the fixed pointxn135xn , i.e., a period 3 cycle.

FIG. 2. The map„xn135 f + f + f (xn)5122$122@122xn
2#2%2

…,
under threshold control with threshold value equal to 0.4~indicated
by a dot-dashed line in the figure!. This is the effective map for the
situation where the control acts at intervals ofnc53, i.e., after
every third iterate. The thresholded chaotic map is controlled
period 3, as thexn135xn line intersects the flat-top region. So the
fixed point xn135xn is superstable, as the slope is zero at th
point.
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This cycle is superstableas F8(x)50 at the pointxn13
5xn . So here we obtain an orbit with period equal to t
interval of thresholding, namelyp5nc53, with the points
on the cycle beingx* 50.4, f 1(x* )50.68, f 2(x* )50.08@the
next iterate f 3(x* )50.98.x* and so is reset tox* , i.e.,
back to the first point of the cycle#.

Alternately one can analyze the situation as follow
Whenever theFk(x* ) vs x* curve crosses above th
F0(x* )5x* line ~i.e., the 45° line! we have annc3k cycle,
as this implies that the (nc3k)th iterate exceeds the critica
value x* and thus is adapted back tox* ~which is the first
point in the cycle!. For instance, fornc52, we haveF1(x)
5 f 2(x)58(x* )228(x* )421. The F1(x) and F2(x)5F1
+F1(x)[ f 4(x) curves are displayed in Fig. 3. It is clear th
in the range21<x* ,20.3 and in the range 0.5,x* ,0.8
the F1(x* ) curve lies above theF0 curve @i.e., F1(x* )
.x* #. So the chaotic element is adapted back tox* after
everync iterates, yielding a periodnc cycle, withnc52 here.

In the ranges20.3,x* ,0.5 and 20.8,x* ,1 the
F1(x* ) curve dips below the 45° line, but theF2(x* ) curve
lies above the 45° line in the ranges20.3,x* ,20.1, 0.1
,x* ,0.28, 0.81,x* ,0.85, andx* ;0.98. So there are
four windows of period 2nc54, as the (23nc)th iterate of
the map ~starting from x5x* ! exceeds threshold and i
adapted back tox* . So the threshold mechanism alwa
leads to cycles, as the system is guaranteed to exceed
threshold during the course of its evolution, for all thresho
valuesx* smaller than the bounds of the attractor. When
iterate exceeds the threshold it is trapped in a cycle wh
period is determined by the considerations outlined abo
namely, the cycle at each value of threshold is the smallek

o

t

FIG. 3. Curves ofFk(x)5 f nc•k(x) vs thresholdx, with nc52.
Here k51 @i.e., F1(x)5 f 2(x)# is shown by the solid line, andk
52 @i.e., F2(x)5 f 4(x)# is shown by the dot-dashed line. The 45
line ~dashed! is also displayed. Whenever theFk curve crosses
above this lineFk(x).x, i.e., the kth iterate of F exceeds the
threshold valuex.
2-3
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FIG. 4. The chaotic~Lorenz-like! IR NH3 la-
ser system under threshold control of variablez,
with threshold valuez* 51. The control acts at
intervals of nc3dt, with dt50.01. Here nc

55,10,20, i.e., the frequency of control rang
from once in an interval of 530.01 to once in an
interval of 2030.01. The controlled cycles inx-y
space andx-z space are displayed.
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such that thekth iterate of the mapF ~starting fromx5x* ! is
greater thanx* , i.e., Fk(x* ).x* .

It is thus evident through both numerical simulation a
analytical treatment that a chaotic system can yielda wide
variety of dynamical behaviors under fixed threshold,
simple variation of the interval of control. Changing the in-
terval of thresholding then acts as an effective mechan
for selecting different temporal patterns, thus suggestin
tool for control.

Once one obtains the ‘‘bifurcation diagram’’ of the co
trolled cycles with respect to threshold value and interva
thresholding~for instance, as in Fig. 1!, one can use this
knowledge as a look-up table for very swift control, requ
ing no further run-time knowledge of the system. Calibrati
the system characteristics at the outset with respect to thr
old and interval of thresholding gives one all the informati
one needs to directly and simply effect control at all con
quent times, at no additional cost of studying the system

IV. APPLICATION TO LASER SYSTEMS

Now we demonstrate the action of infrequent thresh
control on a system of three coupled ODEs: a chao
Lorenz-like attractor known to be relevant to lasers@7#. It is
given by

ẋ5s~y2x!,

ẏ5rx2y2xz,

ż5xy2bz. ~3!
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The correspondence between the laser and the sy
above is as follows: thez variable corresponds to the norma
ized inversion and thex and y variables to normalized am
plitudes of the electric field and atomic polarizations, resp
tively. The three parameters corresponding to the cohere
pumped far-infrared ammonia laser system, obtained by
tailed comparison with experiments@7# ares52, r 515, and
b50.25.

A crucial issue in multidimensional systems is whether
not the thresholded state variable can enslave the rest o
variables to some regular dynamical behavior, especially
when the interval of control is large. It is interesting to d
termine how infrequent one can make the the threshold
tion and still effectively manage to control chaotic syste
onto regular temporal behavior. Here we investigate t
through extensive numerical simulations.

To check the efficacy of the threshold mechanism in t
multidimensional system, we impose the threshold condit
on any one of the three variables of the system, i.e.,
demands that variablex, y, or z must not exceed the pre
scribed threshold valuesx* , y* , and z* , respectively.
Figures 4–11 show some representative results of
threshold action for a range of control intervalsnc3dt, with
nc ranging from 1 to 1500 (dt50.01) for different state vari-
ables. It is clear that the mechanism~at fixed threshold value!
successfully controls to limit cycles of varying sizes and g
ometries by simply varying the interval of control. Interes
ingly, very infrequent control, for instancenc51500, also-
manages to yield a clean, exact, and simple limit cycle~see
Fig. 8!.
2-4
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FIG. 5. The chaotic laser-Lorenz system u
der threshold control of variablez, with threshold
value z* 51. The control acts at intervals ofnc

3dt, with dt50.01. Herenc530, 34, 35, 36.
The controlled cycles inx-z space are displayed
Notice the period doubling of the cycles as th
control intervalnc is increased.
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Consider the particular case of the threshold mechan
imposed on thez variable. The stroboscopic thresho
action occurs at an interval ofncdt. Figures 4–8 show
the different temporal patterns obtained when the thresh
is fixed at z* 51 and the nc is increased from 1 to
03621
m
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1500. Thus the frequency of control is decreased from o
every 0.01 unit of time to once every 15 units of time, i.
spanning three orders of magnitude.

When the frequency of control is high, i.e., when the
terval of threshold actionnc is low, one obtains fixed points
d

-

FIG. 6. The chaotic laser-
Lorenz system under threshol
control of variablez, with thresh-
old valuez* 51. The control acts
at intervals of nc3dt, with dt
50.01. Here nc5105,160,220.
The controlled cycles inx-y space
and x-z space are displayed. No
tice the period doubling of the
cycles as the control intervalnc is
increased.
2-5
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FIG. 7. The chaotic laser-
Lorenz system under threshol
control of variablez, with thresh-
old valuez* 51. The control acts
at intervals of nc3dt, with dt
50.01. Here nc5550,650,700.
The controlled cycles inx-y and
x-z space are displayed.
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~in the stroboscopic sense!. That is, right after every thresh
old control event, the state variables are always exactly a
same set of values~Fig. 4!.

After stroboscopic fixed points, limit cycles are obtaine
On increasingnc , typically, doubled limit cycles are ob
03621
he

.

tained~i.e., the limit cycle develops strands!. Then on further
increase of the interval of control fuzzier cycles arise. A
then often, interestingly, further decreasing the frequency
control yields exact simple limit cycles of a different ge
metric family. Figures 5–8 show several specific examp
-

d

FIG. 8. The chaotic laser-
Lorenz system under thresh
old control of variable z, with
threshold valuez* 51. The con-
trol acts at intervals ofnc3dt,
with dt50.01. Here nc

51060,1100,1500. The controlle
cycles in x-y and x-z space are
displayed.
2-6
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FIG. 9. The chaotic laser-Lorenz system u
der threshold control of variablez, with threshold
valuez* 516. The control acts at intervals ofnc

3dt, with dt50.01. Herenc5170,220,340,345.
The controlled cycles inx-z space are displayed
Note that the limit cycles obtained atnc5170
and nc5340 have the same period 3403dt
53.4.
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of this wide range of temporal patterns obtained by variat
in the interval of control.

Note that one actually has situations where more reg
temporal patterns are obtained from more infrequent con
For instance, compare the orbits obtained with threshold
at intervals ofnc51060 and 1500, shown in Fig. 8. Clearl
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when nc51060, the resultant orbit is noisy while whennc
51500, i.e., with significantly more infrequent control, th
orbit is exact and geometrically simple.

Figure 9 shows the resultant orbits obtained with thre
old fixed at the large valuez* 516, with the interval of
thresholding varying from;150 to;350. Figure 10 shows
-
d

e
e
-

FIG. 10. The chaotic laser
Lorenz system under threshol
control of variablex, with thresh-
old value x* 50.1. The control
acts at intervals ofnc3dt, with
dt50.01. Herenc5120,130. The
controlled cycles inx-y and x-z
space are displayed. Note that th
orbit has looped around thre
times as the control interval is de
creased from nc5130 to nc

5120.
2-7



n-

f

e

SUDESHNA SINHA PHYSICAL REVIEW E 63 036212
FIG. 11. The chaotic laser-Lorenz system u
der threshold control of variabley, with threshold
value y* 50.5. The control acts at intervals o
nc3dt, with dt50.01. Herenc5150,155,156.
The controlled cycles inx-y and x-z space are
displayed. Notice the period doubling of th
cycles as the control intervalnc is increased.
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the regular temporal patterns obtained from threshold ac
on thex variable, with threshold valuex* 50.1, and Fig. 11
displays the control achieved by thresholding they variable,
with threshold fixed aty* 50.5, for a range of control fre
quencies.

When the interval of control is too large, the thresho
mechanism is unable to effect control to exact limit cycl
This failure to control at very infrequent thresholding occu
earlier for higher thresholds. For instance, thresholding is
longer capable of yielding temporal regularity fornc beyond
;3000 forz* 51 while it fails beyondnc;350 for threshold
values close to the bounds of the attractor, e.g.,z* 516.

In conclusion, here we have obtained a large range
numerical evidence to show that stroboscopic threshold
tion of any variable in this multidimensional chaotic syste
successfully yields regular temporal patterns, displayin
wide variety of periods and geometries. In fact, the inter
of control may be very large in many cases and still lead
very effective control onto simple limit cycles. So varyin
the interval of control offers flexibility and cost effectivene
in regulating chaotic systems onto different cyclic pattern

V. DISCUSSION

Varying the interval of thresholding thus acts as an eff
tive mechanism for selecting different temporal patter
suggesting a tool for control. One now has the possibility
obtaining sustained temporal regularity from chaos by m
ing very infrequent changes to a state variable. Further
multidimensional systems thresholding is implemented o
03621
n

.

o

of
c-

a
l
o

.

-
,
f
-

in
a

singlevariable alone in order to control the entire system
This mechanism works in marked contrast to the OG

method. In the OGY method the chaotic trajectories in
vicinity of unstable fixed points are controlled onto the
points. In threshold control, on the other hand, the syst
does not have to be close to any particular fixed point bef
implementing the control. Here the trajectory merely has
exceed the prescribed threshold. So the control transienc
typically very short. Also unlike OGY~or related! control
thresholding does not entail any computation during the
time of the implementation.

This technique has a certain similarity with periodic im
pulse methods@8#, in that they are both stroboscopic in op
eration and act only on state variables. They share the ad
tage that they do not require knowledge of the system
dynamics or parameters, and both yield stable orbits a
control. The difference lies primarily in that our method ac
only when the system is above a threshold and is thus v
infrequent, while the periodic pulse method acts at fixed
tervals. Further, the control action here is a resetting of
variable, while the periodic pulse method involves an ad
tive ~negative/positive! or multiplicative pulse to one or
more state variables.

In summary, stroboscopic threshold mechanisms can
effectively employed to control chaotic systems onto diffe
ent stable limit cycles by simply varying the frequency
control. The success of the mechanism is demonstrated
prototypical one-dimensional chaotic map~both analytically
and numerically!, as well as in a three-dimensional syste
modeling lasers~through extensive simulations!. In multidi
2-8
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mensional systems, the threshold condition is imposed
only one variable, and this manages to regulate the en
system onto various exact limit cycles~even when the
thresholding is very infrequent!. A wide range of cyclic be-
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havior is obtained by varying the frequency of thresholdin
This suggests that thresholding at varying intervals can se
as a simple and potent mechanism for selecting differ
regular temporal patterns in chaotic systems.
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