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Using thresholding at varying intervals to obtain different temporal patterns
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We show how stroboscopic threshold mechanisms can be effectively employed to obtain a wide range of
stable cyclic behavior from chaotic systems, by simply varying the frequency of control. We demonstrate the
success of the scheme in a prototypical one-dimensional map, as well as in a three-dimensional system
modeling lasers where the threshold action is implemented on any one of the variables. It is evident that
thresholding is capable of yielding exact limit cycles of varying periods and geometries when implemented at
different intervals(even when very infrequentThis suggests a simple and potent mechanism for selecting
different regular temporal patterns from chaotic dynamics.
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[. INTRODUCTION prescription for threshold action in this system is as follows:
control will be triggered whenever the value of the moni-
Mechanisms that enable a system to maintain a fixed adored variable exceeds a critical threshafd and the vari-
tivity (the “goal” or “target” ) even when intrinsically cha- ablex; will then be reset to*, i.e.,
otic have many applicatior4,2] in situations ranging from

biology (as in the control of cardiac rhythni8]) to engi- if x;<x* then no action,
neering. It is thus of considerable interest and potential util- ) . .
ity to devise algorithms capable of achieving the desired type if x;>x* then xj—x*. @

of behavior in strongly nonlinear systems. . . .
In recent years, there has been intense research activiy1e _dynamlcs continues untl the next occurrenceqoé)i-
devoted to the design of effective control techniglkg]. A ee?"”g the threshold, when (;ontrol resets its valuec'to
large body of work derives from the Ott-Grebogi-Yorke again. No knowledge OF (x) is involved, and no computa-
(OGY) idea[1], which seeks to use small perturbations totio" IS needed to implement the threshold action. .
place chaotic orbits onto desirédnstable periodic orbits. All the ;ystem parameters arelleft invariant by this
Since chaotic orbits are ergodic on the attractor they eventl'€th0d as it acts only on a state variable. In fact the method

ally wander close to the desired periodic orbit and because Jpquires no knowledge of the parameters, which is advanta-
this proximity can be “captured” by a small control. geous. The moment the thresholding is removed the system

Here we describe an alternate control strategy: the simplb'S back to its 0r|g|nal_dyn_am|cs. . :
and easily implementabl¢hreshold mechanism. We will The thresho!c_i action Is necessaretyroboscqp!c as the
demonstrate the scope of the threshold action implemente:gmEShOId qondltlon can be chgcked only at finite intervals.
at varying intervalsto yield a wide range of regular orbits, ere we will study the interesting and often unexpected ef-

whose period and geometry depend on the frequency of Cor{gcts of implementing the threshold action at varying inter-

trol, i.e., we achieve control to different temporal patternsyals' We will show that changing the frequency of threshold-

simply by varying the frequency of control ing leads to many different regular temporal patterns. In fact

First we will introduce the general formalism below, and €VEN Very infrequent thresholding is capable of yielding

then we will investigate two representative examples: a one"fu‘n"".ZIneg S"T”p'e and regular prb|ts..
First we will study the one-dimensional example both nu-

dimensional map, and a multidimensional system, namely, a

set of three coupled ordinary differential equatid@DES9 meri_ca_llly an_d analytically, and then we wil ir_lvestigate_a
modeling a laser system multidimensional laser system through extensive numerical

simulations.
Il. THRESHOLD MECHANISM I1l. ONE-DIMENSIONAL MAP

Consider a generadll-dimensional dynamical system, de-

scribed by the evolution equation In the case of one-dimensional mdg@s3], where the evo-

lution of the uncontrolled system is given by

dx
— = : Xn+1= F(Xn) (2
qi ~ F(x, 1

with f being a nonlinear function, the threshold mechanism is
wherex=(Xy,X»,...,Xy) are the state variables, and variable simply implemented as the following condition: if variable
X; is chosen to be monitored and threshold controlled. Thex,,,>x* then the variable is adjusted back x. The
thresholdx* is the critical value the state variable is not
allowed to exceed, and controlling action is triggered when-
*Electronic address: sudeshna@imsc.ernet.in ever the state variable grows larger than the prescribed
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threshold3,5]. It was shown irf4,3] that this simple thresh- This scheme can thus prove useful in applications where

old action, implemented after every iteratecontrolled the one does not want to invest effort in changing the threshold
fully chaotic map onto orbits of all orders. In this scheme thebut wishes to obtain different periodic behaviors. Further, the
trajectory does not have to be close to any particular unstabléfrequent threshold action, involving infrequent monitoring
fixed point before control is implemented. Once the systenfnd resetting to obtain the result, reduces the cost of control.
exceeds the threshold, it is caught immediately in a stabldVe will now further analyze the stroboscopic threshold
orbit. So control transience is very short. scheme below.
Now we will implement the threshold mechanism at vary-
ing intervalsn., with 1<n.<?20, i.e., the thresholding fre-
guency ranges from once every two iterates of the chaotic ) . )
map to once every 20 iterates. We find that forraliin this For the one-dimensional map the analysis can be done
range the chaotic map gets controlled onto an exact angXxactly. That is, one can directly calculate the period corre-
stable orbit of periodicityp=n,. sponding to a particular threshokd and interval of control
Figure 1 shows the periogsof the different orbits result- Nc- ) ) .
ing from threshold action on the chaotic map, with the T.h.e starting point of the analysis is the fact th"?‘t the er-
thresholding implemented at different intervals. Notice thatgodICIty of chaos guarantees that the system will _exceed
: . . threshold at some point in time. At that point its state is reset
the periods are concentrated on fhe n, line, i.e., the pe- . . "
. . . to x*. One then studies the forward iterates of the map,
riod of the resultant cycle is often equal to the interval of . : = % .
thresholdi iallv for threshold — — 0 56 starting from this  state x=fy(x*)=x*, ie.,
resnolding, especialy for hresholes~ - -h[k}- 4 opta 1) F206),.... where £,(x*) s the kth iterate of the
_Itis thus evident that one can fix a threshold and obtai ap. Specifically, forf (x)=1—2x2, xe[—1,1], this is
different temporal behavior by simply varying the interval of (1) k=0, fo(x*)=x*
thresholding. It is very interesting to see how very effective (2) k= 1’ fi(x*): 1_’ 2(x*)2
@nfrequent thresholding can be in regulat@ng systems. In fa_\ct (3) k:2’, f2(x*)=1—2[1—é(x*)2]2=8(x*)2—8(x*)4
it can serve as an extra tool for selecting different cyclic_ 1,
behaviors from the chaotic dynamics.
This has particular utility in obtaining higher order peri-
ods, which are difficult to obtain by adjusting the threshold fr(x*)=fof,_(x*)="fofo---fo(x*).
levels alone, as one has to make finer and finer threshold
settings. Here, on the other hand, the threshold level can be
kept invariant, and only the interval of thresholding adjusted, Now let us denote the th iterate of the chaotic map,
in order to obtain the desired orbit. fnc(x*), by F(x*). So Fk(x*)zfncxk(x*).

A. Analysis

and so on. In general
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FIG. 3. Curves oﬂ:k(x)=fnc,k(x) vs thresholdx, with n.=2.
Herek=1 [i.e., F1(x)=f,(x)] is shown by the solid line, ank

e ] o i =2 [i.e., F5(x)=14(x)] is shown by the dot-dashed line. The 45°
by a dot-dashed line in the figyreThis is the effective map for the | (dasheil is also displayed. Whenever tHg, curve crosses

situation where the control acts at intervals f=3, i.e, after  gp4ve this lineF (x)>x, i.e., thekth iterate of F exceeds the
every third iterate. The thresholded chaotic map is controlled tqp eshold value.

period 3, as the,3=X, line intersects the flat-top region. So the
fix:_ed point x4 3=X, is superstable, as the slope is zero at thatThjs cycle issuperstableas F’'(x)=0 at the POoINtXp 4 3
point. =X,. So here we obtain an orbit with period equal to the

. . . _ . interval of thresholding, namelp=n.=3, with the points
The effective action of thresholding at intervalsmefisto 40 cycle being* = 0.4, f,(x*) =0.68,f,(x* ) =0.08[the

yield a beheaded =f, map. This “flat-top” map ofx* to g iteratef3(x*)=0.98>x* and so is reset t&*, i.e.,
F(x*) can yield stable periodic orbits of various orders for pack to the first point of the cycle

(1) different threshold values, which determine the level at A|ternate|y one can ana|yze the situation as follows.
which the map is chopped off; an@) different n; values,  whenever theF,(x*) vs x* curve crosses above the
which determine the form of the map being beheadedr (x*)=x* line (i.e., the 45° ling we have am Xk cycle,
namely, how many crests and troughs the map hasnEor as this implies that then,x k)th iterate exceeds the critical
=1, itis the usual unimodal map, with one hump in thevaluex* and thus is adapted back % (which is the first
interval [-1, 1] as F=f. In general F=f, has e point in the cycle. For instance, fon.=2, we haveF(x)

FIG. 2. The map(X,, 3= fofof(x,)=1—2{1—2[1-2x2]?}?),
under threshold control with threshold value equal to(@hdicated

maxima in the interval. =f5(x)=8(x*)?~8(x*)*~1. The F1(x) and Fy(x)=F,
The controlling action of the threshold mechanism is bestF1(X)=f4(x) curves are displayed in Fig. 3. It is clear that
rationalized through the fixed points of the map , vsx,,  in the range-1<x*<-0.3 and in the range 0=5x* <0.8

the F,(x*) curve lies above thd, curve [i.e., F{(x*)

h =f =F d i heights of .
WREIE X = o (Xn) =F(X,), under varying heights o >x*]. So the chaotic element is adapted backxtoafter

truncation determined by different thresholds. When the . T ; i _
: : . everyn, iterates, yielding a period, cycle, withn,=2 here.
flat portion of thekth iterate ofF, F=f, ., intersects the my the rangeg’— 0_33)(*p<0_5 Car¥d 08<x* <1 the

45° line we have a superstable period<k, with the points F,(x*) curve dips below the 45° line, but tHe,(x*) curve
on the orbit being x*=fo(x*), fi(X*), lies above the 45° line in the ranges0.3<x*<—0.1, 0.1
f2(x*), ..., fo_k-1(X*). In terms of probability densities, <x*<0.28, 0.8k x*<0.85, andx*~0.98. So there are
the chaotic map under threshold mechanism, i.e., with théour windows of period B.=4, as the (X n.)th iterate of
flat top, will map large intervals onto a severely contractingthe map (starting from x=x*) exceeds threshold and is
region. This is why the control transience is so short, and thadapted back toc*. So the threshold mechanism always
method is so powerful. leads to cycles, as the system is guaranteed to exceed the
For example, Fig. 2 shows the casemf=3, i.e., where threshold during the course of its evolution, for all threshold
the threshold action is implemented every third iterate, forvaluesx* smaller than the bounds of the attractor. When the
threshold value 0.4. Herg(x) =f3(x). Clearly the 45° line iterate exceeds the threshold it is trapped in a cycle whose
intersects the flat portioslope 0 of the beheaded map, and period is determined by the considerations outlined above-
this yields the fixed poink,,.3=X,, i.e., a period 3 cycle. namely, the cycle at each value of threshold is the sma{lest
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such that théth iterate of the maj (starting fromx=x*) is The correspondence between the laser and the system
greater thanx*, i.e., F(x*)>x*. above is as follows: thevariable corresponds to the normal-

It is thus evident through both numerical simulation andized inversion and th& andy variables to normalized am-
analytical treatment that a chaotic system can yeldide  plitudes of the electric field and atomic polarizations, respec-
variety of dynamical behaviors under fixed threshold, bytively. The three parameters corresponding to the coherently
simple variation of the interval of controChanging the in- pumped far-infrared ammonia laser system, obtained by de-
terval of thresholding then acts as an effective mechanisriled comparison with experimeritg] arec=2, r =15, and
for selecting different temporal patterns, thus suggesting §=0.25.
tool for control. A crucial issue in multidimensional systems is whether or

Once one obtains the “bifurcation diagram” of the con- ot the thresholded state variable can enslave the rest of the
trolled cyples With respect to threshold value and intervgl ofyariables to some regular dynamical behavior, especially so
thresholding(for instance, as in Fig.)1 one can use this \\nen the interval of control is large. It is interesting to de-
knowledge as a look-up table for very swift control, requir-yoryine how infrequent one can make the the threshold ac-

At oo g and il efectly manage t conol chaotic syt
yste . ) P .~~onto regular temporal behavior. Here we investigate this
old and interval of thresholding gives one all the information : . : ;
through extensive numerical simulations.

ne n irectly and simply eff ntrol Il conse- .
one needs to directly and simply effect control at all conse To check the efficacy of the threshold mechanism in this

quent times, at no additional cost of studying the system. multidimensional system, we impose the threshold condition
on any one of the three variables of the system, i.e., one
demands that variablg, y, or z must not exceed the pre-
Now we demonstrate the action of infrequent thresholdscribed threshold values®, y*, and z*, respectively.
control on a system of three coupled ODEs: a chaotidigures 4-11 show some representative results of this
Lorenz-like attractor known to be relevant to lasgf Itis  threshold action for a range of control intervalsx ot, with
given by n. ranging from 1 to 1500 §t=0.01) for different state vari-
ables. It is clear that the mechanisat fixed threshold valye
Xx=o(y—x), successfully controls to limit cycles of varying sizes and ge-
ometries by simply varying the interval of control. Interest-
y=rx—y—xz, ingly, very infrequent control, for instanae,= 1500, also-
manages to yield a clean, exact, and simple limit cyske
z=xy—bz (3) Fig. 8.

IV. APPLICATION TO LASER SYSTEMS
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Consider the particular case of the threshold mechanisrhi500. Thus the frequency of control is decreased from once
imposed on thez variable. The stroboscopic threshold every 0.01 unit of time to once every 15 units of time, i.e.,
action occurs at an interval af.ot. Figures 4—8 show spanning three orders of magnitude.
the different temporal patterns obtained when the threshold When the frequency of control is high, i.e., when the in-
is fixed at z*=1 and then, is increased from 1 to terval of threshold action, is low, one obtains fixed points

T —
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> 0F E m Tk E at intervals ofn.xét, with ot
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(in the stroboscopic senselhat is, right after every thresh- tained(i.e., the limit cycle develops strandg hen on further
old control event, the state variables are always exactly at thimcrease of the interval of control fuzzier cycles arise. And
same set of value@=ig. 4). then often, interestingly, further decreasing the frequency of
After stroboscopic fixed points, limit cycles are obtained.control yields exact simple limit cycles of a different geo-
On increasingn., typically, doubled limit cycles are ob- metric family. Figures 5—8 show several specific examples
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s ] 20 F E Lorenz system under thresh-
of E 15 F 3 old control of variablez with
> 1 NoE 3 threshold valuez* =1. The con-
5 E 10 ¢ ] trol acts at intervals ofn. X ét,
10 o E 5F = with  6t=0.01. Here n,
N e R N PR N Py B N e A FETE R =1060,1100,1500. The controlled
6 4 2 0 2 4 n, = 1100 6 4 2 0 2 4 cycles in x-y and x-z space are
displayed.
f R D e i e
5 B P ]
E ] 20 & E
oF E 15 - 3
> F b 8 C ]
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10 [ 7 3 E
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of this wide range of temporal patterns obtained by variationrwhen n.= 1060, the resultant orbit is noisy while when

in the interval of control. =1500, i.e., with significantly more infrequent control, the
Note that one actually has situations where more regulaorbit is exact and geometrically simple.

temporal patterns are obtained from more infrequent control. Figure 9 shows the resultant orbits obtained with thresh-

For instance, compare the orbits obtained with thresholdingld fixed at the large valug* =16, with the interval of

at intervals ofn,=1060 and 1500, shown in Fig. 8. Clearly, thresholding varying from-150 to ~350. Figure 10 shows

3r ] v .
25 |- . 14 .
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- . = : . FIG. 10. The chaotic laser-
r ] | I x | | ] Lorenz system under threshold
15 [ i IS W WA ) Hmun1u|1.5;|.[2u|215.1 controlofvariablex,withthresh-
© 05 1 15 2 23 o 05 X' ’ old value x*=0.1. The control
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N 5t=0.01. Heren,=120,130. The
05 FETTTIT TR 14 P controlled cycles inx-y and x-z
& C ] - 1 space are displayed. Note that the
C ] L i orbit has looped around three
24 ] 138 [ 7] times as the control interval is de-
C ] - ] creased from n,=130 to n.
> 23 [ 1 w36 [ N =120.
22t ] 184 -
21 F 3 L 1
TS I BT I e 182 oo b by o Ty 10 7]
0 05 1t 15 2 0 05 1 15 2
X X
n, = 130
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the regular temporal patterns obtained from threshold actiogingle variable alone in order to control the entire system.
on thex variable, with threshold valug* =0.1, and Fig. 11 This mechanism works in marked contrast to the OGY
displays the control achieved by thresholding yheariable,  method. In the OGY method the chaotic trajectories in the
with threshold fixed ay* =0.5, for a range of control fre- yicinity of unstable fixed points are controlled onto these
quencies. _ points. In threshold control, on the other hand, the system
When the interval of control is too large, the threshold yoes not have to be close to any particular fixed point before
mechanism is unable to effect control to exact limit CyC|eS'impIementing the control. Here the trajectory merely has to

This failure to control at very infrequent thresholding OCCUSeyceed the prescribed threshold. So the control transience is

earlier for higher thresholds. For instance, thresholding is n?ypically very short. Also unlike OGY(or related control
longer capable of yielding temporal regularity foy beyond . ' . . )
~3000 forz* =1 while it fails beyoncdh.~ 350 for threshold :ir;;(aesgﬁltilggi]r:;?l(;fng?\iaigsll any computation during the run

values close fo the bounds of the attractor, @fz 16. This technique has a certain similarity with periodic im-

In conclusion, here we have obtained a large range of . o
numerical evidence to show that stroboscopic threshold ad?UIse method$8], in that they are both stroboscopic in op-

tion of any variable in this multidimensional chaotic systemerat'On and act only on state _varlables. They share the advzjm-
successfully yields regular temporal patterns, displaying 429€ that they do not require knowledge of the system’s
wide variety of periods and geometries. In fact, the intervadynamics or parameters, and both yield stable orbits after
of control may be very large in many cases and still lead tgontrol. The difference lies primarily in that our method acts
very effective control onto simple limit cycles. So varying Only when the system is above a threshold and is thus very
the interval of control offers flexibility and cost effectiveness infrequent, while the periodic pulse method acts at fixed in-
in regulating chaotic systems onto different cyclic patterns. tervals. Further, the control action here is a resetting of one
variable, while the periodic pulse method involves an addi-
tive (negative/positive or multiplicative pulse to one or
V. DISCUSSION more state variables.
In summary, stroboscopic threshold mechanisms can be
Varying the interval of thresholding thus acts as an effec-effectively employed to control chaotic systems onto differ-
tive mechanism for selecting different temporal patternsent stable limit cycles by simply varying the frequency of
suggesting a tool for control. One now has the possibility ofcontrol. The success of the mechanism is demonstrated in a
obtaining sustained temporal regularity from chaos by makprototypical one-dimensional chaotic mémth analytically
ing very infrequent changes to a state variable. Further, imnd numerically, as well as in a three-dimensional system
multidimensional systems thresholding is implemented on anodeling lasergthrough extensive simulatiopsin multidi
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mensional systems, the threshold condition is imposed ohavior is obtained by varying the frequency of thresholding.
only one variable, and this manages to regulate the entir€his suggests that thresholding at varying intervals can serve
system onto various exact limit cycle®@ven when the as a simple and potent mechanism for selecting different

thresholding is very infrequentA wide range of cyclic be-

regular temporal patterns in chaotic systems.
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