PHYSICAL REVIEW A

VOLUME 46, NUMBER 6

15 SEPTEMBER 1992

Nonstatistical behavior of higher-dimensional coupled systems
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We study a (generalized) globally coupled system whose elements are two-dimensional chaotic maps,
and find clear evidence of nonstatistical behavior: the mean-square deviation (MSD) of both components
of the mean field saturate with respect to an increase in the number of coupled elements, N, after a criti-
cal value of N is reached, and their distributions are clearly non-Gaussian. We also find that the power
spectrum of both components of the mean field display well-defined peaks, indicating a subtle coherence
among different elements, even in the “turbulent” phase. This system is a higher-dimensional example of
coupled maps, and its study confirms that the phenomena observed in a wide class of coupled one-
dimensional maps (and also in an example of coupled complex maps) are present here as well. This gives
more evidence to support that such nonstatistical behavior is probably generic in globally coupled sys-
tems. We also investigate the influence of parametric fluctuations on the MSD and power spectra, and
find that noise restores the statistical behavior, after a critical value of the number of coupled elements is

reached.

PACS number(s): 05.45.+b, 05.90.+m, 87.10.+e

I. INTRODUCTION

Global coupling in dynamical systems yields a host of
very novel features. This class of complex systems is of
considerable importance in modeling phenomena as
diverse as Josephson junction arrays, multimode lasers,
vortex dynamics in fluids, and even evolutionary dynam-
ics, biological information processing, and neurodynam-
ics. The ubiquity of globally coupled phenomena has
thus made it a focus of much recent research activity [1].

A globally coupled map (GCM) is a dynamical system
of N elements evolving according to local mappings and a
“mean-field”-type interaction term, through which the
global information influences the individual elements. It
is thus analogous to a mean-field version of coupled map
lattices [2]. The generalized form of a GCM, where each
element is of dimension M, is

1 N
~ 3 fulx, () (1)

ji=1

X, +1()=F£(x,(D))+€G

where x is an M-dimensional vector of the state variables
of each individual element, n is a discrete time step, i is
the index of the elements (i =1,2,...,N), and f,, f,, and
G denote different functions. The mean field h is the ar-
gument of the function G, and € is the coupling parame-
ter.

It has been noticed that one-dimensional GCM’s (for
example, globally coupled logistic maps) have two
conflicting trends: destruction of coherence due to the
chaotic divergences of the individual elements, and a syn-
chronizing force through global averaging [2]. This
means that as a function of the coupling € the dynamics
can go from a phase of completely incoherent chaotic
motion, through phases of partial synchronization, to a
phase of global synchronization, where the synchronized
motion can be chaotic or regular. A very surprising re-
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sult was found by Kaneko [3]: in the fully “turbulent”
phase, where coherence is destroyed by chaos in the ind
vidual maps and there is no explicit manifestation of
correlation among the elements, a subtle collective behav-
ior emerges. Since all the state variables take quasiran-
dom values almost independently, one may expect that
the mean field will obey the central limit theorem and the
law of large numbers. If this were true the mean-square
deviation (MSD) (=(h2)—(h)?) would decrease as
N !, where N is the number of elements coupled, and the
mean field would converge to a fixed value as N — ;
also, for finite N, the distribution of 4 would be Gaussian.
Examination of the above expectation in one-dimensional
maps showed that the mean field respected the central
limit theorem [3] (at least approximately, see Ref. [4]),
but violated the law of large numbers. In fact, the MSD
stopped decreasing after a critical value of N. Further, it
was observed that the power spectrum of 4 had broad
peaks. This result indicates the emergence of some order,
a partial coherence in the dynamics.

In this paper we study an example of a generalized
higher-dimensional GCM. This GCM is comprised of in-
dividual two-dimensional mappings [5] displaying chaos.
First, we discuss the model and give explicitly the form of
the (two-dimensional) mean field. Then we examine phe-
nomenologically the dynamics of the components of the
mean field, and study the behavior of the MSD with
respect to the number of elements coupled. There we find
evidence of violation of both the central limit theorem
and the law of large numbers [6], and broad peaks in the
power spectrum of the mean field. Finally, we investigate
the influence of static fluctuations on the parameters of
the system.

II. MODEL

Our system comprises of a set of dissipative mappings
given by Graham, Isermahn, and Tel [5], which are simi-
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lar to the two-dimensional Hénon map. Our motivation
in studying this system is that, to the best of our
knowledge, it is the first two-dimensional example of glo-
bally coupled maps. We would like to ascertain what
features of one-dimensional GCM’s persist in higher di-
mensions and what new features emerge. The GCM used
for our numerical experiments is the following:

X, (D)= f(x,( )+»h" (2a)
; £y
Yo 1= f,(x,( n(l))+Nhn ) (2b)
where
frlxy)=1—ax?/(1+x%—py , (3a)
fix,p)=x, (3b)

and the two components of the mean field h are

hr= 2 Folx,(j
j=1
1V
=3 f(x, )y, () (4b)

Jj=1

JIhy.(), (4a)

The global asymptotic dynamics of the local map given
by Eq. (3) is on an attractor for S<1. When «a is varied
this map gives rise to the entire repertiore of behavior,
ranging from fixed points to chaos, reminiscent of unimo-
dal one-dimensional maps.

III. RESULTS

We have simulated Eq. (2) with the parameters a=3.4
and B=0.3 at different values of N and €. For a single
map these parameters are located in the region of com-
pletely chaotic behavior [5]. In all case considered, we
have checked to see that the coupled dynamics is not syn-
chronized.

First we have checked to see how close to Gaussian the
distribution of the components of the mean field are. Fig-
ure 1 shows a histogram of the distribution of the x com-
ponent of the mean field. The y component shows an
identical behavior. Clearly the distribution is far from
Gaussian, as is evident from the marked asymmetry of
the distribution about the mean. This result is similar to
the one obtained for a GCM with complex valued local
maps (which can be considered a higher-dimensional ex-
ample of a GCM [6]), and unlike that observed for one-
dimensional GCM’s, where the distributions are approxi-
mately Gaussian (in spite of other nonstatistical features).
This lends support to the expectation that for most
higher-dimensional GCM’s, the distribution of 4 is prob-
ably non-Gaussian, while for one-dimensional GCM’s it
is closer to Gaussian.

Second, we have calculated the mean-square deviation
(MSD) D of the components of the mean field

ﬂ~—2 (hj—(Rn'))? (5)
j =1

as a function of N. Here h; is the ith component of the

mean field obtained at iteration j and (A’) is the average
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FIG. 1. The normalized probability distribution of the mean
field (both components are identically distributed). Note that
the distribution is not symmetric about the mean (denoted by a
dashed line in the figure), and is clearly not Gaussian. Here and
in all other simulations we have used parameters a=3.4 and
3=0.3, and there is a transient of 5000 steps. The distribution
is built using 5000 iterations.

obtained over the very large number of iterations T. This
MSD does decrease as N grows up to a critical value N,,
and then saturates, as can be observed in Fig. 2, for both
components, i =x,y, of the mean field. For large values
of € the decrease in the MSD differs consistently from the
1/N behavior predicted by the law of large numbers.
This suggests that the nonstatistical behavior of the pro-
cess manifests itself well before saturation value N.. We
can then say that the MSD for the mean field h decays as
a power ¢, with ¢ <1, up to a critical value N, after
which it stabilizes. (The qualitative behavior of the two
components is similar. There is a slight quantitative
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FIG. 2. Mean-square deviation (MSD) of the two com-
ponents of the mean field vs lattice size N, at three different
values of €: (a) €=0.0, (b) €=0.1, and (c) €=0.3. The open cir-
cles represent the x component of the mean field and the cross
symbol represents the y component. In all cases we have used
5000 iterations.



difference though, and this difference is larger for larger
values of the coupling parameter €.)

We have checked the behavior of the MSD with
respect to the value of the coupling €. It had been no-
ticed that GCM’s where the local maps were modified by
the introduction of coupling showed nonmonotonic be-
havior [7], whereas GCM’s where the local maps were
not modified by coupling displayed monotonic growth
[6]. Here the local maps are not modified by €. Never-
theless, the MSD does not grow monotonically with cou-
pling strength, as is evident from Fig. 3. There is an
overall growth in the MSD values, though, and this
growth saturates at large values of €. There is a section
of the curve near the saturation end where the MSD vs €
is monotonic, which displays (gross) scaling, as

D(e)=D(0)e” , (6)

with v=4, for both components. This suggests that the
exponent probably goes as 2M, where M, as defined ear-
lier, is the dimensionality of the local maps. This is con-
sistent with the result from one-dimensional GCM'’s,
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FIG. 3. Mean-square deviation (MSD) vs global coupling pa-
rameter €. Here N =2000 and we are using 5000 iterations.
Curve (a) is for the x component, and curve (b) for the y com-
ponent of the mean field.
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FIG. 4. Power spectra of the mean field for lattice size N
equal to (a) 10, (b) 100, (c) 500, (d) 1000. Here we average over
eight runs of length 1024 each, and € is fixed at 0.3. Notice that
the peaks have almost saturated in the last two figures. Both
components of the mean field give identical power spectra.
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where the exponent is approximately 2 [4]. However, the
scaling may be very gross, and may describe only the
overall features. More examples will have to be studied
in order to have a conclusive answer to this question.

The Fourier transform of the mean field also reveals
the emergence of order as the number of sites in the lat-
tice is increased. In Figs. 4(a)-4(d), we have plotted the
power spectrum for four different lattice sizes. It is clear
that this power spectrum develops some very prominent
peaks as N is increased. The position of the fully
developed peaks depend on the value of €. We can quan-
tify the sharpness of the peaks in these power spectra by
an autocorrelation function, which is defined by

M
> P(j+imodM)P(j)

1 X5
P> W , (7)
= > P(j)P(j)

=1

C

il

where P(j) is the power at the jth frequency index, and
M is the number of discrete points in the spectrum. In
practice we use as a measure S = —log,,C. This quantity
goes to zero for flat spectra and diverges when the spec-
trum contains only &-function spikes. This measure is
displayed in Fig. 5. Notice that the sharpness of the
spectrum saturates after a critical N. As in one-
dimensional cases, the saturation of the sharpness of the
power spectrum and saturation of the MSD are con-
current. (This is in contrast to the result for the GCM
with complex local maps [6] where the MSD had saturat-
ed while the sharpness of the power spectra had not.)
The two components of the mean field, interestingly, have
virtually indistinguishable power spectra. So evidently,
all components of the multidimensional mean field devel-
op similar collective beating patterns.

Finally, we have considered the effects of static random
fluctuations in the values of the parameters of the model.
To do this we have simulated a map of the form

- IogIO(C)
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FIG. 5. Measure of the sharpness of peaks in the power spec-
tra, as defined in the text vs the number of elements coupled.
Here €=0.3, and we average over eight runs of length 1024
each.

x,,+1(i)=fx(x,,(i),y,,(i);a(i),B(i))+ﬂ}élh,’f, (8a)
Vo =1, 5, D,y DB+ ST R2 (@)

with f, and f, as defined before, and where the now local
parameters are defined by

ali)=[1+o0&(i)]a 9)

and similar expressions for (i) and e(i). Here £(i) is a
random number between —0.5 and 0.5, and o is the am-
plitude of the noise. It has been found [4] that for one-
dimensional maps, the introduction of such small static
fluctuations does reduce the value of the MSD after the
critical N, but that after some larger value of N, the MSD
not only saturates but actually grows until it reaches the
value where it had saturated in the absence of parametric
fluctuations. Surprisingly, what we find here is quite
different. In this two-dimensional GCM, noise restores
regular statistical behavior of the MSD, after a critical
lattice size (see Fig. 7). Until this critical size, the MSD
lies between the nonstatistical curve of the system
without noise and the 1/N line. With increasing noise
strength of the MSD lies closer to the statistical predic-
tion. After the critical size, the MSD drops sharply to-
wards the 1/N prediction, and statistical behavior is
recovered. (This trend is also in contrast to that found in
the GCM with complex local maps [6], where noise im-
mediately restores statistical properties.) There was an
additional feature of the power spectra of the mean field
under noise in one-dimensional systems: it was found
that the rough periodicities observed in the mean field ac-
tually persisted up to a reasonably large strength of noise
[7]. Furthermore, the sharpness of the spectrum actually
increased with the addition of noise in the dynamics up to
a critical noise strength [7]. Here, too, we observe this
surprising feature, as is clearly evident in Fig. 6. The rise
in the sharpness of the power spectra with noise ampli-
tude (for small o) is approximately linear. This strange
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FIG. 6. Measure of the sharpness of peaks in the power spec-
tra, as defined in the text, vs the strength of noise (e=0.3,
N =2000).
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FIG. 7. MSD (for the x component of the mean field) in the
presence of static fluctuations in the parameters. We have per-
formed trials with €=0.3, and with 0,=03=0 equal to (a) 0.0,
(b), 0.02, and (c) 0.07. The MSD of the two components of the
mean field get closer quantitatively under noise.

phenomenon is another instance of stabilization of
periodic motion through small noise, resembling in a way
the phenomenon of stochastic resonance [8].

IV. CONCLUSIONS

Here we have investigated various aspects of the dy-
namics of the mean field in a globally coupled system of
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two-dimensional chaotic maps. This system presents a
simple model for the study of global coupling in systems
with higher-dimensional local dynamics.

As in previously studied one-dimensional cases and a
case with complex local maps, we have found that the
mean field shows evidence of the violation of the law of
large numbers. These violations are clear after the lattice
reaches a critical value N,. In this regime the mean-
square deviation (MSD) stops decreasing with N, and in-
stead saturates to a fixed value. At the same time, the
distribution of the mean field is clearly non-Gaussian.
There is some evidence of violation of statistical laws
even before it reaches N, since for large values of the
coupling parameter the MSD decays as N ¢, with ¢ < 1.
Another evidence of this anomalous behavior is the emer-
gence of several peaks in the power spectrum for the time
sequence of the mean field. This indicates the emergence
of a subtle coherence in the system, even though the indi-
vidual mappings look completely unsynchronized. Final-
ly we found that small random fluctuations in the param-
eters of the local maps restores statistical behavior after a
critical lattice size N,. Before N, the MSD of the mean
field lies between the nonstatistical prediction (without
noise) and the statistical prediction of 1/N.
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