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Spurious spectral fluctuations due to missing levels
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We conduct a numerical experiment on a regular system which typically describes molecular vibra-
tional modes. We find that randomly missing levels do not affect spectral properties significantly, but the
effect of levels missing systematically in quantum number space can distort the statistics considerably,
yielding results apparently consistent with the Berry-Robnik prediction for mixed systems. This obser-
vation underscores the important point that misleading interpretation of data is possible, and is of par-

ticular relevance in an experimental context.
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One important aspect of dynamical studies in recent
times has been to explore the effects of the underlying
classical mechanics on quantum stationary state proper-
ties. There is accumulating evidence that the energy ei-
genvalue statistics of quantum systems show universal
fluctuation patterns determined by the nature of their
classical analogs [1,2]. The simplest spectral characteris-
tic is the nearest-neighbor spacing distribution P(s),
defined such that P(s)ds is the probability of finding con-
secutive levels within distance s and s +ds. For generic
integrable systems where the contours in action space are
curved, it has been shown that P(s) is Poisson distribut-
ed, i.e., the spectrum is characterized by level clustering
[3]. Chaotic systems, on the other hand, display level
repulsion and are well approximated by the Wigner dis-
tribution P(s)=(ms /2)exp(—7rs2/4), a result known to
be true for a Gaussian orthogonal ensemble (GOE) of
random matrices [4]. Higher-order correlations, which
prove to be more reliable, are also used in analysis of
spectra. For instance, the A; statistic is a commonly cal-
culated quantity [5], and is given as the averaged least-
squares deviation from the best straight line fitting a
given substretch of levels in units of mean level spacing.
For an uncorrelated Poisson spectrum A;(L) is equal to
L /15 while for the GOE it is equal to In(L)/7*—0.007
for large L.

It is, of course, of utmost interest to discover these
correlation patterns in experimental spectra of atomic
and molecular systems. Consequently, much experimen-
tal data have been examined statistically, and inferences
drawn about the nature of the underlying classical phase
space [6]. Now analysis of experiments crucially hinges
on the completeness and purity of the data set. But it is
highly probable, if not an inescapable reality, that levels
will be missing in real spectroscopic measurements. We
then have to reckon with incomplete level sequences, and
so it is of considerable importance to know theoretically
how missing levels affect statistical properties.

The effect of randomly missing levels on GOE statistics
is known to be not very significant [7]: for asymptotically
long sequences, random missing levels push the GOE re-
sult a little towards the Poisson. In this paper we deal
with the case of levels missing, both randomly and sys-
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tematically in quantum number (action) space, in a regu-
lar system whose complete energy sequences exhibit Pois-
son statistics. We find that the effect of randomly missing
levels is not drastic, but levels missing systematically in
quantum number space (which may be more likely in cer-
tain experimental realizations, due to selection rules)
influence statistical properties considerably and the re-
sulting spectral patterns can easily be mistaken as coming
from an underlying mixed classical system. This strongly
suggests the need for caution in interpreting statistical
tests. We demonstrate our point by numerical experi-
ments on the model molecular Hamiltonian described
below.

The classical microscopic description of the vibrational
motion of a molecule is through a potential energy func-
tion. In suitable normal or local mode coordinates g, the
vibrational part of the potential typically has a polynomi-
al form [8]

V=z 2(0?‘]{2‘*‘ 2 kingiq;qn+ - (1)
1 1

and the total classical Hamiltonian is

H=73p}/2m+V, (2)

where p are the respective conjugate momenta and N is
the number of degrees of freedom. The main term in Vis
the harmonic part and the higher-order coefficients ki
are generically small. Since the essential complexities are
already apparent for two degrees of freedom, many stud-
ies have been made on two-dimensional perturbed oscilla-
tor models such as [9]

H=%(pf+py2)+wﬁx2+w§y2+a(x3+y3)
+bx?y3+ex?y? . (3)

This Hamiltonian may be considered appropriate to mod-
el a two-mode molecule, for example, a nonbending tria-
tomic molecule with x and y the symmetric and asym-
metric stretch coordinates, and p, and p, the respective
conjugate momenta. The frequencies of the two modes
are w, and o,, the perturbation parameter a is the non-
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linearity, and b and c¢ represent mode-mode coupling;
these are the essential features in a realistic molecular
system. We use the above system for our studies, in the
range of parameters and energies for which it is classical-
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ly regular [9].

Classical perturbation theory for the Hamiltonian in
Eq. (3), using Lie transforms [10] up to second order,
gives the normal form [9]

H=oI,+o,],+{c/w0,) 1,1, +I}{—15a/40}} + I} { —15a%/40})

+1%1,{c?20%0,[ 1 /(202 —203) — 1 /w3]}

+ 12 { —c? /2030, [ 1 /0} 4+ 1 /(203 —203) ]+ 15ab /20,07 — 81ab /320,03 903 —40?)}
+I313b%{ —27/1603w3(9w3 — 4w}) — 15 /403wl — 27 /160i0i( 03— 4w?)}

+1,13b%{9 /(03 —4w?)—2 /(903 —4w})} /20,03 .

For quantum levels, using Einstein-Brillouin-Keller
(EBK) quantization rules [11], we make the correspon-
dence I, =n+1 and I,=m + 1, for a level with quantum
numbers m and n, in the above expression. This pro-
cedure yields very accurate results as comparative studies
with exact results bear out [9]. We first generate sets of
energy levels by scanning the quantum number space
{m,n}. After these sequences are ordered they are un-
folded via a polynomial unfolding function. Complete
energy sets of this system show Poisson statistics [see Fig.
1 for nearest-neighbor spacing distribution (NNSD) and
Fig. 2 for A; statistic], as is consistent with the regularity
of the underlying classical dynamics. A total of 600 lev-
els has been used in the analysis, keeping in mind that the
typical numbers involved in experiments are usually of
this order. Note that we have used the smooth approxi-
mation to the exact NNSD [P(s)=(1/N)3;8(s—s;)

P (s)

00

0 s 3

FIG. 1. The open circles denote the NNSD [P (s)] for the
unfolded levels of the system given in Eq. (3), with parameter
values w, =1.9046, w,=6.765, a=0.08, b=0.1, c=0.1. The
continuous curve is the Poisson distribution (e ~*). We take 600
levels in the stretch 200-800.

where the total number of levels is N +1] by expanding
P(s) in a complete set of basis functions [12]. This
prevents errors and manipulations entering through the
arbitrariness of the bin size, as is common in the histo-
gram representation.

First we treat the case of levels missing randomly. We
calculate the NNSD and the Aj; statistic for suitably un-
folded level sequences with some fraction f,, of random
missing levels. Figures 3 and 4 display the results of
NNSD and A;, respectively, for a representative case of
fm=0.2. Clearly the results are close to that for com-
plete sequences, namely, Poisson. Note that the histo-
gram representation of the spacing distribution would
have shown excellent agreement with Poisson. In order
to get a more quantitative idea, we have fitted the data to
predictions for mixed systems. The NNSD for a mixed
system was given by Berry and Robnik to be [13]
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FIG. 2. The spectral rigidity A; for the system in Fig. 1
(X X X) in comparison with (1) the Poisson prediction (L /15),
(2) GOE result.
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FIG. 3. As in Fig. 1 with randomly missing levels. The frac-
tion f,, is 0.2. The continuous curve is the best fit Berry-
Robnik distribution [Eq. (5)] with v=0.93.

P(s)=v?exp(—vs Jerfc(LV/7vs)
+(2v+77s2)exp( —vs — Lav’s?) (5)

with v+v=1, and v parametrizing the fraction of phase
space supporting regular dynamics. The expression for
spectral rigidity analogous to the Berry-Robnik distribu-
tion for the NNSD is

Ay(L;v)=A%oisson(yL )+ AFOETL) . (6)

In Fig. 3, the continuous curve is the best fit of the data
(marked as open circles) to Eq. (5). In Fig. 4, curve 1 is
the Poisson prediction, curve 2 is the GOE prediction,
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FIG. 4. The spectral rigidity A; for the system in Fig. 3
(X X X)) in comparison with (1) the Poisson prediction (L /15),
(2) GOE, and (3) the best fit rigidity of Eq. (6) with v=0.65.
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FIG. 5. As in Fig. 1 with levels missing systematically (see
text for details). The continuous curve is the best fit Berry-
Robnik distribution [Eq. (5)] with v=0.62.

and curve 3 is the closest fit of our data (marked as X) to
Eq. (6). In both cases, the degree of regularity is a fitting
parameter, v, which is large, indicating that the spurious
“level repulsion” induced by randomly missing levels is
not much.

Levels missing systematically have experimental
relevance as well. Observation of a quantum state de-
pends on the intensity of the spectral line which is deter-
mined by the probability of the transition which gives rise
to it [8]. For instance, for a molecule whose vibrational
wave functions are products of harmonic oscillator func-
tions [e.g. Eq. (3)], the only vibrational transitions which
occur with the emission or absorption of radiation are
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FIG. 6. The spectral rigidity A; for the system in Fig. 5
(X X X)) in comparison with (1) the Poisson prediction (L /15),
(2) GOE, and (3) the best fit rigidity of Eq. (6) with v=0.30.
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those in which only one quantum number changes, and
by one quantum only (assuming that only linear terms in
the expansion of the electric moment are important).
Such selection rules demand that we take into considera-
tion the possibility of levels missing in a systematic
manner in action space in experimentally observed spec-
tral sequences.

So, now we treat the case of levels missing systemati-
cally in quantum number space. Figures 5 and 6 show an
illustrative example where every alternate quantum num-
ber is taken, that is, the quantum number space is
scanned in steps of two. We calculate the NNSD and A,
statistic for this case (Figs. 5 and 6, respectively) and as
before compare our results with the best fit to Egs. (5)
and (6). It is evident that the fluctuations are now similar
to that of mixed systems. While the rigidity is clearly
close to the GOE result, a “‘shoulder”” develops in the
spacing distribution, P(s) (again, a histogram representa-
tion of NNSD would have shown an excellent fit). The
values of v are small, apparently indicating the presence
of a large chaotic subspace.

Our study highlights the inadequacy of examining

NNSD alone (see also Ref. [14]) which can be misleading.
However, probes of long-range correlations such as A,
are more discerning and hence reliable. For instance,
Figs. 2, 4, and 6 show a clear transition from Poisson (for
a complete sequence) towards the GOE result whereas
the effect on the NNSD is much less pronounced.

In summary, missing levels induce spurious fluctua-
tions that may be interpreted as arising from an underly-
ing mixed system. Interestingly, levels missing systemati-
cally (which is probable in many spectroscopic realiza-
tions) affect spectral statistics much more than randomly
missing ones. This is evident in the smaller values of v
indicating a larger degree of apparent irregularity. This
suggests a warning for the interpretation of experimental
data. For instance, there are systems that are expected to
be regular but surprisingly show chaoticity in the quantal
spectra [15]. Such contradictions may partly be explain-
able in terms of arguments presented in this paper.
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B.A.R.C. for supporting this work.
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