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Fluctuations in the time periods of a model chaotic system
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We study the fluctuations in the density of time periods of the closed orbits of a model chaotic system.
The work is motivated by a similar study on integrable systems [D. Biswas (unpublished)], where the ex-
istence of universalities in the fluctuation measures is established. We find that the nearest-neighbor
spacing distribution exhibits linear repulsion and is well approximated by a one-parameter additive ran-
dom matrix model. The spectral rigidity is more revealing and clearly shows that the fluctuations lie be-
tween those of Poisson-distributed periods and the Gaussian orthogonal ensemble of matrices. The ques-
tion of universalities, however, remains open. This study should serve as a guide in settling the issue.

PACS number(s): 05.45.+b

Studies carried out on the fluctuations of the quantum
spectra in time-independent Hamiltonian systems reveal
the existence of universality classes [1]. It is now known
[2,3] that their origin lies in the nature of the underlying
classical dynamics. Thus systems as diverse as a hydro-
gen atom in a strong uniform magnetic field and the
abstract hyperbola billiard display similarities in their
spectral fluctuations due to the chaotic nature of the
respective classical systems. Generic integrable systems
on the other hand belong to an altogether different
universality class. The levels here are Poisson distribut-
ed, while those for the chaotic case exhibit fluctuations
that are similar to those of the eigenvalues of random ma-
trices chosen from ensembles that reflect the presence or
absence of antiunitary symmetries.

Most of our current understanding is based on the
semiclassical periodic orbit theory [4], which allows one
to express the density of states as an infinite sum over
periodic orbits alone. Thus the spectrum can in principle
be obtained from a knowledge of the time periods and the
associated stability parameters. The inverse problem has
also attracted some attention and it is now established
[5-7] that, in homogeneous systems, the energy eigenval-
ues alone contain information about the lengths and sta-
bility properties of individual periodic orbits. Recently,
Biswas [7] has extended this duality further for integrable
systems and shown that the fluctuations in the density of
time periods contain universalities that are identical to
those for the energy eigenvalue spectrum. Thus a se-
quence of “unfolded” time periods (mean density unity)
in a generic integrable system has a nearest-neighbor
level-spacing distribution (NNSD) that is Poissonian.
Higher-order correlations behave in an identical fashion
as well. Interestingly, the outer scale in the time period
spectrum is shown [7] to depend on the ground-state en-
ergy of the quantal system. It is of considerable interest
to investigate the extence of universalities (if any) for the
chaotic case. With this in mind, we study the fluctua-
tions in the density of time periods for a model chaotic
system.

The hypothetical Riemann § system [3] is a Hermitian
operator with eigenvalues E,, which are the nontrivial
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solutions of §(3+iE)=0, where { is the Riemann { func-
tion, {(s)= 3 _,1/n°. The connection with classical
mechanics follows from the striking similarity between
the density of E,,,

d(E)=(d(E)~~ 3 3 5B cos[Ek In(p)] (1
p k V4

and Gutzwiller’s semiclassical approximation to the den-
sity of energy eigenstates [4]. The hypothetical time
periods are thus k In(p) where k is the repetition number.
It is trivial to verify that the periodic orbits for the sys-
tem do proliferate exponentially as in other chaotic sys-
tems. There are two other important properties for
chaotic systems without any symmetry that are obeyed
by these periodic orbits. The first is a classical sum rule,
which constitutes a relationship between the periods and
stability parameters [8] while the second is a semiclassical
sum rule that follows from the relationship between the
orbits and the energy eigenvalues E, in the semiclassical
limit [3,9]. In a sense these are comsistency conditions
that must be satisfied so that the hypothetical time
periods belong to a Hamiltonian system.

We shall work with the hypothetical time periods,
k In(p) since a large number of these can be easily gen-
erated. For k =1 (primitive orbits alone), the unfolding
can be achieved using the mean integrated density of time
periods,

No(D=% 1424 yn—1L @)
AD=p 1T T |

If multiple repetitions are taken into consideration, a
suitable polynomial fit is used to achieve a unit mean den-
sity.

We evaluate here the nearest-neighbor spacing distri-
bution P(s) and the spectral rigidity A, for the unfolded
time periods. The distribution P(s) is defined such that
P(s)ds is the probability of finding pairs of successive un-
folded time periods (levels) with spacing between s and
s +ds. For systems that are classically integrable, P (s) is
the Poisson distribution e ~°, if the corresponding quantal

5257 ©1992 The American Physical Society



5258

eigenenergies are nondegenerate [7]. As mentioned ear-
lier, the result is identical to that for the quantal eigenval-
ue spectrum of generic integrable systems. Of the
higher-order correlations, the spectral rigidity A, is a use-
ful measure and also easy to evaluate. It is defined as the
average mean-square deviation of the integrated density
of time periods from the best-fitted straight line. Thus
A3(L)=<min [t dT[N(x+T)—a—b'r]2> NG
ab Y=L
The averaging here is performed over an interval large
compared to the outer scale L, , which for integrable
systems (7] is equal to (d(T)) /A, where A, is a func-
tion of the ground-state energy [the equivalent outer scale
for the eigenenergy spectrum is h{d(E))/T,,,, where
T.in is the smallest time period of the corresponding
classical system]. For values of L <<L_ .., A;(L) for
periodic orbits belonging to generic integrable systems
equals L /15 [7] as in case of the eigenenergies [3].

Since no theory exists for the density fluctuations of
time periods in chaotic systems, we shall assume a form
for the outer scale similar to that for integrable systems.
The averaging interval then increases exponentially with
the time period and hence we shall restrict ourselves to a
sequence of 3000 periods after eliminating the first 500.
Moreover, since most of them are primitive orbits, we
present our results for k=1. There are no visible
changes if repetitions are allowed as well.

Figure 1 shows a plot of the nearest-neighbor spacing
distribution plotted in the interval [0,3]. Since a histo-
gram representation is often misleading, we have ex-
panded P (s) in terms of Laguerre polynomials, L, (s):

Il
¥ =l

2 8(s —s;) (4a)
C,L,(s)e™*, (4b)

where C, are the coefficients and N +1 is the total num-
ber of levels. Usually, excellent convergence is obtained
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FIG. 1. Nearest-neighbor spacing distribution P(s) of un-

folded time periods (curve 1) in comparison with the best-fit ad-
ditive random matrix distribution [Eq. (5)] for A=0.3. Curve 3
is the Wigner surmise.
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by retaining only 15 terms. We have evaluated P(s) us-
ing 20 terms and verified its convergence by comparing
the cumulative distributions of Eqs. (4a) and (4b).

Clearly the peak in Fig. 1 (curve 1) occurs at about
0.45 and has a value equal to 0.83. A comparison with
the predictions of the Guassian orthogonal (curve 3 of
Fig. 1) or unitary ensembles is thus meaningless, since the
peaks in these cases occur for larger values of s. The
best-fit Brody distribution shows considerable deviations
as well. We have thus used the distribution,

_ | su(r)? _u(A)%s?
P}\(S)— A, 4}"2
© §2_2§A S u(l)
x [ e T |d¢ (5)

for an additive random matrix ensemble [10] parameter-
ized by A. Here I, is the modified Bessel function and
u(A)=V7U(—1/2,0,A%), where U is the Tricomi func-
tion [11]. The fit is good for A=0.3, though slight devia-
tions exist near the peak. We have evaluated P(s) for
various other ranges of time periods as well, but have no-
ticed no significant changes.

Figure 2 shows a plot of the spectral rigidity in com-
parison with the results of Poisson distributed periods
(curve 1) and the Gaussian othogonal ensemble (GOE) of
random matrices (curve 3). For values of L <<3, the
agreement with the latter is good (not shown in the
figure), though in the expected region of universality
(1<<L <« L_,,) the curve lies between the two extreme
cases. In order to have a more quantitative description,
we have fitted the numerically obtained A, for values of L
in the range [3,6] to the one-parameter rigidity,

Ay(L;v)=AFoison(y[ )+ ASOE(3L) | 6)

where v+v=1. The fitted values (curve 2 in the figure)
give a good approximation for v=0.2023.
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FIG. 2. The spectral rigidity A; of the unfolded time periods
(X) along with the Poisson (curve 1) and Gaussian orthogonal
ensemble (curve 3) results. Curve 2 is the best fit of our data to
Eq. 6 (see text for details).
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In summary, we have carried out a study on the fluc-
tuations in the density of time periods of a model chaotic
system. The work is motivated by a similar study on in-
tegrable system [5], where the existence of universalities
in the fluctuation measures is established. For chaotic
systems, the only other study, to the authors’ knowledge,
has been on the nearest-neighbor spacing distribution of
the time periods in a hyperbola billiard [12]. The cluster-
ing observed [12] is perhaps due to the symmetries in the
system and hence should be considered nongeneric. In
the present case, we observe a linear repulsion in the
NNSD for small s values followed by a peak at s ~0.45
and a rapid decay thereafter. The curve is well approxi-
mated by a one-parameter additive random matrix model
(in the histogram representation, the fit would be con-
sidered excellent), which has incidentally been used re-
cently [13] to study the spacing distribution of a singular
billiard system. The spectral rigidity is more revealing,
however, for it clearly shows that the fluctuations lie be-
tween those of Poisson-distributed periods and the
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Gaussian orthogonal ensemble of matrices.

We have recently become aware of a similar study by
Harayama and Shudo [14] on a class of dispersing bil-
liards (chaotic) addressing the question of universality in
the fluctuations of the length spectrum. They obtain a
Poisson nearest-neighbor spacings distribution and con-
jecture that this property is universal, at least in all hy-
perbolic systems. In the model chaotic system studied in
this paper, the essential properties of the length spectrum
are identical [15] to those of the Hadamard-Gutzwiller
model. In light of this, our results are noteworthy. An
analytic study of the fluctuation measures is currently in
progress [16].

The question of universalities, if any, in the fluctua-
tions of time periods, however, remains open. This study
should serve as a guide in setting the issue.

The authors wish to thank Dr. M. Azam and Dr. S. V.
Lawande of Bhabha Atomic Research Center for several
useful discussions.
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