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We suggest a scheme to step up the efficiency of a recently proposed adaptive control algorithm, which is remarkably effective
for regulating nonlinear systems. The technique involves monitoring of the “stiffness of control” to get maximum gain while
maintaining a predetermined accuracy. The success of the procedure is demonstrated for the case of the logistic map, where we
show that the improvement in performance is often factors of tens, and for small control stiffness, even factors of hundreds.

Realistic models of a variety of physical, chemical
and biological systems are given by coupled nonlin-
ear equations, and display a wide repertoire of dy-
namics -~ ranging from fixed points to chaos. It is
usually possible to identify certain physical quan-
tities in the system as state variables, and others (that
are relatively more invariant) as parameters. Ge-
nerically the the nature of the dynamics is governed
by values of these parameters and in real systems they
may be quantities like electric fields, temperature,
pressure gradients, pH, molarity etc. Now. the pa-
rameters, in principle, can vary, driven by fluctua-
tions in the environment, and this may push the sys-
tem to drastically different kinds of dynamic
behaviour. Thus, it is of considerable interest to de-
velop mechanisms of self-regulation or control, in
systems intrinsically capable of very complicated dy-
namics, so that it is guaranteed to maintain a fixed
activity (the “goal”) even when subject to environ-
mental fluctuations [1-3].

A simple adaptive control algorithm was recently
proposed in ref [1], and developed and extended in
ref. [2]. It was demonstrated that the algorithm was
a powerful and robust tool for regulating multidi-
mensional, multiparameter, strongly nonlinear sys-
tems. The procedure utilizes an error signal propor-
tional to the difference between the goal output and
the actual output of the system. This error signal
drives the evolution of parameters which readjust so
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as to reduce the error to zero. For a general N-
dimensional system

X=F(X;p;1), (1)

where X=(X,, X,, ..., Xy) are the variables and
u=(ly, ta, ..., Upy) are the parameters whose values
determine the nature of the dynamics. The prescrip-
tion for adaptive control is through the additional
dynamics,

p=e(X-Xs), (2)

where Xj is the desired steady state value and ¢ in-
dicates the “stiffness of control”. This technique is
very effective in bringing the system back to its orig-
inal dynamical state after a sudden perturbation in
the system parameters changes its dynamical behav-
iour drastically. We call this scheme “adaptive” as in
this algorithm the parameters (which determine the
nature of the dynamics) self adjust or “adapt™ them-
selves to yield the desired dynamics *'. Recovery time
(defined as the time required to reach the desired
state within finite precision) is crucially dependent
on the value of €. Numerical experiments showed that
for small € the recovery time was al/ways inversely

¥l A similar type of procedure is also referred to as “dynamic
feedback control” in the literature.
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proportional to the stiffness of control #2.

In this Letter we introduce a scheme to enhance
the efficiency of the above mentioned adaptive con-
trol algorithm. The idea is as follows: we would like
the algorithm to exert some “adaptive control” over
its own progress, by making frequent changes in the
“stiffness of control”, e. The purpose is to achieve
some predetermined accuracy in the minimum time.
Ideally the algorithm should ensure that the system
tip-toes by many small steps through treacherous pa-
rameter regimes and in a few great strides speed
through smooth safe terrains. The resulting gains in
efficiency (versus an algorithm where the € is fixed
throughout) cn be factors of two and sometimes, tens
or more.

To achieve this, we propose the following method:
we monitor at each step in the algorithm, how far we
can safely increase the value of € for the next step.
Implementation of this involves a test which returns
information on the error incurred in taking higher €.
If this is within acceptable limits of accuracy desired
(and after all, in real and numerical experiments one
can only demand finite accuracy) we increase the
stiffness of control for the next adaptive control step.
The computational effort required for the test is re-
paid handsomely in terms of decrease in time re-
quired for recovery.

The most straightforward flowchart for this prin-
ciple is given below:

(1) Double the value of € at step n.

(2) Evaluate u via control equation (2) with 2e.

(3) Evaluate u via control equation (2) with ¢, for
two successive steps.

(4) Compare the values obtained in step 2 and 3.

(5) If the difference between the two is smaller
than a given accuracy (usually taken to be the ac-
curacy used to define “recovery”) then go to step 1
and repeat the procedure.

(6) If not, the above iteration stops (as the value

¥2 An argument to account for the universality of the linear re-
lationship between recovery time and stiffness of control, ob-
served in a wide class of systems of varying complexity (in ref.
[2]), was pointed out by Haake. The key point is that when €
is small compared to the time scales in the original dynamical
system, we can use an adiabatic approximation, as g—0. So
eq. (1) yields X(u) as a solution, plugging which into eq. (2)
gives i=€[ X(u) — Xs], from where it simply follows that re-
covery time will be proportional to 1/e.
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of € can no longer be increased without compromis-
ing with demands of accuracy).

What one achieves by the above is that when the
parameter space is smoothly and gently varying one
can take jumps, via large stiffness parameters, to-
wards the desired state (see fig. 1). This decreases
the time required for recovery, enormously. When
there are more than one parameter we get a vector
at step 2 and 3, and can implement step 5 with the
“worst offender” parameter, i.e. if any one of the pa-
rameters violates the accuracy bar the iteration stops.

This “variable ¢’ adaptive control algorithm is
tested on the logistic map which is given as

Xn+1=aXn(1+Xn)- (3)

The results are shown in table 1. It is clear that this
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Fig. 1. The evolution of parameter « under control dynamics given
by (a) the “fixed €” algorithm (- — - — ), and (b) the “variable
€’ algorithm (——).

Table 1

Recovery times 7; and 1, are obtained from the “fixed € [1,2]
and “variable € adaptive control algorithms respectively. Here €
denotes the “stiffness of control” in the control equation (2). it
is evident that the “variable ¢ scheme yields much faster recov-
ery, as manifested in the enormously smaller values of 7. The rep-
resentative example of the logistic map is considered here.

€ T 1,
0.1 180 70
0.05 364 89
0.01 1839 217
0.005 3682 345
0.001 18428 394
0.0005 36860 394
0.0001 184313 426
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scheme yields much faster recovery than the simple
“fixed ¢’ method. This is particularly true when ¢
values are low. In fact, this feature enhances the util-
ity of the proposed technique for the following rea-
son: for a real system the dynamics is seldom well
known. So eq. (1) is essentially, often, a black box.
One of the powerful features of adaptive control is
that it does not, in the control equation (2), require
explicit knowledge of the dynamical equations of the
system it is trying to control. It requires as input only
the desired set of state variables. Now it has been seen
in extensive numerical experiments [2] that step-
ping up the control stiffness beyond a critical value
actually retards recovery and with very high ¢ the
system fails to recover. So when the time scales in
the dynamical system to be controlled are not well
known, to prevent breakdown of recovery, one should
keep the value of € as small as possible. So, the fact
that the “variable €” algorithm works remarkably well
for low € should prove very useful in practical terms.

In summary, we introduce an adaptive control al-
gorithm using variable (adaptively regulated) stiff-
ness of control, e. This greatly enhances the effi-
ciency of the older “fixed ¢’ algorithm. The gain in
performance is drastic (factors of hundreds!) for low
€ values. This procedure may then be of utility in de-
signing more powerful control tools.

I am grateful to F. Haake, S. Thomae, R. Ramas-
wamy, A. Hubler and E.A. Jackson for interesting
discussions, and to H.A. Cerdeira for critical reading
of the manuscript. I would also like to thank the
Condensed Matter group at the International Center
of Theoretical Physics, for hospitality.

Appendix

Here we present an analytical argument which
guarantees that the control scheme will work for suf-
ficiently small e. We concentrate on a one-dimen-
sional system,

X=F(X;p), (4)

with one parameter 4, an example of which is the lo-
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gistic map in eq. (3) above **. Now, the control al-
gorithm given by eq. (2) leads to an augmented dy-
namical system consisting of the original dynamical
system and an additional control equation, which is
coupled to the original system by feedback. First, one
must ensure by construction that the fixed point of
the control system is the desired fixed point. This is
ensured by the most general form of the control
equation,

h=eg(X), (5)

where g(X=Xs)=0 and Xj is the desired state. The
explicit form g(X)=X—X; used in eq. (2) satisfies
this. Other forms of g(X) have been examined in ref.
[2]. (Of course, X5 must also be a solution of X=0,
i.e. it must be a fixed point of the original system as
well.) This formulation assures us that the control is
directed towards the desired dynamics. But it still
does not guarantee that the dynamics is stable under
(nonlinear) control, near the goal dynamics. It is easy
to see that the value of ¢ has direct bearing on the
stability characteristics. To determine this exactly we
examine the eigenvalues of the Jacobian matrix

_|oF/ax aF/op

I= edg/dX edg/oyl’

(6)

Now dg/du=0, and so in the limit e—~0, we obtain
a triangular matrix. The eigenvalues of J then are 0
and dF/dX, and |dF/0X| <1 at Xsif the desired state
is a stable fixed point of the original system. So, in
the very low e limit, if the goal dynamics is a stable
state of the original dynamics, then the control dy-
namics is also stable.

So, if we can ensure that the value of € is small
compared to the time scales in the original dynam-
ical system, we are guaranteed that the algorithm will
work. Usually one does not have a good estimate of
how small € should be, to be small enough. The pro-
cedure suggested in this Letter gets around this prob-
lem by “experimentally” finding out how large a
value of € is acceptable. Hence the utility of the
scheme.

#3 The argument can be extended to higher dimensions as well,
and will be presented in detail in a subsequent work.
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