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Chapter 1

Clipping Chaos to Cycles

Sudeshna Sinha

The Institute of Mathematical Sciences, Chennai 600 113, India 1

In this chapter we will review a powerful control strategy based on the simple

and easily implementable threshold mechanism [1]. The central idea is as follows:

consider a general N -dimensional dynamical system, described by the evolution

equation dx
dt

= F (x; t) where x ≡ (x1, x2, . . . xN ) are the state variables. Say

variable xT is chosen to be monitored and threshold controlled. The prescription

for thresholding in this system is as follows: control will be triggered whenever

the value of the monitored variable exceeds the critical threshold x∗ (i.e. when

xT > x∗) and the variable xT will then be re-set to x∗. The dynamics continues till

the next occurence of xT exceeding the threshold, when control resets its value to

x∗ again. So in this method no parameters are adjusted, and only one state variable

is occasionally reset.

This method is not based on stabilising unstable periodic orbits [2]. Rather, the

threshold mechanism clips the chaotic orbit to periodic time sequences of desired

lengths. So the effect of this scheme is to limit the dynamic range slightly, i.e. “snip”

off small portions of the available phase space, and this action effectively yields a

very wide range of stable regular dynamics [3].

In the sections below we will analyse the control achieved by thresholding in

different prototypical systems, with varying levels of complexity, including the chal-

lenging task of controlling hyperchaos. We will also discuss the experimental im-

plementation of the scheme on a range of strongly nonlinear electronic circuits.

1email : sudeshna@imsc.ernet.in
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Table 1.1 Controlling a 1-dimensional chaotic map
by thresholding

Threshold Nature of Controlled Orbit

x∗ < 0.75 Period 1 (fixed point)
0.75 < x∗ < 0.905 Period 2 Cycle

x∗ ∼ 0.965 Period 3 Cycle
0.905 < x∗ < 0.925 Period 4 Cycle

x∗ ∼ 0.979 Period 5 Cycle
x∗ ∼ 0.93 Period 6 Cycle

x∗ ∼ 0.9355 Period 7 Cycle
x∗ ∼ 0.932 Period 8 Cycle
x∗ ∼ 0.981 Period 9 Cycle
x∗ ∼ 0.95 Period 10 Cycle

Threshold values vs. periodicity, of a few represen-
tative controlled cycles, for the chaotic logistic map
xn+1 = 4xn(1 − xn). Note that cycles of the same
period, but different geometries, can be obtained in
different threshold windows.

1.1 Application to One-dimensional Maps

When the dynamics of the uncontrolled system is given by xn+1 = f(xn) where

f is a nonlinear function, the threshold mechanism is simply implemented as the

following condition: if variable xn+1 > x∗ then the variable is adjusted back to

x∗, namely the threshold x∗ is the critical value the state variable is not allowed

to exceed, and control is triggered whenever the variable grows larger than this

threshold. The effect of this simple thresholding is dramatic: it yields stable periodic

orbits of all orders. See Table1.1 for a illustrative list of controlled orbits obtained

for a range of threshold values.

The threshold controlled chaotic map is effectively a beheaded map (or the “flat

top” map), i.e. the unimodal map cut off by the xn+1 = x∗ line [1],[4]. The level at

which the map is chopped off depends on the threshold x∗ (see Fig.1.1). This map

can yield periodic orbits of various orders under different threshold values. Note

also that these orbits are stable and the low order cycles have fairly large windows of

stability in threshold parameter space. Control latency is very short, and once the

system exceeds the critical value it is trapped immediately in a stable cycle whose

order is determined by the value of the threshold.

The basis of the marked success of this method is clear for one dimensional maps.

It is best rationalised through the fixed points of the effective map obtained from

the chaotic unimodal map under threshold mechanism, namely the beheaded map

mentioned above. The fixed points of this map under varying heights of truncation

(i.e. different thresholds) give the different periods. For instance, Fig.1.1 shows the

first iterate xn+1 of the thresholded chaotic logistic map. One obtains a fixed point

from the intersection of this map and the xn+1 = xn line, namely the 450 line.

When the threshold is lower than 0.75 one gets an intersection of the flat portion of

the map (i.e. x = x∗) and the xn+1 = xn line. This fixed point solution at x = x∗
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Fig. 1.1 The chaotic logistic map under threshold control, with threshold values 0.25, 0.75 and
0.8. The figure shows the first iterate xn+1 (—) of the effective thresholded map, as well as the
xn+1 = xn line (i.e. the 450 line (...)). It is clear that the intersection of the flat portion of the
map xn+1 with the 450 line yields a superstable fixed point of period 1.

has slope zero and thus is superstable. This happens for all thresholds x∗ < 3/4, and

one obtains a stable fixed point at x∗ for those thresholds. Thus one can control

the chaos to a continuous set of fixed points in the range [0, 3/4] by thresholding.

It is also evident from Fig.1.1 that when the threshold exceeds 3/4 (for example

x∗ = 0.8) the thresholded map does not yield an intersection of the flat portion and

the xn+1 = xn line. Rather, it only has the usual fixed point at x = 0.75, which

is the same as that obtained for the (un-thresholded) chaotic map. This has slope

greater than one and is thus unstable. So for thresholds greater than x∗ = 0.75,

the thresholding action does not yield a stable period 1 solution. However higher

order periods can be obtained. For example Fig.1.2 shows the second iterate of

the thresholded map, with threshold x∗ = 0.8, yielding a fixed point from the

intersection of the flat portion of the map and the xn+2 = xn line. This point has

slope zero and thus yields a superstable period 2 orbit.

Similarly, in Fig.1.3 one sees the first four iterates of the threshold map and the
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Fig. 1.2 The chaotic logistic map under threshold control, with threshold value 0.8. The figure
shows the first iterate xn+1 (—) and second iterate xn+2 (- - -) of the effective thresholded map,
as well as the 450 line (...). It is clear that the intersection of the flat portion of the map xn+2

with the 450 line yields a superstable fixed point of period 2.

fourth iterate yields a superstable fixed point at the intersection of the flat portion

of the effective map and xn+4 = xn line. Thus one obtains a stable period 4 orbit

at this value of threshold.

In terms of probability densities, the chaotic map under threshold mechanism

will map large intervals onto a severely contracting region. Essentially large intervals

will get mapped onto a point. This is the reason why the transient control period

is so small, and the method is so powerful and stable.

1.1.1 Analysis

For one dimensional maps, the correspondence of the periodicity of the controlled

orbit and the threshold can be obtained exactly. So one can directly calculate what

periodicity will emerge when a certain threshold is set. Further one can obtain the

answer to the reverse (important) question as well: what threshold do we need to

set in order to obtain a certain period [1].

Now the starting point of the analysis is the fact that the chaotic system is

ergodic and thus it is guaranteed to exceed threshold at some point in time. At
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Fig. 1.3 The chaotic logistic map under threshold control, with threshold value 0.922. The figure
shows the first four iterates of the effective thresholded map: xn+1, xn+2, xn+3, xn+4, as well as
the 450 line (...). It is clear that the intersection of the flat portion of the map xn+4 with the 450

line yields a superstable fixed point of period 4. Note that only for the fourth iterate xn+4 does
one obtain a solution at the intersection of the flat portion of the effective thresholded map, where
slope is zero. So only the period 4 orbit is stable at this threshold.

that point its state is re-set to x∗. One then studies the forward iterations of the

map, starting from this state x = x∗, i.e. f0(x
∗), f1(x

∗) . . . , where fk(x∗) is the kth

iterate of the map. That is:

1. k = 0; f0(x
∗) = x∗

2. k = 1; f1(x
∗) = 4x∗(1 − x∗)

3. k = 2; f2(x
∗) = 4(4x∗(1 − x∗))(1 − 4x∗(1 − x∗))

and so on. In general
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fk(x∗) = f ◦ fn−1(x
∗) = f ◦ f ◦ . . . f ◦ (x∗)

Whenever the fk(x∗) vs. x∗ curve crosses above the f0 = x∗ line (i.e. the 450

line) we have a k cycle, as this implies that the kth iterate exceeds the critical value

x∗ and thus is adapted back to x∗ ( = f0, which is the first point in the cycle).

For instance, in the range 0 ≤ x∗ ≤ 3

4
the f1(x

∗) curve lie above the f0 curve (i.e.

f1(x
∗) > x∗). So the chaotic element is adapted back to x∗ at every iterate, yielding

a period 1 fixed point. In the range 3

4
< x∗ < 0.9 the f1(x

∗) curve dips below the

450 line, but the f2(x
∗) curve lies above the 450 line. This imples that the second

iterate of the map (starting from x = x∗) exceeds threshold and is adapted back to

x∗, thus giving rise to a period 2 cycle. Thus the cycle at each value of threshold

is the smallest k such that the kth iterate of the map (starting from x0 = x∗) is

greater than x∗, i.e. fk(x∗) > x∗. In this manner the threshold mechanism leads

to regular cyclic evolution, whose period depends on the threshold. The chaotic

element can then yield a wide variety of dynamical behaviour determined by the

threshold.

Thus in threshold parameter space we can find “windows” of various cycles.

These are intervals where the following equation is satisfied: Period P (x∗) = k iff

fk(x∗) ≥ x∗ and fl(x
∗) < x∗ for all l < k. P (x∗) is a piecewise continuous function

of x∗.

For every cycle of periodicity k there will be several windows (with an upper

bound of 2k−1 windows for period k). The “middle” of the period k windows lies

approximately where the curve fk(x∗) touches 1 (since if it touches 1 it has to have

exceeded x∗, as the value of x∗ is bounded by 1). Then the solutions of the equation

fk(x∗) = 1 gives the x∗ values corresponding to a period k. The solutions can be

formulated as: f−1 ◦ f−1 ◦ f−1 ◦ f−1(1) where f−1 is the (double valued) invere

map. The inverse map: f−1(y) = 1

2
±

√
1−y

2
has two values – one on the right and

one on the left of the centre of the interval (x = 1

2
). We will denote these as R and

L respectively. Note that for f−1(1) the value of L(1) = R(1) = 1

2
. So the number

of distinct values arising from the expression f−1 ◦ f−1 . . . f−1(1) is 2k−1 (arising

from the 2k−1 different possible combinations of R and L).

The evaluation of this algebraic expression for various values of k is simple

and direct. Now the existence of a window of period k (k > 1) is dependent on the

pervious iterates as well, i.e. a solution for period k may be masked by the fact that

some iterate l, l < k, may have fl(x
∗) > x∗. For instance for k > 1 all combinations

starting with symbol L are masked by period 1 (as the period 1 window extends

from 0 to 3

4
and L(x) ≤ 1

2
). So half of the combinations of f−1 ◦ f−1 . . . f−1(1) are

swallowed by period 1. One has to examine the remaining 2k−2 combinations to

check which ones survive swallowing by lower order windows.

However note that one family of windows is guaranteed to exist, namely

RLk−1(1), as all iterates leading up to 1 here (i.e. all the subsequences L(1),

L2(1), ... Lk−1(1)) have value less than 1

2
(as they are all composed of L). Since
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all relevant thresholds for k > 1 are greater than 3

4
it implies that all the iterates

leading up to fk(x∗) have value less than x∗ and so this sequence will always yield

period k (not any other lower period). So all possible periods k have atleast one

stable window in threshold space. That is, threshold control for a one dimensional

map yields periods of all orders.

Now the analytical results based on symbolic dynamics [1] outlined above are

exactly corroborated in circuit realisations of one-dimensional discrete time systems

[5] (see Fig.1.4 for traces of representative controlled orbits). Note that chaos is

advantageous here, as it possesses a rich range of temporal patterns which can be

clipped to wide ranging stable behaviours. This immense variety is not available

from thresholding regular systems.

Also note that arrays of thresholded nonlinear elements have been designed,

fabricated, and tested in CMOS [6] and such arrays show a wide range of controlled

spatiotemporal cycles, consistent with the analytical results.

In marked contrast to many control methods where chaotic trajectories in the

vicinity of unstable fixed points are controlled onto these points, in threshold control

the system does not have to be close to any particular unstable fixed point before

implementing the control. Once the trajectory exceeds the threshold it is caught

immediately in a stable orbit. So there is no significant interval between the onset

of control and the achievement of control, as a wide interval is open to targetting.

Caveat: While threshold control will always yield some regular orbit, it is not

clear at the outset exactly what kind of dynamic behaviour will result from a given

threshold value [7]. This limitation is overcome easily however through one initial

exploratory run over threshold parameter space to map out the dynamic behaviours

obtained for different thresholds. Such a “calibration run” once done, makes the

scope of the threshold mechanism apparent at the outset, and yields a look-up

table for the system (relating threshold value to controlled period) for all further

applications. The possibility of having this kind of a look-up table to effect control

to a “library” of patterns is one of the most powerful features of this method.

1.1.2 Application to Encoding and Information Storage

Information storage is a fundamental function of computing devices. Computer

memory is implemented by computer components that retain data for some inter-

val of time. Storage devices have progressed from punch cards and paper tape to

magnetic, semiconductor and optical disc storage by exploiting different natural

physical phenomena to achieve information storage. For instance, the most preva-

lent memory element in electronics and digital circuits is the flip-flop or bistable

multivibrator which is a pulsed digital circuit capable of serving as a one-bit mem-

ory, namely storing value 0 or 1. More meaningful information is obtained by

combining consecutive bits into larger units. Here we briefly review a different di-

rection in designing information storage devices: namely we describe schemes to
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(a) (b)

(c) (d)

Fig. 1.4 Experimental verification of a range of controlled periods in a circuit realization of the
logistic map. The ordinate and abscissa represent traces of xn+1 and xn for (a) period 6 cycle (b)
period 7 cycle (c) period 9 cycle with threshold and (d) period 10 cycle. The threshold levels at
which these cycles were obtained coincide exactly with those predicted theoretically.

store data using the vast variety of patterns and distinct behaviours that can be

extracted by thresholding nonlinear maps.

The aim is to utilize arrays of nonlinear elements to stably encode and store

various items of information (such as patterns and strings) to create a database [8].

Further we indicate how this storage method also allows one to utilize the nonlinear

dynamics of the array elements in order to determine the number of matches (if

any) to specified items of information in the database.

Encoding information: We consider encoding N data elements, each comprised

of one of M distinct items. N can be arbitrarily large and M is determined by the

kind of data being stored. For instance for storing English text one can consider

the letters of the alphabet to be the natural distinct items building the database,

namely M = 26. Or, for the case of data stored in decimal representation M = 10,

and for databases in bioinformatics comprised typically of symbols A, T , C, G,
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one has M = 4. One can also consider strings and patterns as the items. For

instance for English text one can also consider the keywords as the items, and this

will necessitate larger M as the set of keywords is large.

Now we demonstrate a method which stores data by utilizing the abundance of

distinct stable behaviors obtained by thresholding a chaotic system. This ability of

the thresholded chaotic map to be in a variety of fixed states gives it the capacity

to represent a large set of items.

A database of size N is stored by N thersholded chaotic elements. Each dy-

namical element stores one element of the database, encoding any one of the M

items comprising our data. Now in order to hold information one must confine the

dynamical system to a fixed point behavior, i.e. a state that is stable and constant

throughout the dynamical evolution of the system.

As analyzed above, typically a large window of threshold values can be found

where the system is confined on fixed points, namely, the state of the element under

thresholding is stable at T i.e. x = T , where T is the threshold, for all times.

So one can choose a large set of distinct thresholds T 1, T 2, . . . , T M , within the

fixed point window, with each threshold having a one-to-one correspondence with

a distinct item of our data. Thus the number of distinct items that can be stored

in a single dynamical element is typically large, with the size of M limited only by

the precision of the threshold setting.

In particular, consider a collection of storage elements that evolve in discrete

time according to the tent map, f(x) = 2 min(x, 1− x) , with each element storing

one element of the given database. Each element can hold any one of the M distinct

items. As described above, a threshold will be applied to each dynamical element

to confine it to the fixed point corresponding to the item to be stored.

For the tent map, thresholds ranging from 0 to 2/3 yield fixed points, namely

x = T , for all time, when threshold 0 < T < 2/3. This can be obtained exactly

from the fact that f(x) > T for all x in the interval (0, 2/3), implying that the

subsequent iteration of a state at T will always exceed T , and thus get reset to T .

So x will always be held at value T .

In our encoding, the thresholds are chosen from the interval (0, 1/2), namely a

sub-set of the fixed point window (0, 2/3). For specific illustration, with no loss of

generality, consider each item to be represented by an integer i, in the range [1, M ].

Defining a resolution r between each integer as r = 1

2

1

M+1
gives a lookup map from

the encoded number to the threshold, namely relating the integers i in the range

[1, M ], to threshold in the range [r, 1/2 − r], by: T = ir.

Therefore we obtain a direct correspondence between a set of integers ranging

from 1 to M , where each integer represents an item, and a set of M threshold values.

So we can store N database elements by setting appropriate thresholds on N chaotic

maps. Clearly, if the threshold setting has more resolution, namely smaller r, then

a larger range of values can be encoded. Note however that precision is not a

restrictive issue here, as different representations of data can always be chosen in
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order to suit a given precision of the threshold mechanism.

Processing Information: Now we briefly indicate how we can search an arbitrarily

large unsorted database set up as above, for the existence of a specific item, by

performing just one global operation on the whole array. The basic principle here is

that one can construct a single suitable global operation that acts on the nonlinear

elements encoding the database such that only elements encoding the matching

items yield a prescribed, easily measurable property. This enables the occurrence(s)

of matches to be identified easily. We give some details below.

Given a database stored by setting appropriate thresholds on N dynamical ele-

ments, we can query for the existence of a specific item in the database by globally

shifting the state of all elements of the database up by the amount that represents

the item searched for. Specifically the state of all the elements is raised to x + Q,

where Q is a search key given by: Qk = 1/2 − T k, where k is the number being

queried for. So the value of the search key is simply 1/2 minus the threshold value

corresponding to the item being searched for. This addition shifts the interval that

the database elements can span, from [r, 1/2 − r] to [r + Qk, 1/2 − r + Qk], where

Qk is the globally applied shift.

Notice that the information item being searched for, is coded in a manner “com-

plimentary” to the encoding of the items in the database (much like a key that fits

a particular lock), namely Qk + T k adds up to 1/2. This guarantees that only

the element matching the item being queried for will have its state shifted to 1/2.

The value of 1/2 is special in that it is the only state value that on the subsequent

update will reach the value of 1.0, which is the maximum state value for this sys-

tem. So only the elements holding an item matching the queried item will reach

extremal value 1.0 on the dynamical update following a search query. Note that

the important feature here is the nonlinear dynamics that maps the state 1/2 to 1,

while all other states (both higher and lower than 1/2) get mapped to values lower

than 1.

Basically in unimodal maps, the maximal point can act as a “pivot” for the

“folding”. This provides us with a single global monitoring operation to push the

state of all the elements matching the queried item to the unique maximal point,

in parallel.

To complete the search we now must detect the extremal state. This can be

accomplished in a variety of ways. For example, one can simply employ a level

detector to register all elements at the maximal state. This will directly give the

total number of matches, if any. So the total search process is rendered simpler as the

state with the matching pattern is selected out and mapped to the maximal value,

allowing easy detection. Further, by relaxing the detection level by a prescribed

“tolerance”, we can check for the existence within our database of numbers or

patterns that are close to the number or pattern being searched for. So nonlinear

dynamics works as a powerful preprocessing tool, reducing the determination of

matching patterns to the detection of maximal states, an operation that can be



March 6, 2008 12:15 World Scientific Book - 9.75in x 6.5in book

Clipping Chaos to Cycles 11

accomplished by simple means, in parallel.

1.2 Application to Multi-dimesnional Systems

The action of thresholding on 1-dimensional chaotic maps can be analyzed exactly,

as outlined in the section above. However for multi-dimensional systems such an

exact calculation is not possible. So one has to rely on numerics and experiments

to gauge the scope of threshold control on such systems.

The central issue in multi-dimensional systems is whether or not the thresh-

olded state variable can enslave the rest of the variables to some regular dynamical

behaviour. With this in mind we present several examples below, of controlling

highly coupled strongly nonlinear high dimensional systems, by thresholding just

one variable.

1.2.1 Controlling the Lorenz System

First we demonstrate the action of the threshold mechanism on a system of 3 coupled

ODE’s: the chaotic Lorenz attractor (a system known to be relevant to lasers [9]).

It is given by

ẋ = σ(y − x)

ẏ = rx − y − xz

ż = xy − bz (1.1)

with parameters σ = 10, r = 28, b = 8/3.

In order to check whether or not one thresholded state variable can drag the

rest of the multidimensional system to some fixed dynamical behaviour, we impose

threshold control on any one of the three variables of the Lorenz system, i.e. one

demands that either variable x or y or z must not exceed a prescribed threshold

value x∗. Fig.1.5 show some representative results of this thresholding action for a

range of threshold values. It is clear that the mechanism successfully controls limit

cycles of varying sizes and geometries.

1.2.2 Controlling Neuronal Spikes

In neuronal systems, a wealth of complex patterns have been experimentally ob-

served in a variety of cases [10]. However the mechanisms by which such complex

spiking patterns can be manipulated are not well understood. It is thus of consider-

able interest and potential utility to devise control algorithms capable of achieving

the desired type of behaviour in such complex systems.

Here we use threshold control to target desired firing patterns in a prototypical

model of a Hippocampal neuron: the Pinsky-Rinzel model [11]. This model neuron
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Fig. 1.5 The chaotic Lorenz attractor (with σ = 10, r = 28, b = 8/3), under threshold control of

variable z. The dotted lines indicate the value of the threshold.

consists of somatic and dendritic compartments resistively coupled at different po-

tentials. A patch of the cell membrane is modeled as an equivalent electrical circuit

consisting of a resistor and a capacitor in parallel. The current balance equations

for the two compartments follow from differentiating the capacitance definition.

The model has 8 variables: the 5 gating variables: h, n, s, c and q, the Ca level

and the soma voltage Vs and dendrite voltage Vd. The parameters include the cou-

pling conductance between soma and dendrite gc, reversal potentials VNa, VCa, VK ,

Vl, Vsyn, ionic conductances gl, gNa, gKDR, gCa, gKAHP , gKCa, synaptic conduc-

tances gMMDA, gAMPA, relative area of soma to dendrite p, membrane capacitance

cm, and the applied soma current is. The details of the dynamical equations and

parameters are given in [11].

In the context of neuronal systems, it is unrealistic to implement the threshold
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mechanism on the gating variables or the Ca levels as it is unlikely that one can

manipulate these externally with ease. On the other hand, it is natural to try and

implement the threshold action on the somatic or dendritic voltages Vs or Vd as

they are much more accessible to measurement and monitoring. Thus we demand

that variable Vs (or Vd) must not exceed a prescribed threshold value V∗ (1 mV

< V ∗ < 20 mV), and examine the scope of this mechanism to yield regular firing

behaviour. The note-worthy feature here is that only one variable is thresholded in

this strongly nonlinear, highly coupled, 8-dimensional system.

Fig.1.6 shows a representative result of thresholding the neuronal system. It

is clearly evident that the mechanism manages to yield complete regularity, as

compared with the very irregular and infrequent firing behavior of the neuron with

no thresholding. So the thresholded variable has the ability to drag the rest of this

high-dimensional excitable system to regular dynamical behavior (see Fig.1.6). The

threshold mechanism typically yields two types of behavior: fixed states and states

with regular spiking (with interspike intervals ranging from about 14 msec to 60

msec). Low threshold leads to the first dynamics and higher thresholds leads to

regular firing states.

Similar control is achieved by thresholding the somatic voltage Vs. We also

checked that the method works for slightly delayed threshold action, that is a sce-

nario where the variable is brought down to the threshold value after a small delay

(as is conceivable in real set-ups where there may be a small delay between the

detection of the crossing of the threshold condition and the re-setting of the state

variable). We find that the method is still as effective [12].

1.2.3 Smart Matter Application

Here we present an application of threshold control to the interesting problem of

controlling an unstable elastic array, which has been used as a prototypical model

for “smart matter” [13]. It is clear that in such a context, where the system contains

many elements, the effectiveness of control algorithms which rely on access to the

full state of the system and detailed knowledge of its behaviour, is limited. Hence

the present approach, which needs local information from very few sites (and no

knowledge of the dynamics) in order to implement the necessary control, can prove

to be of considerable utility.

For example, consider the general extended system:

d2x

dt2
= Ax − Gẋ (1.2)

where the vector x gives the displacements of the elements in the array, matrix A

contains the system’s coupling parameters and G is the damping. In this array we

now implement threshold control on a few selected sites.

Specifically, one can consider a model of buckling instability of beams [13]: an

elastic array of N elements coupled to nearest neighbours by springs with spring
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(a)

(b)

Fig. 1.6 The time evolution of the voltages Vs and Vd (in mV) for Pinsky-Rinzel neuron for the
cases of: (a) uncontrolled neuron showing infrequent and irregular spiking behaviour; (b) the same
neuron, with voltage Vd under threshold control, with threshold V ∗ = 15 mV. (Here is = 1 nA)
Clearly the controlled neuron spikes at very regular intervals. The solid lines show Vd (—) and
the dashed lines show Vs (- - -). The threshold voltage of V ∗ = 15 mV is shown by a dashed line
(– –).

constants α, and a destabilising force coefficient f . The dynamics of the beam is

given by Eqn. 1.2 where the N -dimensional vector x = x1, x2, . . . xN gives the

displacements of the elements, damping matrix G is gI (where I is the identity

matrix) and coupling matrix A has elements Amn = −2α + f for m = n, Amn = α

for m = n ± 1, and Amn = 0 otherwise [13].

In this array we now choose a few sites for threshold control. For effective control

of the entire beam one needs to control a minimum of two sites [14]. The amount
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of buckling tolerated determines the threshold T . In order to effect control in this

system we must implement a slight variation of the threshold method, with control

action being triggered whenever |x| > T . At the controlled sites here, one then

imposes the following control condition: if x < −T , the value of x is re-set to T ,

and if x > T , the value of x is re-set to −T . This control action has the effect of

“bending” the beam in the direction opposite to that of the buckling, thus having

a local “straightening” effect on the array. Note that the value of the threshold T

can be made very small indeed, leading to arrays which are only slightly deformed.

Fig.1.7 shows the displacements of a representative element in an array of size

100, threshold controlled at only 2 sites. This displacement is compared to the

uncontrolled situation, where the array deforms exponentially fast. Two cases are

presented here: one with allowed buckling tolerance equal to 0.0001, i.e. the thresh-

old T = 0.0001, and the other with lower tolerance, T = 0.00001. It is evident from

the figure, that in the absence of control very weak environmental perturbations

drive the system exponentially away from the desired configuration, while thresh-

old control manages to achieve the goal, typical in smart matter applications, of

preventing the beam from buckling more than the pre-assigned tolerance. Further

note, that at the controlled sites the instances of control were quite infrequent. Typ-

ically, for an array with 2 controlled sites, with threshold T = 0.0001, the control

was ‘triggered on’ approximately one-tenth the number of times the variables were

monitored for control.

Now the positions of the controlling sites are crucial for the success of this

control. The controlling sites must span the array at roughly equidistant points.

For instance, when 2 controllers are used in an array of size 100, one of these should

be placed at some site between i = 30 and 40 and another between i = 60 and

70. Here we are in fact exploiting the natural coupling of the system to influence a

large neighbourhood with only a few sites. Thus very weak and infrequent control

at very few sites manages to control the entire array.

It is thus evident that the threshold scheme can successfully control this ex-

tended nonlinear system. The present approach needs to implement the control on

very few sites (minimum two). It utilizes no knowledge of the dynamics or system

parameters, and also does not entail any computation in implementing the control.

Further, there is no communication involved, as no site needs to know the state of

its neighbours. One only needs to check if the value of the controlled variable at the

controlled sites exceeds the user defined critical value or not. Since no communica-

tion or computation is involved, the control is very easily and simply implemented.
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Fig. 1.7 Displacement of a representative element (i = 20) in an unstable elastic array w.r.t.
time in the controlled (—) and uncontrolled case (....). The number of elements N in the chain
is 100. Here we have placed 2 threshold controllers in the array at sites i = 33 and i = 66. The
threshold value T is equal to (a) 0.0001 and (b) 0.00001. In the absence of control the system
moves exponentially away from the steady state, while under control it manages to maintain the
buckling within prescribed limits (namely, within 0.0001 and 0.00001 respectively).

1.2.4 Thresholding at Varying Intervals to obtain different Tem-

poral Patterns

Now we discuss how stroboscopic threshold mechanisms can be effectively employed

to obtain a wide range of stable cyclic behavior from chaotic systems, by simply

varying the frequency of control [15]. For instance, consider the action of infrequent

threshold control on the chaotic Lorenz-like attractor given by Eqns.1.1, using the

three parameters corresponding to the coherently pumped far-infrared ammonia
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laser system, obtained by detailed comparison with experiments [9]: σ = 2, r = 15

and b = 0.25.

Consider the particular case of the threshold mechanism imposed on the z vari-

able. The stroboscopic threshold action occurs at an interval of ncδt. Fig. 1.8 shows

the different temporal patterns obtained when the threshold is fixed at z∗ = 1 and

the nc is increased.
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Fig. 1.8 The chaotic laser-Lorenz system under threshold control of variable z, with threshold
value z∗ = 1. The control acts at intervals of nc × δt, with δt = 0.01. Here nc = 105, 160, 220.
The controlled cycles in x-y space and x-z space are displayed. Notice the period doubling of the
cycles as control interval nc is increased.

In [15], a large range of numerical evidence is reported, with the frequency of

control spanning three orders of magnitude, to show that stroboscopic threshold

action of any variable in this multi-dimensional chaotic system successfully yields
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regular temporal patterns, displaying a wide variety of periods and geometries. In

fact, the interval of control may be very large in many cases and still lead to very

effective control onto simple limit cycles. So varying the interval of threshold control

offers flexibility and cost-effectiveness in regulating chaotic systems onto different

cyclic patterns.

1.3 Experimental verification

Here we review the experimental verification of thresholding as a versatile tool for

efficient and flexible chaos control. We demonstrate the success of the technique in

rapidly controlling different chaotic electrical circuits, including a hyperchaotic cir-

cuit, onto stable fixed points and limit cycles of different periods, by thresholding

just one variable. The simplicity of this controller entailing no run-time compu-

tation, and the ease and rapidity of switching between different targets it offers,

suggests a potent tool for chaos based applications.

1.3.1 Controlling a Circuit Realisation of Jerk Equations

The first experimental set-up is a realisation of nonlinear third order ordinary dif-

ferential equations (ODE), a form known in literature as Jerk equations:

d3x

dt3
+ A

d2x

dt2
+

dx

dt
= G(x) (1.3)

where G(x) is a piecewise linear function: G(x) = B|x| − C with B = 1.0, C = 2.0

and A = 0.6 [16]. The circuit realisation of the above uses resistors, capacitors,

diodes and operational amplifiers as shown in Fig.1.9. The implementation involves

three successive active integrators to generate d2x
dt2

, dx
dt

and x from d3x
dt3

, coupled with

a nonlinear element that generates G(x) and feeds it back to d3x
dt3

.

Now we implement the threshold mechanism on variable x, i.e. whenever x > x∗,

x is clipped to x∗. A precision clipping circuit [17] as depicted in the dotted box

in Fig.1.9 is employed for threshold control. We have chosen component values for

the control circuit to be: [ op-amp = µ A 741, diode = IN4148, load resistor = 1kΩ

and threshold reference voltage = V , which sets the x∗].

Fig.1.10a displays the uncontrolled attractor and Fig.1.10b-d shows some rep-

resentative results of the threshold action on this chaotic system for a range of

threshold values x∗ (x∗ < 2.4). It is clear that the mechanism manages to yield

cycles of varying periodicities. Further, detailed comparison shows complete agree-

ment between our experimental results and our numerical simulation results.

So the single thresholded variable x has the ability to drag the rest of this 3-

dimensional system to regular dynamical behavior. The characteristics of the con-

trolled states can be easily varied by just changing the threshold x∗ (see Table1.2).

Also note that simply setting the threshold beyond the bounds of the attractor gives
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Fig. 1.9 A general circuit for solving Eqn.1.3 using a nonlinear feedback element G(x) = B|x|−C.
The precision clipping control circuit is shown in the dotted box. Here VT corresponds to the
threshold controlled signal.

Table 1.2 Thresholding a third-order nonlinear sys-
tem

Threshold Value Nature of Controlled Orbit

x∗ < −2.00 fixed point
−2.00 < x∗ < 1.477 Period 1 Cycle
1.477 < x∗ < 2.242 Period 2 Cycle
2.242 < x∗ < 2.321 Period 4 Cycle
2.321 < x∗ < 2.325 Period 8 Cycle
2.325 < x∗ < 2.331 Period 16 Cycle

Threshold ranges ( in V ) vs. periodicity of the
controlled cycle, for the chaotic circuit described by
Eqn.1.3.

back the original dynamics.

The control transience is very short here (typically of the order of 10−3 times the

controlled cycle). This makes the control practically instantaneous. The underlying

reason for this is that the system does not have to be close to any particular unstable

fixed point, as in OGY based schemes, before implementing control. Once a specified

state variable exceeds the threshold it is caught immediately in a stable orbit.

The changes in state effected by thresholding, namely (x − x∗) when x > x∗,

are typically small (as adjustments are made just after x crosses x∗). Further for

higher periods the controlling action is infrequent and occurs for short intervals in
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Fig. 1.10 Attractors in the x − ẋ plane: (a) the uncontrolled chaotic system obtained from the
circuit realisation of Eq.1.3 (upper left box); (b) period 1 cycle obtained when x∗ = 1 V (upper
right box); (c) period 2 cycle obtained when x∗ = 2 V (lower left box) and (d) period 4 cycle
obtained when x∗ = 2.1 V (lower right box).

every controlled cycle. For instance to control to a 16-cycle with x∗ = 2.327, the

thresholding is operational for only ∼ 0.22 msec in an interval of 50 msec.

1.3.2 Controlling Chua’s Circuit

Now we consider a realisation of the double scroll chaotic Chua’s attractor given by

the following set of (rescaled) 3 coupled ODEs [18]

ẋ = α(y − x − g(x)) (1.4)

ẏ = x − y + z (1.5)

ż = −βy (1.6)

where α = 10. and β = 14.87 and the piecewise linear function g(x) = bx + 1

2
(a −

b)(|x + 1| − |x − 1|) with a = −1.27 and b = −0.68. The corresponding circuit

component values are: [ L = 18mH , R = 1710Ω, C1 = 10nF , C2 = 100nF ,

R1 = 220Ω, R2 = 220Ω, R3 = 2.2kΩ, R4 = 22kΩ, R5 = 22kΩ, R3 = 3.3kΩ, D =

IN4148, B1, B2 = Buffers, OA1 - OA3 : opamp µA741]. Note that the circuit of
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Fig.1.11 is the ring structure configuration of the classic Chua’s circuit [18]-[19].

The uncontrolled attractor from this system is displayed in Fig.1.12a.

Fig. 1.11 Chua’s chaotic circuit with threshold level controlling circuit (shown in the dotted box).
Here VT is the threshold controlled signal.

Now we implement an even more minimal thresholding. Instead of demanding

that the x variable be reset to x∗ if it exceeds x∗ we only demand this in Eqn.1.5.

This has very easy implementation, as it avoids modifying the value of x in the

nonlinear element g(x), which is harder to do. So then all we do is to implement

ẏ = x∗− y + z instead of Eqn.1.5, when x > x∗, and there is no controlling action if

x ≤ x∗. In the circuit the voltage VT corresponds to x∗ (see Fig.1.12). The resulting

controlled orbits with respect to threshold x∗ is given in Fig.1.13b-d (x∗ < 2.7). So

the threshold control works on the system rapidly and can control to a wide range

of temporal behaviours (see Table1.3).

1.3.3 Controlling Hyperchaos

Now we demonstrate the method on a hyperchaotic electrical circuit. This con-

stitutes a stringent test of the control method [20] since the system posseses more

than one positive lyapunov exponent, and so more than one unstable eigendirection

has to be reigned in by thresholding a single variable. In particular we consider the
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Fig. 1.12 Attractors in the V1 − V2 plane, corresponding to the x − y plane of Eqns.1.4-1.6: (a)
uncontrolled chaotic attractor (upper left box); (b) fixed point obtained when x∗ = 1.8 V (upper
right box); (c) period 2 cycle obtained when x∗ = 2.7 V (lower left box) and (d) period 4 cycle
obtained when x∗ = 2.71 V (lower right box).

Table 1.3 Thresholding the Chua’s circuit
Threshold Value Nature of Controlled Orbit

x∗ < 1.84375 fixed point
1.84375 < x∗ < 2.235 Period 1 Cycle
2.235 < x∗ < 2.258 Period 2 Cycle
2.258 < x∗ < 2.264 Period 4 Cycle
2.264 < x∗ < 2.265 Period 8 Cycle
2.265 < x∗ < 2.2653 Period 16 Cycle

Threshold ranges ( in V ) vs. periodicity of the con-
trolled cycle, for the chaotic system given by Eqns.1.4-
1.6.

realisation of four coupled nonlinear (rescaled) ordinary differential equations of the
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form

ẋ1 = (k − 2)x1 − x2 − G(x1 − x3) (1.7)

ẋ2 = (k − 1)x1 − x2 (1.8)

ẋ3 = −x4 + G(x1 − x3) (1.9)

ẋ4 = βx3 (1.10)

where

G(x1 − x3) =
1

2
b[|x1 − x3 − 1| + (x1 − x3 − 1)]

with k = 3.85, b = 88 and β = 18 [21]. The circuit realisation of the above is dis-

played in Fig.1.14, with component values: [L = 18 mH, C2 = 68 nF, R = 1.8kΩ,

C = 68 nF, R1 = 2.8kΩ, R2 = 1kΩ, D1 = IN4148]. Fig.1.15a displays the (uncon-

trolled) hyperchaotic attractor resulting from this circuit, and it is characterised by

two maximal positive lyapunov exponents: λ1 = 0.13, λ2 = 0.05.

Again we implement a partial thresholding on variable x3: whenever x3 > x∗

in the system, G(x1 − x3) in Eqn.1.7 becomes G(x1 − x∗), i.e. we have ẋ1 =

(k − 2)x1 − x2 − G(x1 − x∗), while Eqns.1.8-1.10 are unchanged. When x3 ≤ x∗

there is no action at all. A precision clipping circuit [17] as depicted in the dotted

box in Fig.1.13 is employed for the above scheme, which is even simpler to implement

than thresholding x3 throughout the system. We have chosen component values for

the control circuit to be: [ op-amp = µA741, diode (D) = IN4148 or IN34A, series

resistor Rs = 1kΩ and threshold reference voltage = V , which sets the x∗].

Both our experiments and our numerical simulations (which are in complete

agreement) show that this scheme successfully yields regular stable cycles under a

very wide range of thresholds. A representative example with threshold set at 0 V

is displayed in Fig. 1.14b, which shows the controlled cycle in the V1 − V2 plane,

which corresponds to the rescaled x1 − x3 plane of Eqns.1.7-1.10.

So it is evident that a single thresholded variable has the ability to clip the full

4-dimensional hyperchaotic system to regular dynamical behavior (see Figs.1.15-1.16

for some examples of the geometries of the controlled orbits). Thus the period and

geometry of the controlled states can be easily varied by setting x∗ in different

windows. For instance, thresholding at 0 V yields a 1 T attractor (with respect to

the x1 variable), while thresholding at 0.3 V yields period 3 T, 0.32 V yields period

8 T, 0.33 V yields period 5 T and 0.35 V yields period 13 T.

1.4 Conclusions

It is clearly evident then through analytical results, numerics and experiments that

threshold control is a powerful, efficient and robust technique to extract a wide range

of regular behaviors from a chaotic system. The method involves no adjustment

of parameters, but merely the manipulation and re-setting of one state variable,
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Fig. 1.13 Circuit implementation of Eqns.1.7-1.10, with the precision clipping control circuit in
the dotted box. VT is the threshold controlled signal.

even in hyperchaotic systems possesing more than one unstable eigendirections.

The richness of chaotic dynamics is an useful feature here, as it ensures that the

dynamics can be “clipped” or “truncated” to many different kinds of patterns, i.e.

under threshold mechanism the chaos yields a very wide variety of stable dynamical

behaviour. In fact for one-dimensional systems one can obtain exact results for the

effect of thresholding, and these theorectical results have been cmpletely verified in

electronic circuit experiments, as well as in arrays of 1-d systems implemented in

CMOS based VLSI design [5]-[6].

Threshold control is especially useful in the situation where one wishes to design

components with the ability to switch between patterns, operating as potential pat-

tern generators. Basically it can provide a look up table for a “library of patterns”

for very swift control. So the simplicity and versatility of the threshold controller

has much potential utility for chaos-based applications, such as chaos computing

[22]-[23] and communications [24].
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(a)

(b)

Fig. 1.14 (a) Uncontrolled hyperchaotic attractor, (b) controlled attractor for threshold = 0 V ,
in the V1 − V2 plane, corresponding to the x1 − x3 plane of Eqns.1.7-1.10.
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Fig. 1.15 Controlled attractors in the x1 − x3 plane, obtained from the hyperchaotic system by
thresholding the x3 variable in Eqn.1.7, with threshold values: (i) x∗ = 0.1, (ii) x∗ = 0.2, (iii)
x∗ = 0.3, (iv) x∗ = 0.7, (v) x∗ = 0.8, and (vi) x∗ = 1.0,
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Fig. 1.16 Controlled attractors in the x1 − x3 plane, obtained from the hyperchaotic system by
thresholding the x3 variable in Eqn.1.7-1.10, with threshold values: (i) x∗ = 1.2, (ii) x∗ = 1.5,
(iii) x∗ = 1.7, (iv) x∗ = 2.0, (v) x∗ = 2.5 and (vi) x∗ = 2.84,
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