
A central topic in biology concerns how genotypes 
determine the phenotypes and functions of organisms 
that affect their evolutionary success (that is, fitness). 
Geneticists, developmental biologists and systems biolo-
gists study how organisms develop each generation from 
their genetic programmes, whereas evolutionary biolo-
gists seek to understand the evolutionary causes and 
consequences of the genotype–fitness map1–4. It is now 
accepted that the shape of the genotype–fitness map has 
fundamental effects on the course of evolution, and the 
map has a prominent role in many theories, including 
those concerning divergence and speciation, sex, genetic 
robustness and evolvability3,5. A particularly exciting 
consequence, which has motivated recent work and is 
the topic of this Review, is the effect of this map on the 
predictability of evolution6,7.

To consider evolutionary consequences of the geno-
type–fitness map, Sewall Wright8 introduced the concept 
of the fitness landscape (also known as the adaptive land-
scape), which is a visualization of this high-dimensional  
map, often in few dimensions. The iconic graphical ren-
dering is a three-dimensional ‘mountainous’ landscape 
in which genotypes are organized in the x–y plane and 
fitness is plotted on the z axis (FIG. 1a). In such a land-
scape, evolution can be seen as ‘walks’ and adaptation 
as ‘climbs’ to higher positions on the fitness surface. 
Despite its intuitive appeal for the study of evolution, the 
impact of the fitness landscape concept on evolutionary 
biology has been limited owing to the lack of empiri-
cal information about the topography of real fitness 
landscapes. However, this situation is now changing. 

Experimentalists have begun to provide glimpses of 
real fitness landscapes by constructing and analys-
ing mutants that represent all possible combinations 
of small sets of mutations that are involved in a single 
evolutionary lineage or in multiple lineages. In turn, the  
empirical work has triggered theoretical analyses of  
the predictability of evolution and its determinants.

We begin this Review with a brief historical account 
of the role of fitness landscapes in the study of evolu-
tion. We then discuss the methodological approaches 
and main findings of recent efforts to reveal information 
about the topography of real fitness landscapes. Only 
studies that present systematic analyses of mutational 
interactions are included. We do not address the large 
body of work on pairwise mutational interactions and 
on qualitative features of the fitness surface, which has 
been discussed elsewhere4,9,10. We then turn to theoreti-
cal analyses of pathway accessibility and predictability 
informed by this empirical work, discuss methods for 
studying larger-scale fitness landscapes and end with an 
outlook on the development of this emerging field based 
on current challenges.

Historical development of a concept
Wright’s idea to explicitly consider the relationship 
between genotypic space and fitness came from his 
conviction that, different from Ronald Fisher’s additive 
view of genetics, real fitness landscapes are likely to be 
complex owing to pervasive epistasis8,11. Grossly under-
estimating the number of genes and alleles in an average 
species, Wright realized the vastness of genotypic space: 
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Fitness
A measure of reproductive 
success of an organism that 
determines the change of the 
corresponding genotypic 
frequency in the population  
by natural selection.

Epistasis
Any kind of genetic interaction 
that leads to a dependence of 
mutational effects on the 
genetic background.
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Ruggedness
A measure of the complexity  
of fitness landscapes due to 
multidimensional epistasis. 
However, it is often used in a 
more restricted way to reflect 
the presence of multiple peaks.

Magnitude epistasis
Epistatic interactions that 
affect the magnitude but not 
the sign of mutational effects 
on fitness.

“with 10 allelomorphs in each of 1000 loci, the number 
of possible combinations is 101000 which is a very large 
number” (REF. 8). Given these vast possibilities, he imag-
ined that “it may be taken as certain that there will be an 
enormous number of widely separated harmonious com-
binations” (REF. 8). Consequently, in Wright’s view, fitness  
landscapes have ruggedness owing to the presence of  
multiple fitness peaks that are separated by ‘valleys’  
of low-fitness genotypes. He pictured this “field of gene 
combinations” in two dimensions (FIG. 1b), although 
he was aware that such low-dimensional pictures “are 
a very inadequate representation of such a field”. In 
fact, in the same publication, Wright provided a more 
appropriate graphical rendering of the high-dimensional 
discrete genotypic space, which had been concurrently  
identified by J. B. S. Haldane12 as a hypercube (BOX 1).

For many years, the fitness landscape concept under-
went little further development. One reason was the 
general lack of understanding of the molecular basis of 
adaptation and hence of the relevant ‘genetic units’ of the 
genotypic space. This changed when John Maynard Smith 
introduced the notion of mutational pathways in protein 
space13. He used the analogy of a word game, in which a 
word must be converted into another word of the same 
length with the requirement that one letter is changed at a 
time and that all intermediates are meaningful words (for 
example, from ‘word’ via ‘wore’, ‘gore’ and ‘gone’ to ‘gene’). 
Given the low per-base-pair mutation rate, he argued 
that proteins also adapt by a series of single amino acid 
changes, in which all intermediate states must be func-
tional for a trajectory to be accessible by natural selection. 
Two decades later, on the basis of the notion of a discrete 
protein space, Stuart Kauffman and co-workers14,15 devel-
oped their NK model for studying evolution in a fitness 
landscape with ‘tunable’ ruggedness (BOX 2).

By the start of the twenty-first century, still little 
was known about the topography of fitness landscapes 
in real organisms. Two initially independent develop-
ments changed the situation and paved the road towards 
empirical studies of fitness landscapes (FIG. 1c). First, 
growing genomic information allowed the prediction 
of ancestral genotypes, which stimulated studies that 
‘resurrected’ and functionally analysed these ancestors 
to infer evolutionary explanations16. An early example 
was the analysis of lysozymes in game birds by synthe-
sizing all combinations of ancestral and derived amino 
acids at three positions17. As all trajectories included at 
least one enzyme with thermodynamic stability outside  
the range of the extant proteins, it was concluded that the  
evolution of lysozymes must have been non-neutral. 
Recently, the construction and analysis of intermediates 
have become a regular procedure for testing scenarios in 
microbial evolution experiments18.

Second, a popular model of the evolution of sex, 
which requires weak negative magnitude epistasis among 
deleterious mutations19, motivated empirical work on 
epistasis among deleterious mutations. Although most 
studies analysed pairwise mutational interactions or the 
dependence of mean fitness on the number of muta-
tions20, a few studies systematically constructed all pos-
sible combinations of a handful of mutations21,22. Despite 

Figure 1 | Development of the fitness landscape 
concept.  A fitness landscape can be visualized as a 
‘mountainous’ landscape in three dimensions with 
genotypes arranged in the x–y plane and fitness on the 
z axis (part a). The landscape shown is rugged with three 
fitness peaks separated by fitness ‘valleys’, and two 
imaginary evolutionary trajectories are shown by white 
dots and arrows. Wright’s two-dimensional “field of gene 
combinations” (REF. 8) is shown (part b). Fitness maximum 
and minimum are represented as “+” and “–”, respectively; 
dotted lines are contours of equal fitness. A recent example 
of an empirical fitness landscape involves four mutations in 
the antibiotic resistance enzyme β‑lactamase TEM1, which 
cause increased resistance to cefotaxime44 (part c). Nodes 
represent the 24 (that is, 16) genotypes; 0 and 1 indicate 
wild-type and mutant amino acids, respectively. Arrows 
connect genotypes that differ by a single mutation and 
point towards genotypes with higher resistance. Bold black 
arrows indicate the ‘greedy’ walk (which substitutes the 
existing genotype with the largest-benefit mutation 
among the mutations available at each step) from 
wild-type (0000) to the global maximum (1010).
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Hamming distance
The distance between two 
genotypes measured by  
the number of mutations  
in which they differ.

Unidimensional epistasis
A description of epistasis 
based on the curvature of the 
relationship between average 
fitness and the number of 
mutations.

the fact that these studies focused on the curvature of the 
fitness surface to test for negative unidimensional epistasis, 
they additionally generated complete information about 
the local topography on the basis of the multidimensional  
epistasis within these sets of mutations4,23.

However, it was the realization by Daniel Weinreich 
and colleagues24 of the evolutionary consequences of a 
particularly strong form of epistasis known as sign epistasis  
that motivated the recent surge of studies on empiri-
cal fitness landscapes. By reversing the fitness effects of 
mutations, sign epistasis introduces two sources of adap-
tive constraint: it causes some adaptive allele combina-
tions to become ‘isolated’ by surrounding genotypes of 
low fitness25 and reduces the number of accessible muta-
tional trajectories under strong selection. This insight 

gave rise to the exciting prospect that evolution may be 
reproducible and perhaps even predictable (see below). 
The quantitative study of these implications requires 
complete information about the relevant part of the fit-
ness landscape. Practically, this means that for a given 
pair of ancestral and derived genotypes, all 2L possible 
combinations of the L mutations for which they differ 
must be constructed and their fitness or a proxy thereof 
measured (FIG. 1c). Weinreich and collaborators demon-
strated the implications of sign epistasis by construct-
ing and analysing a fitness landscape that involved five 
mutations in the β‑lactamase TEM, which collectively 
gave rise to bacterial resistance to a novel antibiotic26. 
Only 18 of the 120 possible 5‑step mutational trajec-
tories from wild type to high-resistance enzyme were 
accessible under strong selection, and the single most 
likely trajectory would be used in almost half of the cases  
(discussed in detail below).

Empirical fitness landscapes
Type of available data. Empirical studies of fitness 
landscapes have used two different approaches. The 
first approach infers qualitative features of the topog-
raphy, such as its ruggedness, either from patterns of 
parallel evolution in microbial evolution experiments 
or from the prevalence of sign epistasis among sets of 
constructed mutation pairs4,9,10. This approach probes a 
fairly large area of genotypic space, but the topographi-
cal information it reveals is incomplete and biased by 
the population dynamic regime used (see below). The 
second approach involves the systematic analysis of all 
possible combinations of a small, predefined set of muta-
tions (FIG. 2). This approach explores a tiny part of geno-
typic space, but the information obtained is complete 
and allows the probability of mutational trajectories to 
be quantified and compared. Below, we focus on system-
atic studies that adopt the second approach and their use 
in analyses of evolutionary predictability.

Currently, there are <20 systematic studies of empiri-
cal fitness landscapes, but this number is rapidly grow-
ing10,27. These studies analyse interactions among three17 
to a maximum of nine mutations28, which occur either 
in a single gene17,26,28–38 or operon39, or across genes in 
a bacterial40,41, fungal22,42 or fly genome43. The empiri-
cal landscapes can be classified on the basis of the 
source of the mutations involved (FIG. 2A). The larg-
est class comprises studies of mutations that co‑occur 
in extant genotypes which show a novel function of 
interest28–31,34–37 (FIG. 2Aa) or in genotypes isolated from  
laboratory evolution experiments26,33,40,41 (FIG. 2Ab). In a 
few studies, the collective effect of the mutations used 
was unknown (FIG. 2Ac), and mutations were selected 
on the basis of their individual negative22,42,43 or posi-
tive effect on fitness44. In all but two studies36,41, geno-
types were analysed for a proxy of fitness, such as the 
maximum growth rate or level of antibiotic resistance, 
instead of fitness itself.

Emerging patterns and methodological issues. What do 
these studies tell us about the topography of real fitness 
landscapes? A recent meta-analysis of available data 

Box 1 | Quantifying multidimensional epistasis

The empirical data sets considered here comprise measurements of fitness or some 
related phenotype for combinations of L biallelic loci, which can be written as binary 
strings of variables (σi) taking two possible values: σ = (σ
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L
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space of genotypes has the mathematical structure of an L‑dimensional hypercube  
with 2L corners. If some of the combinations are missing because the corresponding 
genotype is not viable or cannot be constructed, then the space is a subgraph of the 
hypercube. Any fitness function on the hypercube can be decomposed into products of 
the single-locus variables according to the following expansion27,97:

f(σ) = a(0) +     ai
(1)σi +     aij

(2)σiσj +     aijk
(3)σiσjσk + … + a(L)σ1σ2 … σLΣ Σ Σ  (1)

There are LC
k
 coefficients of type a(k) in this expansion, one for each subset of k of  

L loci. According to the binomial theorem, the total number of coefficients equals 2L, 
which makes it evident that the mapping between fitness values and expansion 
coefficients is one‑to‑one. The first-order coefficient a(1) describes the linear, 
non-epistatic effects, the second-order coefficient a(2) denotes pairwise epistatic 
interactions and so on. In empirical data, one usually sets σ

i
 = 0 and σ

i
 = 1 to indicate the 

absence and presence of a mutation at locus i, respectively. However, for some 
purposes, the symmetrical choice σ

i
 ∈ {–1,1} that treats all genotypes on an equal 

footing is preferable98.
As the number of coefficients in expansion (1) is equal to the number of genotypes, 

the expansion provides a reduced description of the fitness landscape only if it happens 
to be sparse with many vanishing coefficients, for example, if interactions beyond a 
certain order are absent. A reduced description that applies more generally is obtained 
by summing the squares of coefficients of a given order, which yields the total weights 
of interactions of order n:

b(n) = ai1…inΣ (n) 2  (2)

The amplitude spectrum {b(n)} is related by a linear transformation to the fitness 
correlation function R(d) = 〈f(σ) f(σʹ)〉 dH(σ,σʹ) = d , which is obtained by averaging the product 
of fitness values over all pairs of genotypes at a constant Hamming distance d

H
 

(REFS 99,100). To obtain a single number that characterizes the importance of epistatic 
interactions in the landscape, one sums the weights of orders n > 1 and normalizes by 
the sum over all weights10. A related overall epistasis measure is the roughness/slope 
ratio (r/s), which is defined as the standard deviation of the fitness values with respect 
to the best non-epistatic (that is, linear) fit divided by the average of the absolute values 
of the linear coefficients30.

Importantly, epistasis measures that are derived from the interaction weights {b(n)} 
are not sensitive to the difference between magnitude and sign epistasis. On the basis 
of such measures alone, it is not possible to decide whether a given landscape is truly 
rugged or simply smoothly curved. They therefore need to be combined with 
quantities that are more directly related to the adaptive process, such as the number 
of fitness maxima (N

max
) or the number of selectively accessible pathways (N

paths
). 

Whereas these are global measures of sign epistasis that reflect the structure of the 
entire landscape, a local quantifier is obtained by considering all pairs of genotypes 
that differ at two loci and by determining the fraction of cases (f

epi
) in which the two 

interact sign-epistatically10,73.
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Multidimensional epistasis
Epistatic interaction that 
reflects the high-dimensional 
nature of genotypic space.

Sign epistasis
Epistatic interaction that 
affects the sign of mutational 
effects on fitness, such that a 
given mutation can be 
deleterious or beneficial 
depending on genetic 
background.

sets10 compared the ruggedness on the basis of various 
statistical measures (BOX 1). Although these measures 
are sensitive to different types of epistasis (for exam-
ple, magnitude or sign epistasis) at different genomic 
scales, they seem to correlate fairly well, which suggests  
that they reflect similar features of the topography10 
(FIG. 3). On the basis of these measures, two general 
observations can be made. First, the data sets show a 
variable, but on average substantial, level of ruggedness, 
even when no unidimensional epistasis is detected4,10. 
All fitness landscapes are more rugged than expected in  
the absence of epistasis but less so than expected if 
mutations had random effects across genetic back-
grounds (FIG. 3). Second, several data sets40,41,44 show on 

average diminishing returns epistasis among beneficial 
mutations, in which benefits are smaller in high fitness 
backgrounds than in low fitness backgrounds.

What can we say about the causes of the wide varia-
tion in ruggedness across empirical fitness landscapes? 
Clearly, too few data are available for drawing firm con-
clusions, particularly given the variation in methods, 
systems and types of mutations used. For example, no 
data exist for deleterious mutations that are known for 
their collective negative effect or occurrence in a sin-
gle gene, and studies that involve beneficial mutations 
vary greatly in the scale of fitness effects. Nevertheless, 
some trends are worth mentioning, as they may help to  
interpret the growing data set.

A first trend is that mutations with known collective 
benefit show less ruggedness than mutations for which 
the combined effect is unknown (FIG. 3). This was shown 
in a recent comparative analysis of three sets of four 
mutations in the β‑lactamase TEM1, in which mutations 
that increased resistance to cefotaxime by themselves 
showed stronger ruggedness than mutations that had a 
collective benefit44. This contrast is not surprising: a pos-
teriori approaches (FIG. 2Aa,2Ab) are less likely to find 
much sign epistasis because the mutations have collec-
tively been tested by selection, whereas mutations with 
only known individual benefits (FIG. 2Ac) do not suffer 
from this bias. Such a bias may be especially strong later 
during adaptation, when there is an increased likelihood 
that the paths that are not taken involve sign epistasis45, 
and may also provide an explanation for the high rug-
gedness seen in landscapes of individually deleterious 
mutations42. The requirement for mutations to have indi-
vidual benefits also introduces bias because it ignores the 
adaptive contribution of mutations that have deleterious 
or neutral effect in the ancestral background44. For an 
unbiased view, interactions among random mutations 
should be studied.

The same comparative analysis44 also supports a 
second pattern: mutations of large effect show greater 
ruggedness than small-effect mutations. Among the 
two sets of four individually beneficial mutations in  
the β‑lactamase TEM1, the large-effect mutations 
showed consistently higher ruggedness across different 
measures of epistasis than the small-effect mutations 
(FIG. 3). The authors explained this pattern with the fact 
that the nonlinear map that relates resistance to key 
enzyme properties has a greater impact on combinations 
of large-effect mutations than on combinations of small-
effect mutations, which is consistent with predictions  
from various models46–48.

A third trend is that intragenic landscapes have 
greater ruggedness than intergenic landscapes. This pat-
tern is expected, given that epistasis among mutations 
in different genes is thought to result from functional 
(for example, metabolic) constraints, whereas intragenic 
epistasis may, in addition, result from structural con-
straints that affect enzymatic activity and folding stabil-
ity49,50. The predicted trend is supported for landscapes 
that involve collectively beneficial mutations (FIG. 3), in 
which intragenic landscapes26,35 show greater ruggedness 
than intergenic landscapes40,41. However, the available 

Box 2 | Models of fitness landscapes

Epistatic interactions may arise at any stage of the mapping from genotype to 
phenotype to fitness, and theoretical models have correspondingly addressed the 
problem at different levels.

Random field models
In this approach, fitness landscapes are obtained as instances of a probabilistic 
algorithm that assigns fitness values directly to genotypes99. Such models allow one to 
systematically explore how different epistasis measures are interrelated and how 
landscape properties vary with dimensionality, and they can be used to parameterize 
and organize empirical data sets. For the comparison between models and empirical 
landscapes, it is often helpful to decompose the genotypic space into subgraphs that 
are spanned by subsets of loci and to treat the corresponding sublandscapes as 
instances of an ensemble with homogeneous statistical properties10,42.

The simplest random field model assigns fitness values to genotypes independently 
from a fixed probability distribution14. Because of its similarity with a class of 
mutation–selection models introduced by Kingman101, this is referred to as the 
House‑of‑Cards (HoC) model.

In the NK model introduced by Kauffman and Weinberger15, each locus interacts 
with K other loci, where K has values between 0 and L – 1, and L represents the total 
number of loci. Within each set of K + 1 interacting loci, fitness values are assigned at 
random to the 2K + 1 genotypes. For K = 0, the landscape is additive, whereas K = L – 1 
corresponds to the maximally epistatic HoC model. Through the choice of interaction 
partners of a locus, different epistatic architectures can be implemented65.

Rough Mount Fuji (RMF) models are obtained by combining a random HoC 
landscape with an additive landscape30. In the simplest version of the model, the 
additive selective advantage (s̄) is the same for all loci. By varying s̄ relative to  
the standard deviation of the HoC fitness values, the ruggedness of the landscape 
can be adjusted42.

Sequence–structure maps
A paradigmatic example of an explicit genotype–phenotype map relates RNA 
sequences to their secondary structures predicted by complementary base pairing88. 
Explicit sequence–structure maps can also be constructed for proteins if the 
interactions between residues are suitably simplified, for example, by placing  
the protein onto a lattice87. Structure is then mapped to a fitness-like phenotype which, 
in the case of proteins, can be stability, abundance, folding robustness or affinity to a 
target ligand90,102,103. An important general feature of these genotype–phenotype maps 
is a high degree of redundancy (that is, many sequences map to the same structure),  
but there are also characteristic differences between RNA and protein landscapes87,104.

Phenotype–fitness maps
A heuristic approach that is loosely based on Fisher’s geometric model61 explains 
epistasis by assuming that genotypes contribute additively to one or several 
phenotypes, which in turn map nonlinearly to fitness. In this way, sign epistasis can 
arise either from stabilizing selection towards a fitness optimum105–107 or from two 
phenotypes that show a trade-off in their effect on fitness44. This approach is generally 
applicable whenever there is a reduction of dimensionality by passing from genotype 
to phenotype, but it is most powerful when it is based on explicit models of functional 
pathways36,46,85,86,108.
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Strong-selection–
weak-mutation
(SSWM). A regime of 
population dynamics in which 
beneficial mutations are 
sufficiently rare to arise and fix 
independently, while selection 
is strong enough to prevent  
the fixation of deleterious 
mutations.

Direct paths
Shortest mutational pathways 
between genotypes, along 
which the distance to the target 
genotype decreases by one in 
each step. There are d! direct 
paths between two genotypes 
at Hamming distance d.

support is confounded by variation in both the effect 
sizes and the phenotypes affected by the mutations.

Evolutionary predictability
Whether evolution is inherently unpredictable (owing 
to chance events) or at least partly predictable is  
a fundamental question in biology and the topic of a 
longstanding debate51,52. Evolution experiments using 
microorganisms have begun to shed some light on this 
issue by probing the repeatability of adaptive trajectories 
in replicate populations6,7. Several studies have found 
extensive evidence for convergent or parallel evolution 
at the genetic level in which, repeatedly, the same or a 
similar outcome has evolved independently53–55, whereas 
others have uncovered examples for the crucial depend-
ence or historical contingency of evolutionary outcomes 
on random events, thus highlighting the intrinsic dif-
ficulty of evolutionary prediction56,57. A general finding 
of these experiments is that the amount of parallelism 
depends strongly on the organizational level; that is, 
there are higher frequencies of shared adaptive changes 
at the level of genes and metabolic pathways than at the 
level of nucleotide substitutions.

Repeatability in replicate experiments is a weak 
form of predictability, as the deterministic nature of the 
process can be ascertained only in retrospect. A high 

degree of repeatability is a necessary but insufficient 
condition for the more challenging task of forward pre-
diction, which requires additional knowledge about the  
mechanistic basis of the traits under selection58 and  
the adaptive process59. Below, we discuss the problem of 
evolutionary predictability from the perspective of the 
constraints imposed by the underlying fitness landscape 
and their interaction with the dynamics of the adapting 
population.

Pathway accessibility. The influence of the land-
scape structure is particularly clear-cut in the strong- 
selection–weak-mutation (SSWM) regime60,61, in which 
the population can be treated as a monomorphic entity 
that is constrained to move uphill in fitness in single 
mutational steps. In this regime, the only mutational 
pathways available for adaptation are those along which 
fitness increases monotonically, and such paths have 
therefore been termed selectively accessible24. Focusing 
on pathways that terminate at the global fitness maxi-
mum, the authors established a one‑to‑one corre-
spondence between evolutionary accessibility and sign 
epistasis: on a fitness landscape without sign epistasis, 
all direct paths from an arbitrary genotype to the global 
maximum are accessible and, conversely, any occur-
rence of sign epistasis implies that some paths are inac-
cessible. In this sense, pathway accessibility is a more 
stringent indicator for sign epistasis than the existence 
of multiple fitness peaks, which cannot be inferred from 
local epistatic interactions alone25,62,63. Unless stated  
otherwise, the following discussion is restricted to 
direct mutational pathways.

Many of the empirical examples reviewed above 
show substantially reduced accessibility, and the major-
ity of pathways to the global maximum are inaccessible. 
This raises the questions of how accessible a ‘typical’ 
fitness landscape with sign epistasis should be, and to 
what extent pathway accessibility can be a quantitative 
metric of landscape ruggedness. For a baseline estimate, 
it is useful to consider the house‑of‑cards (HoC) model, 
in which fitness values of different genotypes are inde-
pendent and identically distributed random variables 
(BOX 2). A simple combinatorial argument shows that the 
mean number of accessible paths from an arbitrary gen-
otype to the global maximum is equal to one in the HoC 
model — a result that is independent of the distance to 
the peak42. However, at the same time, the proportion of 
landscapes without accessible pathways increases with 
increasing distance from the peak and approaches unity, 
which indicates that the mean number of accessible 
pathways is a poor estimate for the typical behaviour: 
in large HoC landscapes, the global optimum is typi-
cally not accessible via ascending paths. Interestingly, 
accessibility markedly increases if the initial genotype 
is assumed to have exceptionally low fitness64.

Empirical fitness landscapes are usually smoother 
than those predicted by the HoC model (FIG. 3) and are 
better represented by models with tunable intermedi-
ate ruggedness, such as the NK model or the rough 
Mount Fuji (RMF) model (BOX 2). For the RMF model, 
it has been established that accessible paths to the global 

Figure 2 | Approaches for the empirical study of fitness landscapes.  Experimental 
approaches for studying small-scale fitness landscapes share three essential components: 
a set of mutations of interest is identified (part A); mutants are constructed to carry all 2L 
possible combinations of the L selected mutations (in this case, L = 3, and 0 and 1 indicate 
the absence and presence of the mutation, respectively) (part B); and the fitness or a 
fitness proxy (for example, antibiotic resistance) is measured for all genotypes. Mutations 
of interest can come from three different sources: from phylogenetic analyses that infer 
the ancestor of extant genotypes (part Aa); from microbial evolution experiments in 
which mutations co‑occur in an evolving lineage (part Ab); or from sets of mutants that 
each carry a single mutation (part Ac), such as alternative mutations that cause antibiotic 
resistance. The a posteriori approaches (parts Aa, Ab) are less likely to find much sign 
epistasis because these mutations have collectively ‘survived’ the selective pressure, 
whereas the a priori approach (part Ac) does not suffer from this bias.
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Adaptive walks
Trajectories of monomorphic 
populations moving through 
genotypic space in single 
mutational steps, each of  
which increases fitness.

maximum exist with a probability of one for large geno-
typic dimensions64. Although this is consistent with the 
intuition that landscapes with less sign epistasis should 
be more accessible, available results for the NK model 
suggest that the architecture of epistatic interactions may 
be at least as important for evolutionary accessibility as 
the overall ruggedness65. However, at the level of resolu-
tion that is relevant for the comparison to empirical data, 
different models show similar behaviour. For example, 
the statistics of accessible pathways in the empirical 
Aspergillus niger landscape was found to be described 
equally well by the RMF and NK models42. Moreover, all 
models predict that the probability for a given pathway 
to be accessible decreases at least exponentially with its 
length. Thus, even if the existence of accessible pathways 
becomes increasingly likely when the genotypic dimen-
sionality is large, they make up a vanishing proportion 
of all pathways, and it becomes more and more difficult 

for the adaptive process to actually ‘find’ them. This is 
consistent with the fact that adaptive walks under SSWM 
dynamics are typically very short61.

Pathway repeatability. Although adaptation in the 
SSWM regime is restricted to selectively accessible path-
ways, not all accessible paths that connect the same ini-
tial and final genotypes are equally likely to be realized 
by evolution. The probability of a single adaptive step is 
given by the fixation probability of the corresponding 
beneficial mutation, which is normalized by the sum of 
the fixation probabilities of all beneficial mutations that 
are available for the starting genotype61. As the steps are 
independent, the weight of the entire path is obtained as 
the product of the probabilities of the individual steps.

On the basis of this metric, two studies26,35 concluded 
that most of the weight of the pathways to drug resist-
ance considered was concentrated on a subset of the 

Figure 3 | Trends in the ruggedness of empirical fitness landscapes.  Three measures that quantify the ruggedness are 
shown for a subset of eight available fitness landscapes: the number of fitness maxima (N

max
), the fraction of mutation pairs 

with sign epistasis or reciprocal sign epistasis (f
epi

) and the roughness/slope ratio (r/s) (BOX 1). For landscapes of different 
sizes to be comparable, all measures were calculated for subgraphs of size four10. Each plot compares two ruggedness 
measures for the eight landscapes, which belong to one of three classes with respect to the type of mutations involved: 
collectively beneficial mutations, individually beneficial mutations or individually deleterious mutations. Currently, no 
landscapes exist for collectively deleterious mutations. The 4–8 mutations of each landscape affect either a single gene or 
multiple genes in a range of microbial species, and fitness (F), growth rate (GR) or resistance (R) is measured. For 
comparison, expected values for a fully additive landscape (green) and a maximally rugged landscape (red; which is 
represented by the house-of-cards (HoC) model) are shown. Although the three measures capture different types of 
epistasis, they correlate reasonably well. The available empirical fitness landscapes show considerable ruggedness, 
especially if the combined fitness effect of mutations is unknown.
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‘Greedy’ adaptation
An adaptive walk in which the 
available mutation of largest 
effect is fixed in each step.

Stochastic tunnelling
A mechanism for the crossing 
of fitness ‘valleys’, in which the 
escape genotype arises by 
mutation from a small valley 
population. This mechanism is 
different from that proposed 
by Wright for crossing valleys 
through the fixation of 
deleterious mutations, which 
happens only under weak 
selection.

accessible paths, thus further increasing the retrospec-
tive predictability in these systems. In the case of the 4 
mutations that confer pyrimethamine resistance on the 
malaria parasite, the intermediate genotypes occurring 
along the 3 dominant pathways (of 24 direct paths) 
that make up close to 90% of the statistical weight were 
observed in natural populations35. Importantly, both 
studies used drug resistance as a proxy for fitness, which 
implies that a heuristic transformation from resistance 
to fitness was required to convert the experimental data 
into pathway weights. The choice of this transforma-
tion has a major influence on the inferred predictabil-
ity. Using the pairwise repeatability measure (BOX 3), 
it was found that the effective number of pathways in 
the landscape of one of the studies26 varied between 13 
and 5 depending on the scheme used to convert anti
biotic resistance to fitness66, whereas the total number of 
accessible paths equals 18 in this case. If the restriction 
to direct pathways is relaxed, then the total number of 
accessible pathways increases to 27, whereas the effective 
number of pathways remains essentially unchanged66. 
This shows that, at least in this landscape, paths with 
back mutations carry little statistical weight.

Evolutionary predictability and population size. The 
weak mutation assumption of the SSWM regime 
requires the mutation supply rate to be sufficiently low 
for mutations to appear and fix in isolation. In large 
microbial populations, this assumption is typically vio-
lated, as multiple beneficial clones are present simulta-
neously and compete for fixation in a process known as 
clonal interference67. As a consequence, single adaptive 
steps become more repeatable because beneficial muta-
tions of large effect are more likely to survive competi-
tion and thus have a greater chance of fixation than the 
SSWM expectation. A detailed analysis of this process 
for two competing mutations shows that the transition 
from SSWM dynamics to ‘greedy’ adaptation, in which 
the mutation of larger effect is fixed with certainty, pre-
cisely coincides with the onset of clonal interference68. A 
clear experimental signature of increased repeatability 
of fitness trajectories in large populations was reported 
in one study69, in which replicate populations of E. coli 
were evolved in a complex nutrient medium at two dif-
ferent population sizes. Interestingly, these experiments 
showed that small populations occasionally reach higher 
fitness levels than large ones, and this was attributed to 
the greater adaptive heterogeneity of small populations68.

However, in rugged fitness landscapes, the trend 
towards greater determinism due to clonal interference 
is counteracted by the fact that large population size also 
facilitates the crossing of fitness valleys70. The key element 
in the valley crossing mechanism, which is often referred 
to as stochastic tunnelling71, is that a small portion of the 
population resides in the fitness valley long enough to give 
rise to the escape genotype. This process reflects that the 
two assumptions underlying the SSWM regime are inter-
related in such a way that both of them break down in 
very large populations: with increasing mutation supply 
rate, the population is no longer monomorphic, and this 
enables it to access genotypes that are selected against72.

The ability to cross fitness valleys releases the restric-
tion of evolution to follow fitness-monotonic pathways 
and decreases adaptive repeatability in very large popula-
tions. Quantitative analysis shows that this effect becomes 
appreciable when population size (N) and mutation rate 
(μ) satisfy Nμ2 ~ 1, whereas the onset of clonal inter-
ference that is associated with the transition to greedy 
adaptation occurs when Nμ ~ 1. Thus, when μ is small, 
there is a range of population sizes where Nμ2 <<1 << Nμ, 
such that adaptation is restricted to fitness-monotonic 
pathways that are traversed in a deterministic and greedy 
manner, and that repeatability is maximal (FIG. 4). This 
regime was discovered in a numerical study of asexual 
adaptation on the empirical A. niger fitness landscape, 
in which repeatability of evolutionary pathways and 
endpoints was quantified using the Gibbs–Shannon 
entropy73 (BOX 3), but experimental confirmation of the 
phenomenon is so far lacking. Further increasing the 
population size increases the standing genetic variation 
in the population, and one expects adaptation to become 
more deterministic, as the evolutionary trajectory is 
determined by the fitness landscape to a large extent.

The problem of scale
Although an important first step, the available data offer 
extremely coarse (that is, low-dimensional) and biased 
glimpses of the corresponding fitness landscapes. The 
information they contain rests on a handful of mutations 
that collectively or individually survived the ‘sieve’ of  
selection, or that were chosen for their observable phe-
notypic effect. However, mutations with unknown 
phenotypes and opposite fitness effects in the ancestral 
background also contribute during adaptation6,10,24, and 
populations are subject to many more mutations than 
those that are eventually substituted18,72. To understand 
the consequences of these scale problems for evolution-
ary predictability, we need unbiased empirical fitness 
landscapes of realistic dimensionality. However, in this 
case, the limits of what can be done experimentally are 
rapidly met because the number of genotypes that must 
be analysed increases exponentially with the number 
of mutations included. How can we circumvent this  
practical barrier?

Moderate increases in scale may be expected from 
the application of new high-throughput technologies 
for the synthesis and functional analysis of large pop-
ulations of small DNA or RNA molecules. For exam-
ple, one study74 synthesized all 410 (that is, >1 million)  
10‑nucleotide DNA oligomers and measured their affin-
ity for a fluorescently labelled allophycocyanin protein 
using highly parallel on‑chip assays. The resulting 
affinity landscape was rugged with many local maxima. 
Another study75 analysed the fitness of ~107 mutant 
RNA ligase ribozymes (that is, ~10−20 of all 445 sequences) 
by using deep sequencing to estimate frequency changes 
during selection. A more recent study76 assessed the 
binding affinity to GTP of >99.99% of all (~3 × 1014) pos-
sible 24‑nucleotide RNA molecules that survived selec-
tion and identified dozens of isolated fitness peaks with 
a fairly uniform distribution in sequence space. At these 
scales, a complete analysis of sequence space becomes 
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clearly unfeasible, and information about the structure 
of the fitness landscape has to be extracted from sparse 
genotype samples that are possibly biased.

A systematic approach to this problem can be based 
on the decomposition of the fitness landscape into epi-
static interactions of different order (BOX 1). For example, 
if epistatic effects are mainly due to pairwise interac-
tions, then the number of coefficients in the expansion 
that need to be determined increases only quadrati-
cally rather than exponentially with the number of loci. 
This approach was used to analyse the in vitro fitness of 
70,081 HIV sequences that covered 1,859 alleles at 404 
amino acid positions77. As the total number of pairwise 
combinations of variants in this case much exceeds the 
number of samples, a regularization procedure has to 
be implemented to control overfitting. It was concluded 
that the incorporation of pairwise interactions improves 
the power to predict the fitness of individual genotypes, 
whereas the inclusion of higher-order interactions does 
not. Statistical exploration of the resulting landscape 
indicates that it is extremely rugged and has >25,000 
local optima, but fitness correlations decay slowly on a 
scale that is comparable to the number of loci78.

In a related study79, the researchers analysed a previ-
ously obtained large-scale data set80 for the transcrip-
tional activity of 129,000 sequences of a 75‑nucleotide 
region of the E. coli lac promoter. The landscape is essen-
tially single peaked, and <3% of the pairwise interactions 
are non-zero. An important insight from this work is 
that fitness landscapes inferred in this way are generally 
subject to two counteracting biases: whereas regulariza-
tion against overfitting reduces the apparent amount of 
epistasis, the extrapolation to genotypes that are far from 
the sampled region can introduce spurious ruggedness.

These exploratory studies tentatively suggest that fit-
ness landscapes remain multipeaked at large scales, but 
the density of optima is much lower than in the small-
scale examples discussed. Such a trend is, to some extent, 
intuitive because the inclusion of more loci requires more 
conditions to be satisfied for a genotype to remain a local 
fitness maximum, and hence optima become scarcer. 
This argument was given by Fisher in the 1930s in his 
correspondence with Wright81 and is consistent with 
predictions from random field models (BOX 2). However, 
the consequences for the accessibility and predictability 
of mutational pathways on large-scale fitness landscapes 
are not obvious because pathway statistics do not always 
correlate simply with the density of fitness peaks65.

Outlook
The recent empirical work on fitness landscapes is 
changing our understanding of the causes and con-
straints of evolution. At the small genomic scales consid-
ered so far, it is observed that sign epistasis is common, 
which reduces the number of accessible mutational 
pathways and leads to rugged landscapes with multi-
ple fitness peaks. This has the following implications. 
First, population divergence and speciation may happen 
even in sympatry5. Second, new models may be needed 
to understand the evolutionary importance of sex and 
recombination in the presence of sign epistasis50,82. 
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Figure 4 | Evolutionary predictability is affected by 
population size.  Mutational trajectories are shown  
for populations of small, intermediate and large sizes  
on a rugged three-locus fitness landscape with global 
maximum 111 and local maximum 100. Nodes represent 
genotypes (in which 0 and 1 indicate the absence and 
presence of each of three mutations, respectively), and 
edges connect genotypes that differ in a single mutation. 
Arrows show mutational trajectories, which start from the 
wild type (000) and are realized in a limited time period 
that is sufficient for the fixation of a single mutation in 
populations of small or intermediate sizes. The width of 
the arrows indicates the repeatability of trajectories, 
which is a measure of evolutionary predictability.  
The small population is in the strong-selection–
weak-mutation (SSWM) regime, in which different 
trajectories are realized owing to the chance occurrence 
and subsequent fixation of mutations, and predictability 
is therefore low. At intermediate population size, clonal 
interference causes the preferential fixation of the 
mutation with the largest benefit among the three 
available mutations, thereby maximizing predictability.  
In even larger populations, multiple mutations may 
sometimes fix simultaneously, which allows ‘valley 
crossing’ and decreases predictability.
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Third, sign epistasis alters the relative importance of 
genetic drift versus selection because drift may enhance 
long-term rates of adaptation on rugged fitness land-
scapes8,69,83. Finally and perhaps most excitingly, it 
implies that evolution has inherent predictability6,7,26,51,73, 
although the implications for predictability have so far 
been explored exclusively in a retrospective way.

Understanding how evolutionary predictability is 
determined by the topography of fitness landscapes 
requires further empirical research. More data sets of the 
kinds discussed here are needed to confirm suggested 
causes of observed variation in topographies, such as the 
greater ruggedness of landscapes based on mutations of 
unknown collective effect, mutations of large effect and 
mutations that occur in the same gene. Empirical fit-
ness landscapes are particularly desired for other model 
systems (for example, other proteins) and for classes of 
mutations for which we currently have no data, including 
collectively deleterious mutations, deleterious mutations 
in the same gene and individually beneficial mutations in  
different genes. By analysing mutations observed  
in different evolutionary lineages, the analysis of predict-
ability can be extended from assessing the probability of 
mutational order in a single lineage towards assessing 
the likelihood of alternative trajectories. As indicated 
above, larger-scale empirical landscapes are especially in 
demand. It will be essential to develop systematic high-
throughput methods to generate mutants74,76,84 and to 
analyse their fitness75,84 with sufficient replication to deal 
with the growing problem of measurement noise in large-
scale analyses. Such data will allow analyses of the role  
of scale in determining pathway accessibility and predict-
ability by considering these parameters in subgraphs of 
different sizes42.

Theoretical work should complement the empirical 
developments at several fronts. Models that integrate 
specific topographical information from empirical fit-
ness landscapes into simple statistical models (such as 

the NK and RMF models) are needed, and the statis-
tical problems associated with inferring large-scale 
landscapes from sparse samples should be addressed79. 
Information from functional pathways46,85,86 and the 
physicochemical properties of biomolecules36,87–91 may 
be used to devise realistic genotype–fitness maps from 
first principles, for example, by inferring fitness from the 
stability, abundance and interactions between the mol-
ecules involved. Importantly, the apparent mismatch 
between intuitions gained from rather simple sequence–
structure models with their extended neutral networks 
on the one hand5,87,88 and the rugged landscapes obtained 
in empirical studies on the other hand needs to be better 
understood and ultimately resolved83.

Finally, empirical fitness landscapes have the poten-
tial to tackle real-world problems. For example, com-
mon variants of avian A (H5N1) influenza virus require 
3–5 amino acid substitutions to become transmissible 
via respiratory droplets between mammals. One study92 
modelled the potential of the virus to evolve into the 
transmissible type under different assumptions about 
the epistatic interactions among the substitutions. 
Although the topography of the actual fitness landscape 
is unknown in this case, the relevance of epistasis in 
influenza evolution has been established empirically93. 
Similarly, empirical fitness landscapes may help to find 
drug therapies that minimize the problem of antibiotic 
resistance evolution34,94,95 and guide immunogen design 
for the treatment of HIV96. We expect that this approach 
may be helpful in other areas in which evolution of  
pathogens or cancer cells poses problems to therapies.

To summarize, more than 80 years after the incep-
tion of Wright’s seminal concept, his intuition about the 
ruggedness of fitness landscapes has been forcefully vin-
dicated. However, the task of exploring its consequences 
for the evolutionary processes that unfold across the 
scales of biological organization has only begun to be 
addressed.

Box 3 | Measures for the predictability of mutational pathways

Following earlier considerations of single mutational steps109, one study66 introduced a measure for pathway repeatability 
based on the strong-selection–weak-mutation (SSWM) path weights. Denoting the weight of the ith path by W

i
, the 

probability of observing this path twice in two replicate experiments is W
i
2 and, correspondingly, the sum P

2
 = ΣW

i
2 is  

the probability of observing any pathway twice. This quantity is a simple metric for pathway repeatability that varies 
between P

2
 = 1 for a single pathway and P

2
 = 1/n for n pathways that are equally likely. Thus, its inverse — 1/P

2
 — can be 

interpreted as the effective number of pathways that contribute to the process. A natural generalization of P
2
 is the 

probability of observing the same pathway in k > 2 replicate experiments — P
k
 = ΣW

i
k, which similarly varies between 

P
k
 = 1 and P

k
 = 1/(nk – 1).

Another commonly used measure of pathway repeatability is the Gibbs–Shannon entropy of the distribution of path 
weights, which is defined as S = –ΣW

i
 ln(W

i
) (REFS 73,103). The entropy takes on its maximal value S = ln(n) for n equally 

probable pathways and vanishes when all the weight is concentrated on a single path.
A recent study102 introduced a refined measure of pathway predictability that takes into account the similarity between 

different accessible paths. The mean pathway divergence (D) is defined as D = ΣW
i
 W

j
 d(i,j), where the distance d(i,j) 

between two paths — i and j — is the average of the shortest Hamming distances from each point on path i to any point 
on path j.

The measures P
k
 and S can be used to quantify the repeatability of any replicate experiment in which the outcome 

belongs to a discrete set, for example, the genotypic endpoint of evolution, but they cannot be applied to continuous 
phenotypes such as fitness. To quantify the repeatability of fitness trajectories, one therefore has to resort to other 
measures of variation, such as the fitness variance or coefficient of variation, which are either evaluated at specific time 
points or averaged over the trajectory69.
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