
LEONHARD EULER 
AND THE KOENIGSBERG BRIDGES 

In a proble!ll that entertained the strollers of an East 
"0-

Prussjan city the great mathematician sa,v an illlportant 

principle of the branch of mathen1atics called topology 

Leonhard Euler, the most eminent of Switzerland's scien
tists, was a gifted 18th-century mathematician who enriched 
mathematics in almost every department and whose energy 
was at least as remarkable as his genius. "Euler calculated 
without apparent effort, as men breathe, or as eagles sustain 
themselves in the wind," wrote Frall(,ois Arago, the French 
astronomer and physicist. It is said that Euler "dashed off 
memoirs in the half-hour between the first and second calls 
to dinner." According to the mathematical historian Eric 
Temple Bell he "would often compose his memoirs with a 
baby in his lap while the older children played all about 
him"-the number of Euler's children was 13. At the age of 
28 he solved in three days a difficult ash'onomical problem 
which astronomers had agreed would take several months of 
labor; this prodigious feat so overtaxed his eyesight that he 
lost the sight of one eye and eventually became totally 
blind. But his handicap in no way diminished either the vol
ume or the quality of his mathematical output. His writings 
will, it is estimated, fill 60 to 80 large quarto volumes when 
the edition of his collected works is completed. 

The memoir published below is Euler's own account of one 
of his most famous achievements: his solution of the cele
brated problem of the Koenigsberg bridges. The problem is a 

classic exercise in the branch of mathematics called topology 
(see "Topology," by Albert W. Tucker and Herbert S. Bailey, 
J1'.; SCIENTIFIC AMEHICAN, January, 1950) . Topology is the 
geometry of distortion; it deals with the properties of an 
object that survive stretching, twisting, bending or other 

changes of its size or shape. The Koenigsberg puzzle is a so
called network problem in topology. 

In the town of Koenigsberg (where the philosopher Im
manuel Kant was born) there were in the 18th century seven 
bridges which crossed the river Pre gel. They connected two 
islands in the river with each other and with the opposite 
banks. The townsfolk had long amused themselves with this 
problem: Is it possible to cross the seven bridges in a con
tinuous walk without recrossing any of them? When the puz
zle came to Euler's attention, he recognized that an important 
scientific principle lay concealed in it. He applied himself to 
discovering this principle and shortly thereafter presented his 
simple and ingenious solution. He provided a mathematical 
demonstration, as some of the townsfolk had already proved 
to their own satisfaction by repeated trials, that the journey 
is impossible. He also found a rule which answered the ques
tion in general, whatever the number of bridges. 

The Koenigsberg puzzle is related to the familiar exercise 
of trying to trace a given figure on paper without lifting the 
pencil or retracing a line. In graph form the Koenigsberg pat
tern is represented by the drawing on the left at the bottom 
of this page. Inspection shows that this pattern cannot be 
traced with a single stroke of the pencil. But if there are eight 
bridges, the pattern is the one at the right, and this one can be 
traced in a single stroke. 

Euler's memoir gives a beautiful explanation of the prin
ciples involved and furnishes an admirable example of the de
ceptive simplicity of topology problems.-JAMEs R. NEWMAN 

by Leonhard Euler 

T
HE BRANCH of geometry that 
deals with magnitudes has been 
zealously studied throughout the 

past, but there is another branch that has 
been almost unknown up to now; Leib
nitz spoke of it first, calling it the "ge
ometry of position" (geometria situs). 
This branch of geometry deals with rela
tions dependent on position alone, and 
investigates the properties of position; it 
does not take magnitudes into considera
tion, nor does it in-

or of the method to be used in solving 
them. Recently there was announced a 
problem which, while it certainly seemed 
to belong to geometry, was nevertheless 
so designed that it did not call for the 
determination of a magnitude, nor could 
it be solved by quantitative calculation; 
consequently I did not hesitate to assign 
it to the geometry of position, especially 
since the solution required only the con
sideration of position, calculation being 

of no use. In this paper I shall give an 
account of the method that I discovered 
for solving this type of problem, which 
may serve as an example of the geometry 
of position. 

The problem, which I understand is 
quite well known, is stated as follows: In 
the town of Koenigsberg in Prussia there 
is an island A, called Kneiphof, with the 
two branches of the river Pre gel flowing 
around it. There are seven bridges-a, b, 

volve ca l c u l a t i o n  
with quantities. But 
as yet no satisfactory 
definition has been 
given ofthe problems 
tbat belong to this 
geometry of position 
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c, d, e, f and g-cross
ing the two branches 
[see illustration at the 
top of page 68]. The 
question is whether 
a person can plan a 
walk in such a way 
that he will cross each The figure at right can be drawn in one stroke; the one at left cannot 
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of these bridges once but not more than 
once. I was told that while some denied 
the possibility of doing this and others 
were in doubt, no one maintained that it 
was actually possible. On the basis of the 
above I formulated the following very 
general problem for myself: Given any 
configuration of the river and the 
branches into which it may divide, as 
well as any number of bridges, to deter
mine whether or not it is possible to cross 
each bridge exactly once. 

The particular prohlem of the seven 
bridges of Koenigsberg could be solved 
by carefully tabulating all possible paths, 
thereby ascertaining by inspection which 
of them, if any, met the requirement. 
This method of solution, however, is too 
tedious and too difficult because of the 
large number of possible combinations, 
and in other problems where many more 
bridges are involved it could not be used 
at all. . . . Hence I discarded it and 
searched for another more restricted in 
its scope; namely, a method which would 
show only whether a journey satisfying 
the prescribed condition could in the 
first instance be discovered; such an ap
proach, I believed, would be simpler. 

MY ENTIRE method rests on the ap-
propriate and convenient way in 

which I denote the crossing of bridges, 
in that I use capital letters, A, B, C, D, to 
designate the various land areas that are 
separated from one another by the river. 
Thus when a person goes from area A to 
area B across bridge a or b, I denote this 
crossing by the letters AB, the first of 
which designates the area whence he 
came, the second the area where he ar
rives after crossing the bridge. If the 
traveler then crosses from B over bridge 
f into D, this crossing is denoted by the 
letters BD; the two crossings AB and BD 
performed in succession I denote simply 
by the three letters ABD, since the mid
dle letter B designates the area into 
which the first crossing leads as well as 
the area out of which the second leads. 

Similarly, if the traveler proceeds from 
D across bridge g into C, I designate the 
three successive crossings by the four 
letters ABDC . . . .  The crossing of four 
bridges will be represented by five let
ters, and if the traveler crosses an arbi
trary number of bridges his journey will 
be described by a number of letters 
which is one greater than the number of 
bridges. For example, eight letters are 
needed to denote the crossing of seven 
bridges. 

With this method I pay no attention to 
which bridges are used; that is to say, if 
the crossing from one area to another can 
be made by way of several bridges it 
makes no difference which one is used, 
so long as it leads to the desired area. 
Thus if a route could be laid out over the 
seven Koenigsberg bridges so that each 
bridge were crossed once and only once, 
we would be able to describe this route 

Leonhard Euler (pronoullced oiler); born Basel 1707 ; died Petrograd 1783 

by using eight letters, and in this series 
of letters the combination AB (or BA) 
would have to occur twice, since there 
are two bridges, a and b, connecting the 
regions A and B. Similarly the combina
tion AC would occur twice, while the 
combinations AB, BD, and CD would 
each occur once. 

Our question is now reduced to 
whether from the four letters A, B, C and 
D a series of eight letters can be formed 
in which all the combinations just men
tioned occur the required number of 
times. Before making the effort, how
ever, of trying to find such an arrange
ment we do well to consider whether its 
existence is even theoretically possible or 

not. For if it could be shown that such 
an arrangement is in fact impossible, 
then the effort expended on finding it 
would be wasted. Therefore I have 
sought for a rule that. would determine 
without difficulty, as regards this and 
all similar questions, whether the re
quired arrangement of letters is feasible. 

For the purpose of finding such a rule 
I take a single region A into which an 
arbitrary number of bridges, a, b, c, d, 
etc., lead [middle illustration on the next 
page]. Of these bridges I first consider 
only a. If the traveler crosses this bridge, 
he must either have been in A before 
crossing or have reached A after cross
ing, so that according to the above 
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Seven bridges of Koenigsberg crossed the River Pregel 

Euler used a simpler cas.e to elucidate his principle 

This trip is possible though the Koenigsberg one is not 

method of denotation the letter A will 
appear exactly once. If there are three 
bridges leading to A and the traveler 
crosses all three, then the letter A will 
occur twice in the expression for his 
journey, whether it begins at A or not. 
And if there are five bridges leading to 
A, the expression for a route that crosses 
them all will contain the letter A three 
times. If the number of bridges is odd, 
increase it by one, and take half the sum; 
the quotient represents the number of 
times the letter A appears. 

}3T US now return to the Koenigsberg 
problem [top illustmtion above]. 

Since there are five bridges leading to 
(and from) island A, the letter A must 

occur three times in the expression de-

68 

scribing the route. The letter B must oc
cur twice, since three bridges lead to B; 
similarly D and C must each occur twice. 
That is to say, the series of ... letters that 
represents the crossing of the seven 
bridges must contain A three times and 
B, C and D each twice. But this is quite 
impossible with a series of eight letters 
[for the sum of the required letters is 
nine] . Thus it is apparent that a crossing 
of the seven bridges of Koenigsberg in 
the manner required cannot be effected. 

U sing this method we are always able, 
whenever the number of bridges leading 
to a particular region is odd, to deter
mine whether it is possible in a journey 
to cross each bridge exactly once. Such a 
route exists if the number of bridges plus 
one is equal to the sum of the numbers 

which indicate how often each individu
al letter must occur. On the other hand, 
if this sum is greater than the number of 
bridges plus one, as it is in our example, 
then the desired route cannot be con
structed. The rule that I gave for deter
mining from the number of bridges that 
lead to A how often the letter A will oc
cur in the route description is independ
ent of whether these bridges all come 
from a single region B or from several 
regions, because I was considering only 
the region A, and attempting to deter
mine how often the letter A must occur. 

When the number of bridges leading 
to A is even, we must take into account 
whether the route begins in A or not. For 
example, if there are two bridges that 
lead to A and the route starts from A, 
then the letter A will occur twice-once 
to indicate the departure from A by one 
of the bridges and a second time to indi
cate the return to A by the other bridge. 
However, if the traveler starts his jour
ney in another region, the letter A will 
occur only once, since by my method of 
description the single occurrence of A 
indicates an entrance into as well as a 

departure from A. 
Suppose, as in our case, there are four 

bridges leading into the region A, and 
the route is to begin at A. The letter A 
will then occur three times in the expres
sion for the whole route, while if the 
journey had started in another region, A 
would occur only twice. With six bridges 
leading to A, the letter A will occur four 
times if A is the starting point, otherwise 
only three times. In general, if the num
ber of bridges is even, the number of 
occurrences of the letter A, when the 
starting region is not A, will be half the 
number of the bridges; when the route 
starts from A, one more than half. 

Every route must, of course, start in 
some one region. Thus from the number 
of bridges that lead to each region I 
determine the number of times that the 
corresponding letter will occur in the ex
pression for the entire route as follows: 
When the number of the bridges is odd, 
I increase it by one and divide by two; 
when the number is even, I simply di
vide it by two. Then if the sum of the ' 
resulting numbers is equal to the actual 
number of bridges plus one, the journey 
can be accomplished, though it must 
start in a region approached by an odd 
number of bridges. But if the sum is one 
less than the number of bridges plus one, 
the journey is feasible if its starting point 
is a region approached by an even num
ber of bridges, for in that case the sum is 
again increased by one. 

My PROCEDURE for determining 
whether in any given system of 

rivers and bridges it is possible to cross 
each bridge exactly once is as follows: 
First I designate the individual regions 
separated from one another by the water 
as A, B, C, etc. Second, I take the total 
number of bridges, increase ·it by one, 

© 1953 SCIENTIFIC AMERICAN, INC



and write the resulting number at the 
top of the paper. Third, under this num
ber I write the letters A, B, C, etc., in a 
column, and opposite each letter I note 
the number of bridges that lead to that 
particular region. Fourth, I place an 
asterisk next to each letter that has an 
even number opposite it. Fifth, in a third 
column I write opposite each even num
ber the half of that number, and opposite 
each odd number I write half of the sum 
formed by that number plus one. Sixth, 
I add up the last column of numbers. If 
the sum is one less than, or equal to, the 
number written at the top, I conclude 
that the required journey can be made. 
But it must be noted that when the sum 
is one less than the number at the top, 
the route must start from a region 
marked with an asterisk, and ... when 
these two numbers are equal, it must 
start from a region that does not have an 
asterisk. 

For the Koenigsberg problem I would 
set up the tabulation as follows: 

Number of bridges 7, 
giving 8 ( = 7 + 1) 

A 5 3 

B 3 2 

c 3 2 

D 3 2 

The last column now adds up to more 
than 8, and hence the required journey 
cannot be made. 

Let us take an example of two islands 
with four rivers forming the surrounding 
water [bottom illustration on the oppo
site page]. Fifteen bridges, marked a, b, 
c, d, etc., across the water around the 
islands and the adjoining rivers. The 
question is whether a journey can be 
arranged that will pass over all the 
bridges, but not over any of them more 
than once. I begin by marking the re
gions that are separated from one an
other by water with the letters A, B, C, 
D, E, F -there are six of them. Second, I 
take the number of bridges (15) add one 
and write this number (16) uppermost. 
Third, I write the letters A, B, C, etc., in 
a column and opposite each letter I write 
the number of bridges connecting with 
that region, e.g., eight bridges for A, 
four for B, etc. Fourth, the letters that 
have even numbers opposite them I mark 
with an asterisk. Fifth, in a third column 
I write the half of each corresponding 
even number, or, if the number is odd, I 

This figure requires only one stroke 

add one to it, and put down half the sum. 
Sixth, I add the numbers in the third col
umn and get 16 as the sum. Thus: 

16 

A" 8 4 

B" 4 2 

C" 4 2 

D 3 2 

E 5 3 

F" 6 3 

16 

The sum of the third column is the 
same as the number 16 that appears 
above, and hence it follows that the jour
ney can be effected if it begins in regions 
D or E, whose symbols have no asterisk. 
The following expression represents 
such a route: 

EaFbBcFdAeFfCgAhCiDkAmEnAp
BoEID. 

Here I have indicated, by small letters 
between the capitals, which bridges are 
crossed. 

BY THIS METHOD we can easily 
determine, even in cases of consider

able complexity, whether a single cross
ing of each of the bridges in sequence is 
possible. But I should now like to give 
another and much simpler method, 
which follows quite easily from the 
preceding, after a few preliminary re
marks. In the first place, I note that the 
sum of the numbers written down in the 
second column is necessarily double the 
actual number of bridges. The reason is 
that in the tabulation of the bridges 
leading to the various regions each 
bridge is counted twice, once for each of 
the two regions that it connects. 

From this observation it follows that 
the sum of the numbers in the second 
column must be an even number, since 
half of it represents the actual number of 
bridges. Hence . .. if any of the numbers 
opposite the letters A, B, C, etc., are odd, 
an even number of them must be odd. In 
the Koenigsberg problem for instance, 
all four of the numbers opposite the let
ters A, B, C, D, were odd, while in the 
example just given only two of the num
bers were odd, namely those opposite D 
and E. 

Since the sum of the numbers opposite 
A, B, C, etc., is double the number of 
bridges, it is clear that if this sum is in
creased by two in the latter example and 
then divided by two, the result will be 
the number written at the top. When all 
the numbers in the second column are 
even and the half of each is written 
dow� in the third column, the total of 
this column will be one less than the 
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SR-4® DEVICES IN INDUSTRY ••• 

USES UNLIMITED 

In the static testing of rocket fuel systems, Aber. 
deen Proving Ground needed a transducer which 
could respond to the high pressures and frequen. 
cies encountered. 

To meet this need, Baldwin designed and manufactured 
100 special SR·4 Pressure Cells with the necessary high 
accuracy and high frequency response. 

These transducers give Aberdeen all of these advantages: 

1. High Accuracy-pressure versus voltage outputs are 
linear within '14 of I % and calibration (span) is held 
within 1/2 of 1%. 

2. High Pressures-capacities up to 20,000 psi. 

3. Limitless Frequency Response - attached piping or 
vessel reaches its freq uency response limit before the 
pressure cell reaches its frequency response limit. 

4. Versatility-these SR-4 Pressure Cells are all inter
changeable so that they may work into the same in
struments. They also work easily into an oscilloscope 
and can be used to operate a potentiometer. 

The uses for Baldwin SR-4 devices in industry are unlimited 
• • •  measuring load, pressure or torque more accurately 
and economically. Wide range of standard capacities avail-
able. Please write Dept. 3244. 

TESTING .HEADQUARTERS 

BAI.WIN· "M A • HAM/l'OIl 
Philadelphia 42, Po. Offices in Principal Cities 

,,4 M��:to tMlf� 

UJr� 
«A secnre future, exceptional opportunities for advancement., 
nnd a high starting salary await you at FAIRCHILD, if you are 
one of the men we are looking for. We have openings right 
now for qualified engineers and designers in all phases of 
::aircraft manufacturing; we need top-notch men to help us in 
our long-range military program: turning out the famous 
C·1l9 for the U. S. Air Forces. 

"FAIRCHILD provides paid vacations and liberal health and 
life insurance coverage. We work a 5.day, 40-hour week. 

ul£ you feel you are one of the men we are looking for, 
write me. Your inquiry win be held in strictest confidence, 
of conrse." tt/d4� 
• Walter Tydou, widely known aviation engin(>er and aircraft designer 
and veteran 0/ 25 year$ in aviation, i$ Chief Engineer of Fairchild's 

;";�'iC'tli"i:D #t=4� 
HAGERSTOWN, MARYLAN·D 

This figure requires two strokes 

number at the top. In that case it will 
always be possible to cross all the 
bridges. For in whatever region the jour
ney begins, there will be an even num
ber of bridges leading to it, which is the 
requirement. . .. 

Further, when only two of the num
bers opposite the letters are odd, and the 
others even, the required route is pos
sible provided it begins in a region ap
proached by an odd number of bridges. 
We take half of each even number, and 
likewise half of each odd number after 
adding one, as our procedure requires; 
the sum of these halves will then be one 
greater than the number of bridges, and 
hence equal to the number written at the 
top. But [when more than two, and an 
even number] of the numbers in the 
second column are odd, it is evident that 
the sum of the numbers in the third col
umn will be greater than the top num
ber, and hence the desired journey is im
possible. 

Thus for any configuration that may 
arise the easiest way of determining 
whether a single crossing of all the 
bridges is possible is to apply the follow
ing rules: 

If there are more than two regions 
which are approached by an odd num
ber of bridges, no route satisfying the re
quired conditions can be found. 

If, however, there are only two regions 
with an odd number of approach bridges 
the required journey can be completed 
provided it originates in one of these 
regions. 

If, finally, there is no region with an 
odd number of approach bridges, the re
quired journey can be effected, no mat
ter where it begins. 

These rules solve completely the prob
lem initially proposed. 

gTER we have determined that a 

route actually exists we are left with 
the question how to find it. To this end 
the following rule will serve: Wherever 
possible we mentally eliminate any two 
bridges that connect the same two re
gions; this usually reduces the number 
of bridges considerably. Then-and this 
should not be difficult-we proceed to 
trace the required route across the re
maining bridges. The pattern of this 
route, once we have found it, will not be 
substantially affected by the restoration 
of the bridges which were first elimi
nated from consideration-as a little 
thought will show. Therefore I do not 
think I need say more about finding the 
routes themselves. 
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the new 

Electrical Characteristics 

SENSITIVITY 

0.14% of span or 4 microvolts, 
whichever is greater. 

ACCURACY 

± >i % of scale span or 45 
microvolts. 

MINIMUM SPAN 

3 millivolts. 
PEN SPEED 

Y2 second, full scale. 

CHART SPEED 

1,2,3, or 4 inches per second
or optionally, 2,4,6, or 8 inches 
per minute. 

INI'UT SIGNAL 

any doc millivoltage. 

II scale response 

a second! 

igh speed recorder 

IF YOUR research program calls for recording variables that change with 
split-second speed-investigate the new ElectroniK High-Speed recorder. Its 
pen can streak across the full width of the II-inch chart in only one-half second! 
This exceptional speed across a wide chart assures faithfully detailed recording 
of swiftly changing conditions ... shows every significant "wiggle" that other 
instruments have to overlook. 

To achieve high pen speed without overshoot, the instrument embodies an 
improved velocity damping circuit that brings the pen to a fast, smooth stop at 
its balance position. Chart speeds as fast as 4 inches per second spread out the 
vertical time base for maximum readability. Power reroll of paper is available 
at the high chart speeds. 

Like all ElectroniK instruments, this model records any doc millivoltage signal 
. .. operates with thermocouples, strain gauges, and a host of other trans
ducers. It can be supplied for full scale spans as small as one millivolt. 

Your local Honeywell engineering representative will be glad to discuss how 
this new instrument can help you in your laboratory. Call him today ... he is 
as near as your phone. 

MINNEAPOLIS-HoNEYWELL REGULATOR CO., Industrial Division,4580 Wayne 
Ave., Philadelphia 44, Pa. 

• REFERENCE DATA: Write for Data Sheet No. 10.0·13 

Honeywell 
8ROWN IN ST R U ME N TS 
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TO MEET YOUR 

NEEDS PROMPTLY 
SUPERIOR ELECTRIC VOLTAGE CONTROL 

EQUIPMENT IS AVAILABLE THROUGH AN 

ELECTRICAL DISTRIB UTOR CONVENIENTLY 

LOCATED NEAR YOU 

There is an Electrical Distributor in your territory who carries 

comprehensive stocks of SUPERIOR ELECTRIC Voltage Control 

Equipment. He is a specialist carefully selected for his 

knowledge of your requirements and his ability to give you 

prompt, courteous service. He is as near as your telephone. 

Call him for your voltage control requirements. 

TO MEET YOUR V�e; � 
NEEDS BETTER 

SUPERIOR ELECTRIC VOLTAGE CONTROL 

EQUIPMENT IS AVAILABLE IN A COMPLETE 

LINE FOR THE MAJORITY OF APPL ICATIONS 

SUPERIOR elECTRIC designs, engineers and manufactures 

Voltage Control Equipment specifically to meet today's de· 

mands. A wide range of standard types in numerous capacities 

and ratings are offered. In addition, The Superior Electric 

Company - thoroughly experienced in the field of voltage 

control - offers to work with you in developing special 

equipment to meet your special needs exactly. 

REGULARLY �iMJwL aJ.,�&u 
BY OVER 1,600 LEADING DISTRIBUTORS 

THROUGHOUT THE COUN TRY 

• • • • • • • • • • • • • • • • • • • • • • 

THE SUPERIOR ELECTRIC CO., 1207 Mae Ave., Bristol, Conn. 
Please send me the name of the Electrical Distributor nearest me who stoclcs 
SUPERIOR ELECTRIC Voltage Control Equipment. 

I am interested in 0 POWERSTAT Variable Transformers 0 STABllINE Automatic 
Voltage Regulators 0 VARICEll D·C Power Supplies 0 VOlTBOX A·C Power 
Supplies 0 5·WAY Binding Posts. 

NAME 

POSITION 

COMPANY 

CO. ADDRESS 

CITY ZONE STATE 
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POWERSTAT 
VARIABLE TRANSFORMERS 

STABILINE 
AUTOMATIC VOLTAGE REGULATORS 

VOLTBOX 
A-C POWER SUPPLIES 

VARICELL 
D-C POWER SUPPLIES 

5-WAY BINDING POSTS 

• • • • • • • • • • • • • • • 

© 1953 SCIENTIFIC AMERICAN, INC


