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easily checked quantitatively becguse. the actual su;c’:el;l)tlﬁlhty of 2 metal
is made up of a number of contrlbgtlons among which the above is only
one. It is true, however, that alkal.l metals have a p051t1v§ susceptlbllity
independent of temperature which is of the order of magnitude (15.24),
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Fig. 15.6. Empirical magnetization curve of
a ferromagnetic material; the curve is
irreversible, and is roughly characterized
by the saturation magnetization I, the
remanence /,, and the coercive field H..

if it is capable of having a magnetic moment in the absence of an apphe(%
field. Ferromagnetism is not very widespread among substances in general,
the majority of ferromagnets known are alloys or compounds of th‘-’
elements iron, nickel, cobalt. If a ferromagnet is heated it loses its charac—
teristic properties at a definite temperature, the so-called Curie temp‘“;cl
ture 7. Above the Curie point, ferromagnetic materials are parémagnig '
with an enhanced value of the paramagnetic susceptibility. Figure
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magnetlzat!on at a value /; as the field grows. This aspect is :‘fat'n(,‘n of the
the Langevin curves shown in Fig. 15.3. However, parama ;\e;:ﬁlmﬂcent "
only at very high fields (10,000 oersted) or very low tempgfatufr:g Sitﬁr]atgs
ferromagnctism the phenomenon occurs in easily accessible r‘ancrete mf
temperature and field. The one element which is truly‘remini;czn’t :,f
Langevin's theory is the value of the saturation magnetization, which is
essentially the same for paramagnets and ferromagnets. |
The interpretation of the mechanism of ferromagnetism has long been
handicapped by the obvious nonequilibrium aspect of the pheno:nenon
as commonly observed. The phenomenon as depicted in Fig. 15.6 1s
nonconservative; in fact, by equation (1.27), the area of the magnetization
curve gives directly the amount of energy converted into Heat in one
phenomenon contains therefore frictional aspects
atomic explanation. Pierre Weiss*

an applied
urve). It is

hysteresis cycle. The
which are not capable of a direct
took the fundamental step necessary for an understanding by postulating

that the atomic nature of ferromagnetism is obscured to us by a structure
involving relatively large magnetized blocks, called domains. A single
domain was supposed to have a magnetization curve of the type shown in
Fig. 15.7; the magnetization appears as a definite function of temperature
and field. Thermodynamics and statistics are therefore applicable. What
distinguishes the curve from the Langevin curve of Fig. 15.1 is the spon-
taneous magnetization which the material possesses at zero field. According
to Weiss, those aspects of Fig. 15.6 not reproduced io Fig. 15.7 were to be
explained by the assumption of interlocking domains which are s‘poln'-
taneously magnetized but are not free to follow ex.t‘ern:}l changes rev crfl,b Y
This hypothesis of Weiss has been brilliantly verified 1n thF last t?\T Sedr:;
We shall not try to discuss this aspect here, but :sl}all refer thélc‘-.l err;
the appropriate literature.t The atomic aspect of ferromagnetism, T¢p
sented by Fig. 15.7, is in itself a very interesting pmblcm.‘ . nypothesi
The original hypothcsis of Weiss to explain H‘g. 15.7 was U c \P,tht t};i;
of an internal field proportional to the magnetizat At first Si§ S

* pP. Weiss. J. phys. 6, 667 (1907). . i
t C. Kittel and J. K. Galt. “l’crronwgnetic domain theory:

437 (1956).
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Seems a reasonable hypothesis because such an effect is known from electro-
dynamics. Let us therefore modify equation (15.06) by making on the right-
hand side the substitution

H->H+ ol (15.25)

with o an undetermined number. We get then for the case j = L, with
(15.02) and (15.16)

N
I = T tanh Su(H+aol) (15.26)

The equation of state (15.26) connecting the thermodynamic variables
I, H. T, is in qualitative agreement with the facts about ferromagnetism,

Saturation_7 /
magnetization | iy Spontaneous

magnetization

Fig. 15.7. Magnetization curve of a single
magnetic domain; the curve is reversible,
and differs from the Langevin curves mainly
through the presence of a spontaneous
magnetization at zero magnetic field.

We shall consider first the fact about spontaneous magnetization. Setting
H in (15.26) equal to 0 and solving for 7, we get

xul

1%
arctanh (—)
N

H
The equation yields a 7 for every / between 0 and Nu/V. When [ is alpw[st
equal to Nu/V the denominator is very large and T is correspo_ndm'gi
small. Thereupon as [ decreases T increases. However, T"does not mcret:l:n
indefinitely because the inverse hyperbolic tangent is always larger the
its argument (see Fig. 15.3). We therefore find

kT = (15.27)

aul  aNu*
IVINu vV

(15.29)

kT - kT,
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when the inequality does not hold, the only solution of (1527)is I=0
The temperature T= 7} separates therefore a high-temperature‘re -i_on.
in which t‘hc'specnncn 1S Pflfamagnetic, from a low-temperature region,
o which it is ferromagn‘ctlc.mThls transition temperature is the é’:u,ig
temperature discussed earlier. Figure 15.8 shows the spontaneous magnetiza-
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Fig. 15.8. Plot of spontaneous magnetization versus

temperature; theoretical two-level internal field curve

with experimental points for iron ( ), nickel (0), cobalt
(A), and magnetite (+) (after R. Becker).

tion versus temperature curve predicted by (15.27) together with empirical
results for iron, nickel, cobalt, and magnetite; it is seen that the agreement
is close. A particularly interesting aspect of it is the way the magnetization
approaches zero near the Curie point. To see this in detail from (15.27), we
may assume / V//N u small and expand the arctanh, thus

oapl
[v 11v3

N,u+§N‘u.

kT~

or, with the definition (15.28),
]’QM\/g (Ti—-l)2 (15.29)
V T

This is an approach to zero with infinite slope. In addition to the spontane-
ous magnetization, the internal field theory also predicts correctly the
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susceptibility of ferromagnetic materials above the'Curie temperature,
In the paramagnetic range / is small compared to its saturation valye,
and therefore the tanh in (15.26) is small and can be set equal to its argu-
ment; the resultant equation for / is, with (15.28),

N u* H

T Vk(T-T,)

(15.30)

This equation is the Curie-Weiss law for the paramagnetic susceptibility
of ferromagnetic materials. It differs from the previously derived Curie
law only in the replacement of 7 by 7—T, . The Curie-Weiss law is also
in good agreement with experiment.

It is interesting that such a successful theory as the internal field theory
shows its insufficiency only when the experimental facts are used to estimate
x. We get from (15.28)

KT,V 108 x 108 x 1
TN T TI08 x 100

104 (15.31)

This is in contradiction to electrodynamics, which predicts «’s in (15.25)
at most equal to 4 7. Or, in other words, the observed Curie temperatures,
which lie in the neighborhood of 1000°, are much too high if it is assumed
that the atomic magnetic dipoles couple through their magnetic
interaction.

15-4. Ferromagnetism; Ising model

The discovery of the correct nature of the ferromagnetic coupling force
came as a by-product of quantum mechanics. Dirac§ showed that the
electronic spin and the Pauli exclusion principle combine in such a way
as to produce between the spins of two neighboring electrons a coupling
of the form

¢ =Jo o, (15.32)

* It is interesting that in the related phenomenon of ferroelectricity the conclusiqﬂ
goes the other way. Electric moments are about two orders of magnitude larger (I‘I}
Gaussian units), and ferroelectric Curie points generally lower than their magnetic
analogues. The field constant « thus comes out to be of reasonable order; the internal
field hypothesis is therefore right in this case, at least in its basic idea. Of course, the
coupling of electric dipoles through their electrostatic interaction has also a local aspect:
which is rather more complicated than the ferromagnetic coupling discussed here.

§ P. A. M. Dirac. Proc. Roy. Soc. A 123, 714 (1929). See also any textbook O
quantum mechanics.
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thus assumed to stretch through the. crystal, forming a cou
The magnetic enthalpy of the model is thus taken as

E= = 3 w0 H3 0 (15,33,

pled System

| where each summation runs over all spins. The magnitude of the interactio,,
| constants J,, is almost always chosen so as to leave on!y adjacent pairs i
the first sum. In fact, in some forms of the model there is just one coupling
constant linking all neighbors. Expression (15.33) then takes the forp,
E=—J32 0,0, —pHYo, (15.34)
k> ¢
Here the summation X runsoverall pairs of direct neighbors. The suppres.
Gk . :
sion of the x and ¥y components of spin in the Ising model produces ¢cop.

sequences which one must keep in mind to interpret the results of the
model reasonably. In the first place, it deprives magnetism of its angular
momentum aspect and thus falsifies its dynamics. It is, furthermore,
incorrect at low temperature, as we shall see later. It appears, however.
that there is no essential defect in the model at and above the Curie point,
where the statistical count of states assumes preponderant importance;
this count is right in the model. We may therefore presume that the
cooperative aspect of an exchange coupled network is similar to the one
resulting from the truncated expressions (15.33) and (15.34).

The first thing to do in a discussion of the Ising model is to simplify it
still further so as to yield an approximate derivation of the Weiss theory.
In this approximate derivation we treat the plus spins and minus spins as
two chemical species. Let N, be the number of plus spinsand N _ the number
of minus spins, and define their concentrations by the customary relations

N.+N N
N_ o
== 1 —c. (15.35b)

If we consider these concentrations fixed but the distribution of the SPi“':
random, then the entropy of the arrangement is given by equation (5.60

for the entropy of mixture:

5 36)
S=—=Nk(,Inc, +¢c Inc) (-

. . i . 18
To estimate the energy, we limit ourselves to the case for which there

, ) : ) Hm
only one nearest neighbor interaction J. The assumption of a ra"dlo-
L : ances
; arrangement of spins implies then that the relative abunddnf‘lt is,
| + +, — —, and + — neighbor pairs have their random values,
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Jore 2 is the number of nearest neighbors of .
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linear array four for a two-dimensional Square ne); %;ix fo:z":.i(twlo o
. M - ~ g . , y . m .

Jattice, eight for a body-centered cubic lattice, etc.). To sim I‘fp e cubic

introduce the total magnetic moment s stmplify further,

lf:lw:;tuti01ls a5 @ variable through the
M
¢ =1 (] + ;TM) (15.38a)
c.=1% (1 — ﬁ)
N (15.38b)
We then get for E
E = — .l_%J_W — MH
2N @ (15.39)

and for S, from (15.36),

M M M ' M
S=Nk{ln2—l(1—~—-n In (1———)—l(1 _) ( - }
: N,'AA,) Nu 2 +N,u In ‘1+N,u)

(15.40)
Now we introduce the free energy @ at constant field

®=U—-TS—HM=E-TS (15.41)

It is the free energy entering on the right-hand side of (8.38). By (8.39),
it has the property of being a minimum for fixed temperature and fixed
magnetic field. If, therefore, we succeed in approximating this quantity
for a given physical situation, and if we find the approximation contains
one or more undetermined parameters describing the internal state of
the system, then we must dispose of them in accordance with the Second
Law, and make ® a minimum with respect to these parameters. In the
present instance, we have one such parameter M we must dispose of 1t
by demanding that

( [ ) —0 (15.42)
OM /T
This yields, after some rearrangement of terms,
zJ M
M n (H+,_._) (15.43)
——;t = tanh T N i
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We recognize in (15.43) equation (1 5.26) previously derived, With a

~ " h y
interpretation for the “internal field constant™ «: Physica)
zJ
®= N (154
s 44

Since N/V is the number of spins per unit volume, it is of the org
where r is the distance between neighboring spins; the denomin
(15.44) is thus of the order of the magnetic interaction energy 2/ of twg
neighboring spins, which is roughly 10 1% erg. The numerator, on the other
hand, is the exchange coupling, which is more like an electrostatic quantif :
this means that it may rise toward 102 erg. The large magnitude of.,t
is thus explained, and the “internal field” idea reduced to a more rationa|
set of assumptions. With the reduction of « to fundamental Constants,
quantities derived from it are also so reduced. We shall note here only the
new expression for the Curie temperature 7, which replaces ( 15.28;.
namely,

er 1/
ator of

zJ _
kKT,

1 (15.45)

According to the Weiss internal field theory, the Curie point transition
is characterized, not only by the magnstic effects just discussed, but also
by a characteristic thermal behavior. This thermal behavior is worth
discussing here because it is indicative of cooperative phenomena in
general. Viewed from this point of view, paramagnetism and ferro-
magnetism deal with the same ordering process, first without, then with,
cooperative action. The modification of the thermal behavior as a con-
sequence of this action is then of basic interest. Part of this modification
can be predicted from equation (7.44), which is valid for structural
transformation in general. The coupling makes the enthalpy change larger.
while the entropy change stays the same. The transformation is thered!
shifted into a higher temperature range. However, this is not the r_ﬂ:\"f
striking change. To see the modification we eliminate M between (1337
and (15.43), setting H = 0. The result is

J 2F
kT - 2NJ

Jo - 2E
arctanh /| —
zNJ
o . . . 1 u[‘Ve
Differentiation of 7" with respect to E yields the heat Cﬁpac't)’e z‘urie

shown in Fig. 15.9. It is seen that the curve has a discontinuity at th
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Fig. 15.9. Heat capacity at constant field versus temperature in the internal field
theory of ferromagnetism; comparison of this curve with Fig. 15.4 shows the effect
of a cooperative coupling.

Ising model will yield the Weiss internal field theory and the second-order
Phase change associated with it, we must go on to verify whether these
"esults are a consequence of the model or of the approximations used in
“valuating its properties. For many years this distinction was not properly
“Ppreciated. It is true that we deal with approximations in either case:
M one case we deal with a model which is only an approximate image of
eality; in the other we derive a result which is only an approximate
Onsequence of the theory. However, there is a world of diﬂ'crcl‘lce between
™ two cases, In the approximate evaluation of a theory we simply make
Mistakes: that is, we depart from logic. We hope the departure 1S small.

lsut When we get striking results, such as those shown in‘FigS- 15.8 limd
9, then it is possible that they are & consequence of our mistakes;
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the results are then worthless and prove nothing. If, on the other hand, we
adopt an internally consistent model which admittcdl)f dogs not correspong
exactly to anything in nature, and if we evaluate conscientiously the prope;.
ties of that model, striking results of the type mentioned are of ya)y,
We know then that there is an interacting system which exhibits second-
order phase changes according to the known laws of physics, and thyy
perhaps experimentally observed systems are not too far removed from oy,
model system.

It is this kind of reason which has led physicists to investigate seriously
the Ising model. Second-order phase changes are tricky: by equation
(4.19), erratic changes in the specific heat imply erratic changes in the
fluctuations of the system. Even today the nature of these fluctuations
near the critical temperature is poorly understood. But the Ising mode]
has at least shown that second-order phase changes can arise as a conse-
quence of the known laws of physics. This is the reason why this model
1s worth studying in detail.

Careful investigation of the Ising model means construction of its
partition function. Since we want to investigate its properties in the
presence of a magnetic field, the partition function will be of the type F*
discussed in Section 8-2. Anticipating this later need, we wrote down the
necessary relations at that time. The “energy” in the Boltzmann exponent
is the quantity (8.37), which we usually call magnetic enthalpy for clarity.
Fortunately it is also the energy discussed in (15.33) and (15.34); it differs
from U in that it also contains the potential energy in the applied field A.
For this type of energy the partition function F* equals

F*= 3 exp [ﬂJZ Ui0k+/3/’tHzai] (15.47)

o; =41 k>

Here S goes over all spins, > over all pairs of direct neighbors, and
{ } Lk ) '
S over the 2 combinations +1 of the N spins. We verify that we get
01:_—1]

from F* by differentiation

Ee _ ('d In F*\) (15.49)
o
and
1 (¢In F*) (15.49)
B 7)) ( (H /s

was shown !

These relations were already written down in (8.39). It s
“magnet!

(8.38) that the partition function F* is associated with the
free energy” A — H* M,
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* for cases of physical ; .
e study of F : Of physical interest is .
rc;rl?lem- Its difficulty resides in the f St 1S an extremely hard
p

act that, if one wish i

g e ' shes to evaluate it

for the purpose of investigating phase transitions, one cannot assume the
qumber of COQPQfﬂtlng units to be finite. For in this latter case (15.47)
consists of a finite sum of terms without temperature singularity; this

makes the sum Iik_cwi:%e nonsingular. All interesting results are therefore
obtaimd by exal.m.natl(.)n of the Nth root of F* in the limit that N goes
(o infinity. The Fliﬂ1c1|!t1es pf a limiting process are therefore superimposed
upon the combinatorial difficulty of evaluating (15.47).

gome further thought along the same lines shows that even an infinite
Ising model cannot show ferromagnetism as long as it is infinite in one
dimension only. For ferromagnetism means a spontaneous magnetization,
which in turn means long-range order among the spins without an applied

+ + + + + + + + 4+ + 4

e i i

Fig. 15.10. Destruction of order in a linear array
of spins; one single reverse coupling is sufficient to
destroy long-range order.

field. Suppose that we have such an ordered arrangement of N Ising
spins with all spins parallel. Then we can upset it by introducing a single
break in it, that is, introducing the energy 2J at one point as shown in
Fig. 15.10. Since this break can be made at any of N positions (where
N 4+ 1 is the number of members of the linear chain), the entropy gain
is kIn N. The free energy change is therefore

AD =2J—kTInN

Since we have to consider A® in the limit of infinite N, there is no tempera-
ture, however small, sufficient to prevent destruction of long-range
order, because P is always lower for the disordered state.

The same argument was developed by PeierlsY to prove thg contrary
fora Square net of Ising spins: such a net is ferromagnetic. For this purpose
an estimate must be made of the number of ways in which a border of L
Segments separating + and — spins can be laid in a square net. Such a
border is shown in Fig. 15.11. The number of ways in which such a border
“4N be laid determines the entropy, and the length of the border deter-
Mines the energy. The result of the investigation is that the entropy, as
Well as the energy, varies as the first power of the length of such a bordc;r.

temperature can therefore be found which is sufficiently low so that the

q .
| R. Peierls. Proc. Cambridge Phil. Soc. 32, 477 (1936).
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energy overpowers the entropy in the expression E — T S. The stable
state is then one not containing such a border if the temperature is sufficj.
ently low.

The chapter following this one gives the derivation of the system partition
function for the rectangular Ising net without magnetic field, that is, a
two-dimensional array of spins having the value + 1 and having an inter.
action —J, 6 ¢' between neighbors in the rows and an interaction
— Jy 0 o’ between neighbors in the columns. There are several derivations
known, but they all make use of advanced algebraic methods which have

+ + + o+ o+ o+

+ + |- |+ + + +
+ + 4+ - - -+ + + +
+ + + + o+ |-+ o+ o+ o+

++¢-—\-—-+++

+ 4+ o+ 4+ 4

Fig. 15.11. Introduction of reverse orientation into the square
Ising net: it is now necessary to maintain a border of high
energy.

no easily discerned relationship to physical reasoning. We shall therefore
separate the algebra from the physical discussion and take over the results
(16.62), (16.63), and (16.67) from the next chapter. To avoid extraneous
complications we shall restrict the detailed discussion to the case J, = s
with a few observations concerning the more general case.

As worked out in Chapter 16, the square net of Ising spins has a partition

function F which equals

F=fY (15.50)

where N is the total number of spins, and f'is given by

dm — 2 sin2w)H
i {1 + (1 : sin’w) *} do (153D

&

1
In f = In (2 cosh 2J) + - f

0

with
2sinh2 g J (15.52)

"~ cosh22 g J

1
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arameter k IS zero at smal| temperature. ric: .
Th_ctypat a temperature at which » TISIng to a maximum of
uni
A
Sinh — = |
kT, (15.53a)
Or
J
/;—770 = 0.4407 (15.53b)

Then « returns to zero at high temperature. This means that the integral
in(15.51) vanishes for both very low and very high temperatures. The rough
outline of the behavior of f is therefore contained in the first term: how-
ever the second term has an effect at intermediate temperatures.

The best way to investigate the result more closely is to compute the
energy E by (15.48). If we maintain the distinction between the two terms
mn (15.51) we get E in the form

SINZ287 = 1 (2 4oy — 1} (15.54)

E=—2NJtanh28J — N J
e a2 sinh 28J cosh 28J \=

where K(«) is the complete elliptic integral of the first kind. At first sight
the statement that the first term gives roughly the behavior of the system
seems even more appropriate for £ than it was for f. For now the second
term vanishes three times: at high and at low temperature (because of the
vanishing of the curly bracket), and at the critical point defined by (15.53)
[because of the vanishing factor (sinh®28J — 1)]. This rough result is
not unexpected. The first term in (15.54) is the result (16.14) for a one-
dimensional Ising chain, with an obvious doubling of the exchange
nteraction J for the two dimensions. However, the influence of th‘e second
term is now more apparent. K(x), the complete elliptic integral .ot the first
kind, hag 4 logarithmic infinity at the critical point for which « T .l.
Consequently the entire second term behaves as (T—7.) In !T— T(./, n
e immediate neighborhood of T,. The slope of the energy “‘“eu S
therefore infinite at 7= 7, and the heat capacity is also infinite. ‘A,“Yd;\f
oM the critical point th(e second term has a typically "CO_OPCF."?I?IIZO
Muence, When the first term is strongly negative the corrcctl‘op lb)‘thc
negative; on the other hand, when the first term approuches ZerC

: , , | 15.12
o ction s positive and brings the result still closer O zero. kFigure

Sho . . in heavy and dotted
S the two energy versus temperature curves in heav)
Ouﬂlne.

IS i | field
Th]S 1S perhaps the rlght moment to refer bZle to the 1nterna
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i ' int the result (15.45
i .h gave for the Curie pointt 45, |
oy Wh]Lh( lg5.53) this means for the square net
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approximat N the

language of equation
L 0.5
kT,
This is not in very good agreement with (15.53). Even more d'isappoimin
is the energy versus temperature curve s a whole, thh is shown fo,
comparison in Fig. 15.12 as the curve in light outline. In addition i,

U/2N.J

-06

-08

-1.0

kT/d

Fig. 15.12. Energy versus temperature for the Ising square net. The exact curve 1s
shown in heavy outline, the “internal field” curve in light outline, and the equivalent
one-dimensional curve dashed.

misplacing the Curie point the internal field theory misinterprets its
significance. It yields zero energy, that is, complete randomness, at the
Curie temperature, while in reality 70 % of the total coupling is still present.
This is due to short-range alignment of neighboring spins. This alignment
predominantly determines the energy, even if the sample as a whole has no
resultant spin. The same discrepancy is shown in Fig. 15.13 in a comparison
of the two heat capacity curves.

The behavior of the two-dimensional Ising model as a function of the
magneFic field is not known at this time, the mathematics having been
found intractable. We have therefore no good evidence about the validity
of the Curie-Weiss law (15.30) in a theoretically consistent model. Yang**

did succeed in computing the spontaneous magnetization. It is zero abo¥
the Curie pomt and below it has the value

=N [COW 2D Ginhe " 15.55)
M Sinhi 2/L’,J(slnh 28 — 1) (

*»* C. M. Yang. Phys. Rev. 88, 809 (1952).
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Fig. 15.13. Exact and internal field plots for the heat capacity of the Ising square
net versus temperature.
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Fig. 15.14. Spontaneous magnetization versus tempera-
ture for the Ising square net.
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So the magnetization does indeed vanish at thg Curie.point With verticy
slope, as expected ; but in detail, discrepancies with th.e internal field moge
are again strong. As seen in Fig. 15.14, the § power in (15.55) leads to gy,
extremely sharp drop of the magnetic moment very close to the Curie pojn
This is a result which does not agree with either the internal field theo,
or most experimental results, as illustrated in Fig. 15.8. We shal| have
occasion to discuss this deficiency when dealing with the theory of spin
waves.

By presenting only the internal field model and exact results for the
Ising model we have of course not given an adequate picture of
the field. Very sophisticated approximations can be devised which make the
numerical disagreement between the approximation and the exact theory
very small. The three-dimensional Ising model has not been solved analytic-
ally, and there is little hope that it ever will be. We must therefore draw
the best possible conclusion from the available evidence for three dimen-
sions. The evidence is that the specific heat is also infinite at the Curie
point, perhaps with a law which is not logarithmic. Also the power law
in the drop-off of the spontaneous magnetization at the Curie point seems
to be more than 1/8, which is encouraging. At present, hope for further
progress is almost entirely based on the powerful numerical computing
techniques which are now becoming available to us.

*15-5. Spin wave theory of magnetization

If we consider how difficult the problem is of making reliable statistical
computations at or near the Curie point, we would be pretty foolhardy
to use a formula such as (15.53) for an empirical determination of the
exchange coupling in an actual material. The situation is in this respect
very similar to the case for gases: the critical point is too severe a distur-
bance of the perfect gas to teach us much about intermolcular forces.
We must look for a weaker disturbance. In Chapter 12 we turned to the
Joule-Thomson effect or the second virial coefficient. In ferromagnets
we find this kind of effect in the low-temperature behavior of the spon
taneous magnetization.

In an almost saturated sample, the only excitation recognized by th¢
Ising model is the reversal of an individual spin with the breaking of the
corresponding bonds. In modern parlance we would call this a particle
excitation. These excitations are expensive energy-wise and lead to 2
decrease of the spontaneous magnetization with increasing temperature
as 1 — exp[— «/T]. Blochtt first showed that a localized system of spins

1 F. Bloch. Z. Physik 61, 206 (1930).
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