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easily checked quantitatively because the actual susceptibility of a metal 

is made up of a number of contributions among which the above is only 
one. It is true, however, that alkali metals have a positive susceptibilit 

independent of temperature which is of the order of magnitude (15.24) 

15-3. Ferromagnetism; internal field model 

A phenomenon which was extremely fruitful for the development of 

statistical mechanics is ferromagnetism. We call a material ferromagnetic 

He 

Field strength 

Fig. 15.6. Empirical magnetization curve of 

a ferromagnetic material; the curve is 

irreversible, and is roughly characterized 

by the saturation magnetization 1, the 

remanence I, and the coercive field He. 

if it is capable of having a magnetic moment in the absence of an applic 

field. Ferromagnetism is not very widespread among substances in generdt 

the majority of ferromagnets known are alloys or compounds or 
elements iron, nickel, cobalt. If a ferromagnet is heated it loses its cnara 

teristic properties at a definite temperature, the so-called Curie temp 
ture . Above the Curie point, ferromagnetic materials are parans156 
with an enhanced value of the paramagnetic susceptibility. Figure 

15 
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shows a typical .a typical plot of the magnetization as a function of an applied etic field for a ferromagnetic material (magnetization curve). It is 
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magnetic 

maat we deal with a phenomenon showing hysteresis; the magnetiza seen 

tion is not not a unique function of the field but depends upon past history. In particular, the remanence 1,, that is, the magnetization at zero field, 
depends on the direction in which the specimen was last saturated. 
Similarly, a finite opposing field, the coercire field H,. is necessary to bring 
the magnetization to zero. A characteristic aspect is the saturation of the 

magnetization at a value , as the held grows. This aspect is reminiscent of 

the Langevin curves shown in Fig. 15.3. However, paramagnetism saturates 
only at very high fields (10,000 oersted) or very low temperatures, while in 

ferromagnetism the phenomenon occurs in easily accessible ranges of 

temperature and field. The one element which is truly reminiscent of 

Langevin's theory is the value of the saturation magnetization, which is 

essentially the same lor paramagnets and ferromagnets. 

The interpretation of the mechanism of ferromagnetism has long been 

handicapped by the obvious nonequilibrium aspect of the phenomenon 

as commonly observed. The phenomenon as depicted in Fig. 15.6 is 

nonconservative; in fact, by equation (1.27), the area of the magnetization 

curve gives directly the amount of energy converted into Heat in one 

hysteresis cycle. The phenomenon contains therefore frictional aspects 

which are not capable of a direct atomic explanation. Pierre Weiss* 

took the fundamentaB step necessary for an understanding by postulating 

that the atomic nature of ferromagnetism is obscured to us by a structure 

involving relatively large magnetized blocks, called domains. A single 

domain was supposed to have a magnetization curve of the type shown in 

Fig. 15.7; the magnetization appears as a definite function of temperature 

and field. Thermodynamics and statistics are therefore applicable. What 

distinguishes the curve from the Langevin curve of Fig. 15.I is the spon-

laneous magnetization which the material possesses at zero field. According 

to Weiss, those aspects of Fig. 15.6 not reproduced in Fig. 15.7 were to be 

explained by the assumption of interlocking domains which are spon-

taneously magnetized but are not free to follow external changes reversibly. 

This hypothesis of Weiss has been brilliantly verified in the last few years. 

We shall not try to discuss this aspect here, but shall refer the reader to 

the appropriate literature.t The atomic aspect of ferromagnetism, repre-

Sented by Fig. 15.7, is in itself a very interesting problem. 

The original hypothesis of Weiss to explain Fig. 15.7 was the hypothesIs 

OI an internal field proportional to the magnetization. 
At irst signt tnis 

*P. Weiss. J. phys. 6, 667 (1907). 

T C. Kittel and J. K. Galt. "Ferromagnetic 
domain theory," Solid State Pnys. 3, 

437 (1956). 
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seems a reasonable hypothesis because such an effect is known from electro-
dynamics. Let us therefore modify equation (15.06) by making on the right hand side the substitution 

H H +al (15.25) 
with a an undetermined number. We get then for the case j = , with 
(15.02) and (15.16) 

N 
I=u tanh iu(H +al) (15.26) 

The equation of state (15.26) connecting the thermodynamic variables 
1, H, T, is in qualitative agreement with the facts about ferromagnetism. 

Saturation 
magnetization Spontaneous 

magnetization 

H-

Fig. 15.7. Magnetization curve of a single 
magnetic domain; the curve is reversible, 
and difers from the Langevin curves mainly 
through the presence of a spontaneous 

magnetization at zero magnetic field. 

We shall consider first the fact about spontaneous magnetization. Setting 
H in (15.26) equal to 0 and solving for 7, we get 

k T= (15.27) 

arctanh 

The equation yields a T for every I between 0 and Nu/V. When is almost 

equal to Nu/V the denominator is very large and T is correspondingly 

small. Thereupon as / decreases T increases. However, 7T does not increase 

indefinitely because the inverse hyperbolic tangent is always larger than 

its argument (see Fig. 15.3). We therefore find 

k VIN aul N k T. (15.28) 
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When the the inequality does not hold, the only solution of (15.27) is I= 0. 
wemDerature 7 =T, separates therefore a high-temperature region, The temperature 

in which the specimen is paramagnetic, from a low-temperature region, 
which it is ferromagnetic. This transition temperature is the Curie which it is 
in temperature discussed earlier. Figure 15.8 shows the spontaneous magnetiza-

1.0 r+-X-O* 

0.8 

0.6 

0.4 

0.2 

0.2 0.4 0.6 0.8 1.0 

TITe 

Fig. 15.8. Plot of spontaneous magnetization versus 

temperature; theoretical two-level internal field curve 

with experimental points for iron (x), nickel (o), cobalt 

(A), and magnetite (+) (after R. Becker).. 

tion versus temperature curve predicted by (15.27) together with empirical 
results for iron, nickel, cobalt, and magnetite; it is seen that the agreement 

1S close. A particularly interesting aspect of it is the way the magnetization 

approaches zero near the Curie point. To see this in detail from (15.27), we 

may assume I V/N u small and expand the arctanh, thus 

kTTV N V'3 

or, with the definition (15.28), 

(15.29) 

nis is an approach to zero with infinite slope. In addition to the spontane-

Ous magnetization, the internal field theory also predicts correctly the 
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Susceptibility of ferromagnetic materials above the Curie temperature. 
In the paramagnetic range I is small compared to its saturation value, 

and therefore the tanh in (15.26) is small and can be set equal to its argu-

ment; the resultant equation for I is, with (15.28), 

N2 H 

ykT-T) (15.30) 

This equation is the Curie-Weiss law for the paramagnetiC susceptibility 
of ferromagnetic materials. It differs from the previously derived Curie 
law only in the replacement of T by T-T. . The Curie-Weiss law is also 

in good agreement with experiment. 
It is interesting that such a successful theory as the internal field theory 

shows its insufficiency only when the experimental facts are used to estimate 

a. We get from (15.28) 

kTe V 10-16x 103 x 1 
104 (15.31) = 

N 1023x 10-40 

This is in contradiction to electrodynamics, which predicts «'s in (15.25) 

at most equal to 4 T. Or, in other words, the observed Curie temperatures, 

which lie in the neighborhood of 1000, are much too high if it is assumed 

that the atomic magnetic dipoles couple through their magnetic 

interaction.t 

15-4. Ferromagnetism; Ising model 

The discovery of the correct nature of the ferromagnetic coupling fore 
came as a by-product of quantum mechanics. Dirac§ showed that the 

electronic spin and the Pauli exclusion principle combine in such a way 

as to produce between the spins of two neighboring electrons a coupling 

of the form 

=Jo (15.32) 

; It is interesting that in the related phenomenon of ferroelectricity the conclusioa 
goes the other way. Electric moments are about two orders of magnitude larger 
Gaussian units), and ferroelectric Curie points generaly lower than their mag 
analogues. The field constant a thus comes out to be of easonable order; the iner 

field hypothesis is therefore right in this case, at least in its basic idea. Of course, 
coupling of electric dipoles through their electrostatic interaction has also a local aspce 

which is rather more complicated than the ferromagnetic coupling discussed net 
SP. A. M. Dirac. Proc. Roy. Soc. A 123, 714 (1929). See also any textbooN 

quantum mechanics. 

e. 

on 
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Here O and o are the two spins and J is a function of distance called the 
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nergy or exchange coupling. It can be of either sign. If the wave 
exchd of the two electrons interpenetrate substantially, the exchange 

change energy or e. 

functions of 

the same order as the electrostatic interaction, but at larger 

energy 1s of 

istances os it falls off exponentially as the wave functions themselves. We therefore think of J as being of electrostatic order, but only tine between close neighbors. Heisenberg was the first to realize that eexchange energy , il ot negative sign, offers a natural explanation Car the phenomenon of ferromagnetism. For a local coupling of spins of the form (15.32), strung throughout a crystalline material, will tend to align nins to form a large resultant; in atoms, this effect is well known as Hund's rule and arises from just this cause. 

We have today only partial answers concerning a set of spins coupled by exchange coupling. For some purposes approximate answers may be abtained by the use of approximate methods. There is one question of 
principle, however, which needs a straightforward answer, and that is 
whether the spontaneous magnetization and the Curie point pheno-
menon, as exhibited in Fig. 15.8, are in fact consequences of the interaction 
(15.32). A transition of the Curie point type, in which a system passes 
through a continuity of intermediate states, yet exhibits a discontinuity 
in some temperature derivatives at a temperature 7e is called a second-

order phase transition. The question whether a coupling between neighbors, 

strung over large distances, can entail such second-order phase changes is 
a question of principle which statistics must answer by yes or no. This is 

the reason for the intense interest in this type of system on the part of 

workers in statistical mechanics. 
At the present time, the question raised in the preceding paragraph 

cannot be answered mathematically for the full exchange interaction 

(15.32). There is, however, a simplified form of the exchange inter-

action, the so-called Ising model, for which far-reaching answers 

nave been obtained. We shall therefore turn to this model for further 

discussion. 
ne Ising model is essentially a truncated exchange hamiltonian. lt 

s Ola Oze + O, O2u+ O, Ogz by 1, Og only; this is qualitatively 

Pidusible because, if the quantization is along the z direction, only this 

dagonal, and the expectation values of the other operators are 

1n addition, in its simpler aspects, the Ising problem needs noquantum 

Cnanics for its discussion, because all variables of the truncated hamil-

COmmute. The quantum variable o, thus becomes a classical scalar 

apable of two values, +1 and -1. A network of such scalar spins is 

W. Heisenberg. Z. Physik 49, 619 (1928). 
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thus assumed to stretch through the crystal, forming a couple 

The magnetic enthalpy of the model is thus taken as 
oupled system. 

E=-}2J 0, %=uH2o (15.33) 
where each summation runs over all spins. T he magnitude of the interaos: action 

constants J is almost always chosen so as to leave only adjacent Daire s 

the first sum. In fact, in some forms of the model there is just one o 
oupling 

n 

constant linking all neighbors. Expression (15.33) then takes the form 

E= -E ,- H2 o i,k) (15.34) 
Here the summation runs over all pairs of direct neighbors. The suppres 

<i,k) 
sion of the « and y components of spin in the Ising model produces Con 

sequences which one must keep in mind to interpret the results of the 
model reasonably. In the first place, it deprives magnetism of its angular 

momentum aspect and thus falsifies its dynamics. It is, furthermore, 
incorrect at low temperature, as we shall see later. It appears, however, 
that there is no essential defect in the model at and above the Curie point, 

where the statistical count of states assumes preponderant importance: 
this count is right in the model. We may therefore presume that the 
cooperative aspect of an exchange coupled network is similar to the one 
resulting from the truncated expressions (15.33) and (15.34). 

The first thing to do in a discussion of the Ising model is to simplify it 
still further so as to yield an approximate derivation of the Weiss theory. 
In this approximate derivation we treat the plus spins and minus spins as 

two chemical species. Let N, be the number of plus spins and N_ the number 
of minus spins, and define their concentrations by the customary relations 

N N 
C+ (15.35a) 

N+N N 

N 
C_ l - c+ (15.356) 

N 

If we consider these concentrations fixed but the distribution of the spins 
random, then the entropy of the arrangement is given by equation ( 
for the entropy of mixture: 

S=-Nk (c^ In c + c In c_) 
(15.36) 

To estimate the energy, we limit ourselves to the case for which tne 
only one nearest neighbor interaction J. The assumption oI * of 

arrangement of spins implies then that the relative abundane 

++,--, and +- neighbor pairs have their random values, tne 
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are 

as c, c2 

expression 
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2 and 2c, C, respectively. If we insert this into the energy 5.34) we get 

z NJ(c + c-2 c, c)-N u H (c, -c) (15.37) 
Here 

.is the number of nearest neighbors of any given spin (two for a arrav, four for a two-dimens1onal square net, six for a simple cubic inca or a body-centered cubic lattice, etc.). To simplify further, 
lattice, eight for 

introduce the total magnetic moment M as a variable through the let us 
introduce the total magnetic moment a ). To simplify further 

substitutions 

c=}(14 
Nu (15.38a) 

e- (15.38b) 

We then get for E 

12J M2 E 2 N MH (15.39) 

and for S, from (15.36), 

S-Nkn2i(1 
M in -(1NIn(1+ 

Nu 
(15.40) 

Now we introduce the free energy at constant field 

D = U -TS - H M = E -TS (15.41) 

It is the free energy entering on the right-hand side of (8.38). By (8.39), 

t has the property of being a minimum for fixed temperature and fixed 

magnetic field. If, therefore, we succeed in approximating this quantity 
1or a given physical situation, and if we find the approximation contains 

one or more undetermined parameters describing the internal state of 

ne system, then we must dispose of them in accordance with the Second 

Law, and make ) a minimum with respect to these parameters. In the 

PCsent instance, we have one such parameter M; we must dispose of it 

by demanding that 

(15.42) = 0 
OM/H,Tr 

This yields, after some rearrangement of terms, 

zJ M (15.43) M 
= tanh H* N? N 
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We recognize in (15.43) equation (15.26) previOusly derived, with a phvs. 
interpretation for the "internal field constant"" a: 

/ed, with a physical 

N/V (15.44) 
Since N/V is the number of spins per unit volume, it is of the order 1/a 
where r is the distance between neighboring spins; the denominator 
(15.44) is thus of the order of the magnetic interaction enerEy / of two 
neighboring spins, which is roughly 10" erg. The numerator, on the other 
hand, is the exchange coupling, which is more like an electrostatic quantity 
this means that it may rise toward 10- erg. The large magnitude of 
is thus explained, and the "internal field" idea reduced to a more rational 
set of assumptions. With the reduction of a to fundamental constants. 
quantities derived from it are also so reduced. We shall note here only the 
new expression for the Curie temperature T. which replaces (15.23 
namely, 

of 

.=1 
kTe (15.45) 

According to the Weiss internal field theory, the Curie point transition 
is characterized, not only by the magnetic effects just discussed, 
by a characteristic thermal behavior. This thermal behavior is worth 

discussing here because it is indicative of cooperative phenomena in 
general. Viewed from this point of view, paramagnetism and ferro 
magnetism deal with the same ordering process, first without, then with. 
cooperative action. The modification of the thermal behavior as a con-
sequence of this action is then of basic interest. Part of this modification 
an be predicted from equation (7.44), which is valid for structural 

transformation in general. The coupling makes the enthalpy change larger 

while the entropy change stays the same. The transformation is thereby 
shifted into a higher temperature range. However, this is not the mos 
striking change. To see the modification we eliminate M between (15. 
and (15.43), setting H = 0. The result is 

- 2E 
zNJ (1546) 

arctanh 2E 
2NJ 

urve 

Differentiation of 7T with respect to E yields the heat capacitye 
shown in Fig. 15.9. It is seen that the curve has a discontinuity at tnc 

Curie 



noint: the specific heat rises to a maximum and thereupon goes dis-

features fa second-order phase change. 
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point 

ontinu l phase changes, where two torms of different materis! proper 

continuc 

to zero. Yet, at the same time, the change is not as abrupt as for nor. 

as fort at one temperature. In other words, we have reproduced the 
ties coexist 

fea verified that a certain type of approximate treatment of the 
Having verified 

1.6 

1.4 

12 

1.0 

08 

0.6 

0.4 

0.2 

1 
k T/J 

g. 15.9. Heat capacity at constant field versus temperature in the internal field 

heory of ferromagnetism; comparison of this curve with Fig. 15.4 shows the effect 

of a cooperative coupling. 

Sing model will yield the Weiss internal field theory and the second-order 

Plase change associated with it, we must go on to verify whether these 

uts are a consequence of the model or of the approximations used in 

adaing its properties. For many years this distinction was not properly 

PPreciated. It is true that we deal with approximations in either case: 

consequen ce of the theory. However, there is a world of ditterence between 

15.9, then it is possible that they are a consequence 
of our mistakes; 

C case we deal with a model which is only an approNImate image of 

C n the other we derive a result which is only an approximate Teality; in the other 

But 
stakes; 
whe 

that is, we depart from logic. We hope the departure is small. 

15.9, th get striking results, such as those shown in Figs. 15.8 and 

the 
mict ses. In the approximate evaluation of a theory we simply make 

But when we 
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the results are then worthless and prove nothing. If, on the other hand 

adopt an internally consistent model which admittedly does not corresnond 

exactly to anything in nature, and if we evaluate conscientiously the proner 
ties of that model, striking results of the type mentioned are of value, 
We know then that there is an interacting system which exhibits second. 
order phase changes according to the known laws of physics, and that 
perhaps experimentally observed systems are not too far removed from our 

model system. 
It is this kind of reason which has led physicists to investigate seriously 

the Ising model. Second-order phase changes are tricky: by equation 

(4.19), erratic changes in the specific heat imply erratic changes in th» 
fluctuations of the system. Even today the nature of these fluctuations 
near the critical temperature is poorly understood. But the Ising model 

has at least shown that second-order phase changes can arise as a conse 
quence of the known laws of physics. This is the reason why this model 

is worth studying in detail. 
Careful investigation of the Ising model means construction of its 

partition function. Since we want to investigate its properties in the 

presence of a magnetic field, the partition function will be of the type F* 

discussed in Section 8-2. Anticipating this later need, we wrote down the 
necessary relations at that time. The "energy" in the Boltzmann exponent 

1s the quantity (8.37), which we usually call magnetic enthalpy for clarity. 

Fortunately it is also the energy discussed in (15.33) and (15.34); it differs 

from U in that it also contains the potential energy in the applied field H. 

For this type of energy the partition function F* equals 

F= exp , 0, + BuH (15.47) 

Here2 goes over all spins, over all pairs of direct neighbors, and 

i,k 
over the 2 combinations t1 of the N spins. We verify that we get 

from F* by differentiation 

E=- ( In F* (15.48) 
H 

and 

In F* 

M- (15.49) 

in 
These relations were already written down in (8.39). It was snetic 

(8.38) that the partition function F* is associated with the "magne 

free energy" A - H M. 
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udy of F* for cases of physical interest is an extremely hard 
problem. Its 1n1ts difficulty resides in the fact that, if one wishes to evaluate it 
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or the purpose 
of nurpose of investigating phase transitions, one cannot assume the ber of cooperating nits to be finite. For in this latter case (15.47) 

co 
akes the sum likewise nonsingular. All interesting results are thereforee 

ists of a finite sum of terms without temperature singularity:; this ists of a finite 
cons. 

obt 

to infinity. The lifficulties of a limiting process are therefore superimposed 
to infinity. The difi 

unon the combinatorial difficulty of evaluating (15.47). 

btained by examination of the Nth root of F* in the limit that N goes 

upon the con 

Some further thought along the same lines shows that even an infinite 
Ising model cannot show ferromagnetism as long as it is infinite in one 

dimension only. For ferromagnetism means a spontaneous magnetization, 

which in turn means long-range order among the spins without an applied 

+++ + + ++ +t+++ + 

++++ ++ 
Fig. 15.10. Destruction of order in a linear array 
of spins; one single reverse coupling is sufficient to 

destroy long-range order. 

field. Suppose that we have such an ordered arrangement of N Ising 
spins with all spins parallel. Then we can upset it by introducing a single 
break in it, that is, introducing the energy 2J at one point as shown in 

Fig. 15.10. Since this break can be made at any of N positions (where 
N+1 is the number of members of the linear chain), the entropy gain 

is k In N. The free energy change is therefore 

Ad = 2J - k TIn N 

Since we have to consider Ad in the limit of infinite N, there is no tempera-

ure, however small, sufficient to prevent destruction of long-range 

oraer, because is always lower for the disordered state. 

ne same argument was developed by Peierls to prove the contrary 

4Square net of Ising spins: such a net is ferromagnetic. For this purpose 

mate must be made of the number of ways in which a border of L 

h s separating + and - spins can be laid in a square net. Such a 

C sshown in Fig. 15.11. The number of ways in which such a border 

laid determines the entropy, and the length of the border deter 

wathe energy. The result of the investigation is that the entropy, as 

A4the energy, varies as the first power of the length of such a border. 

"PCrature can therefore be found which is sufficiently low so that the 
emperature can 

R Peierls. Proc. Camb Phil. Soc. 32, 477 (1936). 
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energy overpowers the entropy in the expression E TS. The stable 
state is then one not containing such a border if the temperature is suffici. 
ently low. 

The chapter following this one gives the derivation of the system partition 
function for the rectangular Ising net without magnetic field, that is, a 
two-dimensional array of spins having the value tl and having an inter. 
actionJod' between neighbors in the rows and an interaction 
-Ja d' between neighbors in the columns. There are several derivations 
known, but they all make use of advanced algebraic methods which have 

+ + 

+ 

+ + 

+ + + + 

+ 

+ + 
Fig. 15.11. Introduction of reverse orientation into the square 
Ising net: it is now necessary to maintain a border of high 

energy. 

no easily discerned relationship to physical reasoning. We shall therefore 

separate the algebra from the physical discussion and take over the results 
(16.62), (16.63), and (16.67) from the next chapter. To avoid extraneous 
complications we shall restrict the detailed discussion to the case ,= J 
with a few observations concerning the more general case. 

As worked out in Chapter 16, the square net of Ising spins has a partition 

function F which equals 

F=f (15.50) 

where N is the total number of spins, and fis given by 

Inf= In (2 cosh 28J) + In (1+(1-kè sin-o do (15.51 (15.5) 

2 

with 

2 sinh 2 pJ 

cosh 2 J 

(15.52) 



15-4. Ferromagnetism; Ising model 339 ameter K is zero at small temperature, rising to a maximum of 

The paranmeter 

temperature at which unity at a 

2J 
sinh 

k T (15.53a) 

0.4407 k Te (15.53b) 

Then k returns to zero at high temperature. This means that the integral 
in (15.51) vanishes for both very low and very high temperatures. The rough outline of the behavior of f is therefore contained in the first term; how 
ever the second term has an effect at intermediate temperatures. 

The best way to investigate the result more closely is to compute the 
energy E by (15.48). If we maintain the distinction between the two terms 

in (15.51) we get E in the form 

sinh 28/-1K) -1 (15.54) E= - 2 NJ tanh 28J- NJ-
sinh 26J cosh 28J l7 

where K(x) is the complete elliptic integral of the first kind. At first sight 
the statement that the first term gives roughly the behavior of the system 
Seems even more appropriate for E than it was forf. For now the second 

Term vanishes three times: at high and at low temperature (because of the 
anishing of the curly bracket), and at the critical point defined by (15.53) 
because of the vanishing factor (sinh2 26J - 1)]. This rough result is 

nOt unexpected. The first term in (15.54) is the result (16.14) for a one-

mensional Ising chain, with an obvious doubling of the exehange 

nteractionJ for the two dimensions. However, the influence of the second 

kind is now more apparent. K(K), the complete elliptic integral of the first 
kind, has a logarithmic infinity at the critical point for which x = 1. 

b uenty the entire second term behaves as (T-7,) In |-1| n 

mmediate neighborhood of T.. The slope of the energy curve 1s 

Core infinite at T=T. and the heat capacity is also inhnite. Away 

influenec 
from the critical point the second term has a typically "cooperative" 

negative 
influence. When the first term is strongly negative the correction is also 

Correcti" 
nega 

he other hand, when the first term approaches zero the 

"positive and brings the result still closer to zero. Figure 15.12 

shows 
outline. energy versus temperature curves in heavy and dotted 

perhaps the right moment to refer back to the internal field This is 
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approximation, which gave for the Curie point the result (54si 

language of equation (15.53) this means for the square net 
(15.45). Int the 

= 0.25 
k Te 

This is not in very good agreement with (15.53). Even more disapnoins: 

is the energy versus temperature curve as a whole, which is shown 

comparison in Fig. 15.12 as the curve in light outline. n addition 

- 02 

- 0.4 

-0.6 

-0.8 

-1.0 
2 3 5 

k T/J 

Fig. 15.12. Energy versus temperature for the Ising square net. The exact curve is 

shown in heavy outline, the "internal field" curve in light outline, and the equivalent 
one-dimensional curve dasheed. 

misplacing the Curie point the internal field theory misinterprets its 
significance. It yields zero energy, that is, complete randomness, at the 
Curie temperature, while in reality 70% of the total coupling is still present. 
This is due to short-range alignment of neighboring spins. This alignment 
predominantly determines the energy, even if the sample as a whole has no 
resultant spin. The same discrepancy is shown in Fig. 15.13 in a comparison 
of the two heat capacity curves. 

The behavior of the two-dimensional Ising model as a function of the 

magnetic field is not known at this time, the mathematics having o found intractable. We have therefore no good evidence about tne of the Curie-Weiss law (15.30) in a theoretically consistent model. 1 ang did succeed in computing the spontaneous magnetization. It is 2eto* the Curie point and below it has the value 

en 

ve 

M = NuCOsh (sinh# 28J -
'-b (15.55) 

Lsinh 28/ Sinh 28-

**C. M. Yang. Phys. Rev. 85, 809 (1952). 
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Fig. 15.13. Exact and internal field plots for the heat capacity of the Ising square 

net versus temperature. 
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8 15.14. Spontaneous magnetization versus tempera-

ture for the Ising square net. 
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So the magnetization does indeed vanish at the Curie point with vertieai 

slope, as expected; but in detail, discrepancies with the internal field madel 

are again strong. As seen in Fig. 15.14, the , power in (15.55) leads to an 
extremely sharp drop of the magnetic moment very close to the Curie point. 

This is a result which does not agree with either the internal field theory 
or most experimental results, as illustrated in Fig. 15.8. We shall have 
occasion to discuss this deficiency when dealing with the theory of spin 

waves. 

By presenting only the internal field model and exact results for the 
Ising model we have of course not given an adequate picture of 
the field. Very sophisticated approximations can be devised which make the 
numerical disagreement between the approximation and the exact theory 
very smallI. The three-dimensional Ising model has not been solved analytic-
ally, and there is little hope that it ever will be. We must therefore draw 
the best possible conclusion from the available evidence for three dimen-
sions. The evidence is that the specific heat is also infinite at the Curie 
point, perhaps with a law which is not logarithmic. Also the power law 
in the drop-off of the spontaneous magnetization at the Curie point seems 
to be more than 1/8, which is encouraging. At present, hope for further 
progress is almost entirely based on the powerful numerical computing 

techniques which are now becoming available to us. 

*15-5. Spin wave theory of magnetization 

If we consider how dificult the problem is of making reliable statistical 
computations at or near the Curie point, we would be pretty foolhardy 
to use a formula such as (15.53) for an empirical determination of the 
exchange coupling in an actual material. The situation is in this respect 

very similar to the case for gases: the eritical point is too severe a distur 

bance of the perfect gas to teach us much about intermolcular forces 
We must look for a weaker disturbance. In Chapter 12 we turned to the 
Joule-Thomson effect or the second virial coefticient. In ferromagnets 
we find this kind of effect in the low-temperature behavior of the spoU 
taneous magnetization. 

In an almost saturated sample, the only excitation recognized by the 

Ising model is the reversal of an individual spin with the breaking of tn 
corresponding bonds. In modern parlance we would call this a particle 
excitation. These excitations are expensive energy-wise and leaa 
decrease of the spontaneous magnetization with increasing tempera 
as 1- exp[-«/T]. Blochtt first showed that a localized system of spl 

tt F. Bloch. Z. Physik 61, 206 (1930). 
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