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Chapter 55 

A Few Elements of Quantitative Information Theory 

1. The Amount of Information 
The attempt to construct a quantitative theory in which the 

concepts of "production" and "transmiss ion " of information are me an i ng-

ful faces two main di fficulties. The definition of a mathemati cal mode l 

in whi ch such concepts are wel1 defined and the assignment of a measure 

to the amount of information involved. Hereafter the basic elements of 

such a theory wil1 be reviewed in a way which naturally lends itself to 

application in physics. 

It is assumed that one receives information whenever one "learns" 

of an event whose occurrence was previously un certain. Moreover, the 

more 1ikely an event is, the less information is conveyed by the know 

ledge of its actual occurrence. Let x represent [the occurrence of 

its comp1ement (i.e. its non-occurrence), and 1let an event, and x 

Px Pz where 

(1.1) PxPz1 

denote the probabilities of two such events. Furthermore, let x 

denote the amount of information conveyed by the knowledge of i 

occurrence of X. Assuming that x is specified only by its probabi 

1ity Px 
defined over the range 

let us define I, to be a non-negative function I of Px 

0< P,s1 
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(1.2) 1(P, 

= 0 is meaningless in the present context). Since that Px (not ice 

is Px 
the probabi lity of receiving the amount of information I is p 

and that of receiving I is P the expected amount of information 

recei ved is 

H(x,) PT(P) * PI(Pz (1.3) 

aE cOurse the symbolism can be easily generalized to more complex cases: 

sx. ,x,) are a set of mutually exclusive events of probabilities 
Px, Px respectively, such that 

= 1 
(1.4) 

then the average amount of information conveyed by the knowledge of 
whichX actual1y occurred is assumed to be 

(1.5) H(X1Xn Px,(Px, + PxI(Px 
(notice that if Px 0 for some J. the event X should simp1y be 

omitted from consideration). 

It is interesting that this intuitive type of reasoning leads to 

Strong constraints upon the form of I(). For simplicity let us begin 
ith n 3 (and set x, = X, X, = y, X = Z). In order to determine 
among the events x, y, z actually occurred, it is e.g. suffi-

O dete rmine whether or not x occurred, and in the case where 
infa t didn't, to determine which of y, z did occur. The amount of 

at1 on conveyed by the first detemination is evident ly information conv 

H(x,) = p,I (p,) + (1-P,)I(1 P 
are 

respectively P/P Pz/pz The amount of information conveyed 

(1.6) 

If x didn't occur. Occur, then the conditional probabilities of y and 

second determination is therefore given by 
by the 
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(1.7) 
However this latter amount of informatíon is conveyed only when the event x occurs (i.e. x does not occur) so the total amount of information conveyed on the average, by the two deteminati onsis 

H(x.y,z) = H(x,x) + pH(y,z|3) (1.8) 

The requirement to be imposed on the function I() is that the relation (1.8) be satisfied for all allowable values of Py» Py» P, greater than zero. Explicitly (1.8) writes, expressing the H-functions in terms of probabilities, 

P HCP,PyP)H(o-p,) +(-p,) ( 1-Px 1 P (1.9) 
Now the i dentical reasoning applies if x is considered to be a 

compos ite event, namely if x is assumed to consist of (n- 1) 
mutually exclusive events U n-1 whose probabilities are denoted, 
P1 Pn-1 Writing 91 Py» 92 Pz and Pn P» (Pn 9 *92), (1.9) reads in this case 

(1.10) HP1P-191,42) HP]P,) P,H,2 
Pn Pn 

Condition (1.10) is very strong; indeed it will practically 
suffice to determine the form of H(P1... sPn? without regard to its 

definition in terms of I). The latter will only impose a further 
condition suggested by the fact that terms of the form p I(p,) shoul 
be dropped when P = 0, namely that H(P1... .P,)be defined even 
when some of the p, 's vanish but that it be continuous in the doma in 

(1.11) 9: {Pi 2 0 i 1,..n P 1} 
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tion H(P1 Pn 15 completely determined up to a multipl1i-which fixes the size of the unit of information ca an1y additional requirement that it must be a symmetric function 

The function 

cative cons tant 

by the 

of all its variablees. 

Tn order to explicitly construct H, let us begín with a few 
remarks. First, writing (1.9) with PxPy 1/2, P, = 0, one has 

0(G;)2Ha.o) (1.12) 

Using now the hypothes is 0f complete symmetry, one has 

.0)(o.}) (1.13) 

and final1y using (1.9) again with px 0, Py Pz = 1/2, 

wo. H(0,) () (1.14) 

Inserting (1.12) and (1.14) into (1. 13) and recalling that one should 
have H(0,1) = H(1,0), (1.13) implies 

H(1,0) = 0 (1.15) 

tquation (1.15) in turn imp 1ies that 

(1.16) HP1Pn.0) = H{P1 Pn 

one can straightforwardly derive from (1.10), setting in it 92 

(and hence 
(m&2) 1P. One can now by induction extend (1.10) 

H(P1 Pp Pn Pn-1 9. . 9m= H(P Pn+ PH 
Pn 

(1.17) 
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where 

(1.18) Pn 91 .. +m 

Notice that (1.17) indeed coincides with (1.10) for m= 2. From (1.16). 

it is clear that one has to consider only the case when 9 0, 

i 1,.. ,m. 

From (1.16), 

Suppose there is an m such that (1.17), (1.18) are true 

for al1 n, then, setting 

(1.19) p'2 m+1 

and using (1.10) as well one can write 

HP Pn-1 91 9m+1 

m+1 H(P1Pn-1» 9.p') + p'H .. 

HP )+P,"()+ p'H(*2, 
Pn Pn 

(1.20) 
But, once more for the induction hypothes is (to be thought of for n= 2), 

mt+1 (1.21) 
p' Pn Pn Pn Pn 

i.e. 

gre P 
p' Pn Pn 

(1.22) 
which, inserted at the ri ght-hand side of (1.20) qgi ves the assertion o (1.17) for m+1. 
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Tt is now easy matter to prove that if 

m 
i 1,... ,n 

(1.23) P 4i, 
j-1 

then 

H(1,1 91,m, *** * n,1**. 9n,m. 
4,1 

(1.24) H(P Pn P 
Pi i-1 P 

In fact, using (1.17), one has 

n,1 n mn 
H91,1 9n,m_P,H 

Pn Pn 

(1.25) + H[91,1.. n-1,m-1Pn 

After shifting P in the last factor to the extreme left by the 

assumed symmetry of H, the reduction process can be repeated on it. 
Pn 

After n steps the result (1.24) is obta ined. Let us now set 

(1.26) Fln)H..)n n2 

Applying (1.24) to the case m m, 

one has 

and F(1) = 0. 

ij 1/mn, Y i,j = 1,... ,n, 

(1.27) F(mn) F(m) + F(n) 

Applying further (1.17) one obtains 

(1.28) )n()( 
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from whi ch 

(1.29) hH )= F(n) -nl F(n-1) 

Now from the continuity of H(p,1-p) there follows that as n>o 
nH(0,1) = 0 (see (1.15)). Moreover the recursion relation 

(1.30) n n nF (n) - (n-1)F(n-1) 

implies 

(1.31) nfF(n), kng k1 

or 

n+12 knk n F(n)- L. knk2n n(n+1) k 
(1.32) n n n 

n 2 kn is simply the arithmetic mean of the first But 
n(n+1) k=1 

n(n+1) terms of the sequence n n2» n2» n3 n3 n3 n4 n4 n4 "4*** 2 

Thus as n, whose 1imit, as it was shown above is zero. 
n 

2 
n n(n+1 2 K*nk0, from which follows that also n).o. 

Finally let 

(1.33) n F(n) - F(n-1) n,, - F(n-1) 
n 

as well. We have thus all the ingredients needed to 

It is clear from (1.27) that we only need 

0 as n, 

determine the fom of F(n). 

to know the value of F(n) for n prime. Indeed, for arbitrary n, let 

s21 (1.34) n P1 .. 
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factorization of n. Repeated application of (1.27) gives 
e the prime 

then 

F(n)=a F(P,) . , FP) (1.35) 

do now put, for al1 prime p 

F(p) &n p (1.36) 

so that (1.35) reads 

F(n) 1 p, n P ... *s *pe n ps on Ps (1.37) 

It is straightforward to show that the sequence fc: P= prime 

contains a largest member. In fact, if the contrary were true, it would 

be possible to construct an infinite sequence of primes P1P2 < P3. 

with P= 2 such that P41 were the first prime greater than P 

p p. There would foll ow from this construction that 

let 
for which 

if q is a prime less than P then C< . Now, for i>1, let 

P-1 
1 

. 9 r21, B,e , be the prime factorization of 

(P-1), and consider 

F(P) -F(p, -1) 

F(P 
F(p) F(p,)- (p -1) + Cp. n(p; -1) - F(p - 1) = 

2np 
Pi F(PPian eng (1.38) 

Pi np Pi-1 

Since 
value 2. Moreover since p, > q, j 1,... ,r, by the hypothes is we 

Pi) is necessarily 
even, one of the 

must take on the 

should have 



287 

he the prime factorization of n. Repeated application of (1.27) gives 
then 

(1.35) 
F(n) F(P1)* * F(P,) 

He now put, for all prime p 

(1.36) 
F(p) kn p 

so that (1.35) reads 

(1.37) F(n) 1 "P1 F(n) 1 p, an P+.. *ag Ps n Ps 

It is straightforward to show that the sequence C P p= prime} 
contains a largest member. In fact, if the contrary were true, it would 
be possible to construct an infinite sequence of primes P1P2 P3. 

Pi 
with P 2 such that Pi41 were the first prime greater than pP for which 

Pi+1 p There would follow from this construction that p 
if q is a prime less than Pi then C Now, for i> 1, let 

be the prime factorization of P-1 .. 9 r21, B, Z+ 
(P-1), and consider 

F(p) F(P, -1) = 

sn(p, - 1) +p, n(p -1) - F(P -1) 
2np FPen(P - F(p n 

FlPPien pa &na (1.38) 

value Moreover since P>; j-1,.. r, by the hypothes is we 

P 2np, Pi-1 j=1 

P-1) is necessarily even, one of the must take on the Since (p; -1) 

should have 
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(1.39) , 8pa,)ana , 2)an2 2 (p,-2)an2 P2)n2 

However, as i, by the properties proved above, both 

Pn . Therefore, by 
FP 

tend to zero and so does 
Pi 

and 

gnp Pi 
(1.38), (1.39) it should be ( -Co)2n20 or p, C2 which 

contradicts the definition of P. In precisely the same manner one 

shows that the sequence icn: P = prime contains a smallest member. 

Suppose now that there is at least a prime P such that C Ca, and 

let Po be that prime for which 

C2 

is a maximum. Of course then 

1 
C2 Letm be a positive integer 21 and let 9 ... ," 

the prime factorization of pP 1. From (1.27) it follows that 

F(PO (1.40) 
m 

en Po 

Then we can repeat all the steps leading to (1.38) and (1.39) (8 

being eplaced by Y r by t, 9 by q and p; by Poobtaining 

F(PP P C2) en2 P-1 
n (1.41) 2 

m 

Po Po an Po 

Letting m, one gets (Ca - Rn2 s 0, which contradicts 

In precisely the same manner, one shows the non-existence or 

any prime 90 for which C2 Thus, all the c's are equal and 

(from (1.34), (1.37)) 

F(n) = c en n (1.42) 
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is a Cconstant (equa) to the common value of the c's). 

where c is 

p Let finally 

r,seZ sr 
(1.43) 

By (1.24) one can write 

(5)»E»(}) 
(1.44) 

from which 

H(p.1- p) = F(s) - pF(r) - (1 - p)F(s - r) = 

C in s pc 2n r - (1-p)c &n (s -r) = 

c(p n+ (1-p) n 

cp en+ (1-p) n D) (1.45) P 

By continuity this extends to all irrational p's, and using (1.100) 
inductively on n, we havee 

(1.46) HP Pp)-cP an P 
Notice that H(P1.Pn in (1.46) is just of the form (1.5), 

(1.47) HP Pn P4 I(P) 

This suggests that c must be taken >0, so that 

(1.48) I(p) =- c en p 
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is a monotone increasing function of p 1- p. 

2. Basic Properties of the H Function 2 

Let X be an abstract set, consisting of a finite number of 

elements a. Let p() be a probability function defined over X, 

i.e. p(Q) is a non-negative number defined for each subset of x, 

wi th the properties that: 

(2.1) p(X) 1 

and 

(2.2) 

if 91 and 02 are disjoint subsets of X. The totality of objects 

((X,a),p )} is what was defi ned as a finite probability space. 

Recalling the discussion of previous section, any finite probability 

space can be considered an information source. By obvious extension 

if 1 

of (1.46), we will define as informat i on content of such a source the 

non-negative quantity 

(2.3) H(X) , plo) tn pl) 

(where units chosen in such a way that c = 1). 
Let now (X,a) and (Y.p) be two finite abstract spaces, and 

denote by X OY the finite abstract space consisting of all pairs 
(p), and by p,a probability distribution over X Y. The 
information content of this source is obviously 

H(XY) (2.4) xPlop) n p(»p) 

However in this case the distribution p,) gives rise also to distribution 
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