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Chapter b
A Few Elements of Quantitative Information Theory

1. The Amount of Information

The attempt to construct a quantitative theory in which the
concepts of "production" and "transmission" of information are meaning-
ful faces two main difficulties. The definition of a mathematical mode]
in which such concepts are well defined and the assignment of a measure
to the amount of information involved. Hereafter the basic elements of
such a theory will be reviewed in a way which naturally lends itself to
application in physics.

It is assumed that one receives information whenever one "learns”
of an event whose occurrence was previously uncertain. Moreover, the
more likely an event is, the less information is conveyed by the know-
ledge of its actual occurrence. Let x represent [the occurrence of]
an event, and X its complement (i.e. its non-occurrence), and let
Pys Pys where

p, + Py =1 (1.1)

denote the probabilities of two such events. Furthermore, let I,
denote the amount of information conveyed by the knowledge of the
occurrence of x. Assuming that x is specified only by its probabi‘
lity Py> let us define I_ to be a non-negative function I of Py

, X
defined over the range 0< Py S 1,
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IX = I(px) (1.2)
ce that Py © 0 s meaningless in the present context). Since
(n0 robabi 1Y of receiving the amount of information T is p, —
the X

; that of receiving Ig is pg — the expected amount of information
an

recel ved 18

H(x,X) = PeI(py) * pgllpg) . (1.3)

of course the symbolism can be easily generalized to more complex cases:
it {xl,...,xn} are a set of mutually exclusive events of probabilities

o ....sp, } respectively, such that
.px ’ Xn

+...+p, =1 1.4)

then the average amount of information conveyed by the knowledge of
which X actually occurred is assumed to be

H(xl,...,xn) = pxlI(pxl) + ...+ pxnI(pxn) (1.5)

(notice that if Py. = 0 for some j, the event X should simply be

omitted from consideration).

It is interesting that this intuitive type of reasoning leads to
*irong constraints upon the form of I( ). For simplicity let us begin
"ith n=3 (and set X15Xs X555 x3=z). In order to determine
WP‘nCh among the events X, ¥, z actually occurred, it is e.g. suffi-
:ent to determine whether or not x occurred, and in the case where
infd‘dn‘t, to determine which of y, z did occur. The amount of

Ormation Conveyed by the first determination is evidently
H(x,%) =
X = e (p) + (L-p)I(1-p) (1.6)
If
x i l . -
e pg didn't 0ccur, then the conditional probabilities of y and z
*Pective nt of information conveyed
Y Dy/p)-(, p,/pgz . The amou

e
Second determination is therefore given by
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- p p P p
Hly,z|X) = X I(-y—) -z 1( Z) . (1
Ps Ps Py Py -7)

However this latter amount of information is con
event X occurs (i.e. x does not occur)
information conveyed on the average, by the

veyed only when the
so the tota] amount of
two determinations is

H(x,y,z) = H(x,x) + piH(y,zli) (1.8)

The requirement to be imposed on the function I( )
relation (1.8) be satisfied for all allowable values of
greater than zero. Explicitly (1.8)
in terms of probabilities,

is that the

PsD,p
writes, expressing the H- funct1ons

H( ) =H(p,,1-p) + (1-p ) H{ Y Pz (1.9)
px’py’pz pX’ _pX -*"'px 1_px » l-p . .

Now the identical reasoning applies if x is considered to be a

composite event, namely if x is assumed to consist of (n-1)

mutually exclusive events u whose probabilities are denoted

1,--. 1
P,o and p = pe, (p =q; +q,),

Pys-«-sP,_1- MWriting qq = Py q2
(1.9) reads in this case

11 3

a9,
H(Pys- - sPy_150159)) = Hipps...\p,) + an(—l ; —) . (1.10)
| pn pn

Condition (1.10) is very strong; indeed it will practically
suffice to determine the form of H(pl,...,pn) without regard to its
definition in terms of I( ). The latter will only impose a further
condition suggested by the fact that terms of the form p; I(p; ) should
be dropped when P; =0, namely that H(pl’ ..,pn) be def1ned even
when some of the P 's vanish but that it be continuous in the domain

11)
Z: Py 20 5 i=l,.n| ] opo=1) : (1.
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ne function H(Pys-+-sPp)
nstant — which fix

he only additional requi

is completely determined up to a multipli-
es the size of the unit of information —
rement that it myst be a symmetric function

T

t
b;’ a1 its variables.
0

In order to explicitly constpruct H,
enarks. First, writing (1.9) with p, =

H(%

Using now the hypothesis of complete symmetry, one has

let us begin with a fow
py = 1/29 pz = 0, one has

N |

0) = (5 3) * Lo . (1.12)

1 1 1 1
=,=,0) =H(o0,2,1
H(z’z ) ( 2 2) (1.13)
and finally using (1.9) again with P, =0, by = P, = 1/2,
1 1 1 1
HUO,>s =) = H(0,1) + H{ =, = . 1.14
( 2 2) ( ) (2 2) ( )

Inserting (1.12) and (1.14) into (1.13) and recalling that one should
)

have H(0,1) = H(1,0), (1.13) implies

H(1,0) = 0 (1.15)
Equation (1.15) in turn implies that

H(pl,...,pn,o) = H(pys..-sP,) (1.16)

% one can straightforwardly derive from (1.10), setting in it q, = 0

fang hence g, = p.). One can now by induction extend (1.10) to
(m > 2) ! n

H n,)

+ H ’
pl"-vspn_l’ ql"..’qm)=H(p1,..ospn) pn (pn pn
(1.17)

b o
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where

Pp=9p t .oty (1.18)

Notice that (1.17) indeed coincides with (1.10) for m=2. From (1.16),

it is clear that one has to consider only the case when a; >0,

i=1,...,m. Suppose there is an m such that (1.17), (1.18) are tyye

for all n, then, setting

Pl =gy el Qg (1.19)
and using (1.10) as well one can write
Hpyseo o sPp_1s Qpoeeeslpyg) =
9 Im+1
= H(pys..ospp_15 Q75P') # p'H(~I—, ey ) =
p p
q; P’ q q
= H(pys...5p,) +an(-l,-—> +;ﬂH(—§,...,—mil)
Py P, p' p'
(1.20)

But, once more for the induction hypothesis (to be thought of for n=2),

Sy Py e q
H( pn, cees :: ) H( pn ,B;') 2 5;'”( p? =ie s ZTI ) (1.21)
l1.e.
U Py % q
() TG ) ()
(1.22)

which, inserted at the right-hand side of (1.20) gives the assertion of
(1.17) for m+1,
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[t is now easy matter to prove that if

My
. = qQ. = ’ i:l..‘.,n
Pi jEI Tl (1.23)
then
H(ql,li- sq1’m19- -,qn’l,. ,qn’m ) =
n qi 1 q'i
s sM.
= H(plg--.spn) + .Z piH(ﬁ—, . h% 4 1) . (1‘24)
i=1 P; P,
In fact, using (1.17), one has
qnal qn,mn
H(ql,lp---sqn,m ) =an( 9 seey )=
+ H(ql’].’---sqn_l’m_'l,pn) . (1.25)

After shifting P, 1in the last factor to the extreme left by the
assumed symmetry of H, the reduction process can be repeated on it.
After n steps the result (1.24) is obtained. Let us now set

Fn) $ (2, ...,8) . nz2 (1.26)
n n
ad F(1) = 0. Applying (1.24) to the case m = ...=m =m,
%= 1mn, v4i,j = 1,...,n, one has
F(mn) = F(m) + F(n) _ (1.27)
APplying further (1.17) one obtains
1
1 . n-1 (1., ...,—= (1.28)
L C TN Rl e —)
n n n n n n

N
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from which

n, H(%"n—l) = F(n) - ﬂn-l- F(n-1) . (1.29)

Now from the continuity of H(p,1-p) there follows that as n-»ew,
i = H(0,1) = 0 (see (1.15)). Moreover the recursion relation

nn, = nF(n) - (n-1)F(n-1) (1.30)
implies
(n) = ] (1.31)
nF(n) = ken .31
ki1 K
or
F(n) _ 1 E K _n+l 2 -
= — cn S —— Z k’]"; (1.32)
n n? k=1 k- 2n n(n+l) k=1 k

n
But : . ken, is simply the arithmetic mean of the first
n(n+l) k=1
n*)  toms of the sequence mNqs Nos Nos Nas N i
2 12 'l2s T2 Ti3s Ti3s n3, n4, T)4, q° Ng>---

whose Timit, as it was shown above is zero. Thus as n->w,

n
£ _ ) k°nk + 0, from which follows that also F(n) , 0.
n(n+1) k=1 n
Finally let
= - 1
>\n = F(n) - F(n-1) = N, - = F(n-1) (1_33)

A, >0 as n»e, as well. We have thus all the ingredients needed to
determine the form of F(n). It is clear from (1.27) that we only need

to know the value of F(n) for n prime. Indeed, for arbitrary n, let
a Q
n = pll .. psS , s>1 age Z, (1.34)



287

ime factorization of
the prime N. Repeat .
be ed applicatio
n of (1.27)

hen gives
F(n) = (11 F(pl) + cees ¥ qs F(ps)
(1.35)
We NOW put, for all prime p
F(p) = €, &N P
’ (1.36)
co that (1.35) reads
F(n) = o4 p, RN Py * ot cps 2N pg _ (1.37)

It is straightforward to show that the sequence {c_, p=prime}

. . P
contains a largest member. In fact, if the contrary were true, it would
be possible to construct an infinite sequence of primes p;<p,<p3<...

with p;= 2 such that p. , were the first prime greater than p;
There would follow from this construction that

for which ¢ >C
Pir1  Pj _
if q is a prime less than p;, then c <¢, - Now, for i>1, Ilet
i
p.=-1-= Bl Br r>1, B.€ Z be the prime factorization of
1 qpr .- Qs rzls B 2y

(p.-1), and consider

"~ F(p;) - F(p;-1) =
F(p.:) s
= F(p _ (p1 g,n(p_l 1) + C Q,n(p1 -1) - F(p1 1)
! znpi
__F(p') P Pi ; _c. )ena; (1.38)
= 1 1 B (C c - q
) ' 'Zl J Py J J

must take on the

one of the 4 '
hypothes1s we

by the

Since (pi- 1) is necessarily even, ; .
,j: geeeal?

Value 2, Moreover since P;~ 9
Shou]d have

h
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be the prime factorization of n, Repeated application of (

1.27) gives
then
F(n) = M F(pl) AR g F(PS) (1.35)
we now put, for all prime p
F(p) = Cp &N P (1.36)
so that (1.35) reads
F(n) = ay cp1 Inppt o+ o cps &n pe . (1.37)

It is straightforward to show that the sequence {c » P=prime}
contains a Targest member. In fact, if the contrary were true, it would
be possible to construct an infinite sequence of primes Py < Pp<P3<
with P = 2 such that P;47 were the first prime greater than P;
for which ¢ - 31 - There would follow from this construction that

i+l i
if q is a prime less than Pis then Cq<:cp.' Now, for i>1, IJlet
i
P;-1= q?l .. qEP, r>1, Bre z, be the prime factorization of

(p;~1), and consider

Api = Fp;) - F(p;-1) =
F(ps) )
= F(pi) - ! zn(pi-l) + Cp. Rn(pi- 1) - F(pi- 1) =
R‘npi 1
F(p;) p p r
g S YRS S .Z B; (cpi-cqj)znqj . (1.38)
P; 4np p.-1 j=1

Since (p -1) is necessarily even, one of the qj must take on the

Va - hypothesis we
e 2, Moreover since py>ays J=lseeals by the hyp
Shou]d haVe

h.
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r
Zl Bj(cp.-cq‘)znqj > (cp.-cz)znz 2 (cpz-c2)2n2 . (1.39)

1 J 1

J

However, as i-+®, by the properties proved above, both xp

and tend to zero (and so does n ) . Therefore, by
P mp;  py-l
(1.38), (1.39) it should be (c. -c,)an2 <0 or c < Cy, which
P, 2 P2

contradicts the definition of p,. 1In precisely the same manner one
shows that the sequence {cp, p = prime} contains a smallest member.
Suppose now that there is at least a prime p such that cﬁ > C,, and

Tet Po be that prime for which cp is a maximum. Of course then
0 Y Y

c >c,. Let m be a positive integer > 1 and let ql1 e.s g t be

Po 2 t

the prime factorization of pg - 1. From (1.27) it follows that

F(pg
= C : (1.40)
an py Po

Then we can repeat all the steps leading to (1.38) and (1.39) (Sj
being replaced by Yis T by t, aj by ﬁj and p; by pg) obtaining

F( m) m m
v s Po’/  Po " Po
> n + (c. -c,)en2 ) (1.41)
m m o on m m_4 p0 2
Po Po Po Po

Letting m-«, one gets (cpo- c2)£n2 < 0, which contradicts

Cp > Coe In precisely the same manner, one shows the non-existence of
0
any prime q, for which cq0 < c,. Thus, all the c,'s are equal and
(from (1.34), (1.37))

F(n) = c ann (1.42)
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where € is a constant (equal) to tpe common valye |

Let finally

*

v |-

p=

By(1,24) one can write

from which

H(psl‘p)

n

By continuity this
inductively on n,

H(pl,- “ ,pn)

Notice that H(pl .

H(pys... Pp)

T .
his SUggests that

o

I(p) ==Ccfnp

of the ¢
o s). |
I",Sc-l+ . s > p
) (1.43)
) = H r'9§;Lr‘ + E. 1 1
+ 82y 1 1
S ( §-p’ N e b ) (1.44)
C s -pcanr-(l-pcon(s-r) =
S S
C on = + ].— an =
(p r ( P) s-r)
1 1
¢ an =+ (1- [}
(p n (1-p) n(l_p)) (1.45)
extends to all irrational p's, and using (1.10)
we have
n
=-C Z p]' n P; (1.48)
i=1
..,pn) in (1.46) is just of the form (1.5),
n
= ’Zl p.i I(pi) (1.47)
":
¢ must be taken > 0, so that
(1.48)
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is a monotone increasing function of p =1 -p.

R Basic Properties of the H Function

Let X be an abstract set, consisting of a finite number of
elements =. Let p( ) be a probability function defined over X,
i.e. p(Q) 1is a non-negative number defined for each subset 0 of ¥,
with the properties that:

p(X) =1 (2.1)

and

p(Ql U Qz) = p(Ql) + p(Qz) (2.2)

if Q1 and Q2 are disjoint subsets of X. The totality of objects
{(X,2),p( )} 1is what was defined as a finite probability space.

Recalling the discussion of previous section, any finite probability
space can be considered an information source. By obvious extension

of (1.46), we will define as information content of such a source the
non-negative quantity

H(X) = - ] p(2) 2n p(=) (2.3)

- AS

(where units chosen in such a way that c = 1).

Let now (X,2) and (Y,y) be two finite abstract spaces, and
denote by X ®Y the finite abstract space consisting of all pairs

(240), and by p(,) a probability distribution over X @Y. The
information content of this source is obviously

HX®Y) = - |

@ - 2.4)
X by P(a,y) n p( o) , (

However in this case the distribution pP( , ) gives rise also to @
distribution
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