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Abstract 

The recent discovery of universal principles underlying many complex networks occurring across widely 
differing domains in the biological, social and technological worlds have spurred the interest of physicists in 
trying to understand such features using techniques from statistical physics and non-linear dynamics. In this 
article, we discuss some recent work from our group that looks at how network structure (e.g., its connection 
topology) dictates the nature of its dynamics, and conversely, how dynamical considerations constrain the 
network structure. These results are of obvious significance for understanding real-world systems. 
 
 

INTRODUCTION  .  
 
Complex networks, comprising a large number of nodes (or 
elements) which are linked to each other according to 
specific connection topologies, occur widely across the 
natural, social and technological worlds [1-3]. Examples 
range from the intra-cellular signaling system that consist 
of different kinds of molecules which affect each other via 
enzymatic reactions, to the internet composed of servers 
around the world which exchange enormous quantities 
information packets regularly, and food webs which link 
via trophic relations large numbers of inter-dependent 
species. While the existence of such networks in various 
domains had been known for some time, the recent 
excitement among physicists working on such systems has 
to do with the discovery of certain universal principles 
among systems which had hitherto been considered very 
different from each other. 
 
Reflecting the development of the modern theory of critical 
phenomena, the resurgent interest in the physics of complex 
networks has been driven by the simultaneous occurrence 
of detailed empirical studies of extremely large networks 
that were made possible by the advent of affordable high-
power computing and the development of statistical 
mechanics tools to analyze the new network models. Prior 
to these developments, the networks that were looked at by 
physicists belonged to either the class of (i) regular 
networks, defined on geometrical lattices, where each node 
interacted with all the neighboring nodes belonging to a 
specified neighborhood, or (ii) random networks, where any 
pair of nodes had a fixed probability of being linked, i.e., 
interacting with each other The first work that focused 
public attention on the new network approach presented a 
new class of network models that were neither regular nor 
random, but exhibited properties of both [4]. Such small-
world networks, as they were referred to, exhibited high 

clustering c (where nodes sharing a common neighbor have 
a higher probability of being connected to each other than 
to any other node) while having a very low average path 
length l (where the path length between any two nodes is 
defined as the shortest number of connected nodes one has 
to go through in order to reach one node starting from the 
other). As the former characterized a regular network, while 
the latter was typical for a random network, this new class 
of networks was somehow intermediate between the 
extremes of the two well-known network models, which 
was manifest in their construction procedure (Fig. 1). 
Several networks occurring in reality, in particular, the 
power grid, the actor collaboration network and the neural 
connection patterns of the C elegans worm, were shown to 
have the small-world property. Later, other examples have 
been added to this list, including the network of co-active 
functional brain areas [5] and the Indian railway system [6]. 
 

 
Fig 1 : Constructing a small-world network on a 2-
dimensional square lattice substrate. Starting from a regular 
network (left) where each node is connected to its nearest 
and next-nearest neighbors, a fraction p of the links are 
rewired amongst randomly chosen pairs of nodes. When all 
the links are rewired, i.e., p = 1, the system is identical to a 
random network (right). For small p, the resulting network 
(center) still retains the local properties of the regular 
network (e.g., high clustering), while exhibiting global 
properties of a random network (e.g., short average path 
length). 



Following this, it was discovered that the frequency 
distribution of node degree k (i.e., the number of links a 
node has) exhibits a power-law scaling form for a large 
variety of systems including the world wide web [7]. This 
further underlined the fact that most networks occurring in 
reality are neither regular (in which case the degree 
distribution would be close to a delta function) or random 
(which has a poisson degree distribution), as for both cases 
the probability of having a node with large degree would be 
significantly smaller than that indicated by the power law 
tail of empirically obtained degree distributions. In 
addition, it was observed that there exist non-trivial degree 
correlations among linked pairs of nodes. For example, a 
network where nodes with high degree tend to 
preferentially connect with other high degree nodes, the 
network is said to show assortative mixing [8]. On the other 
hand, in a disassortative network, nodes with large number 
of links prefer to connect with nodes having low degree. A 
large number of empirical studies have shown that most 
biological and technological networks are disassortative, 
while social networks tend to be assortative [2]. As 
assortative mixing promotes percolation and makes a 
network more robust to vertex removal, it is hard to 
understand why natural evolution in the biological world 
has favored disassortativity. However, in a recent study, we 
have shown that when one considers the stability of 
dynamical states of a network, disassortative networks 
would tend to be more robust, and this may be one of the 
reasons why they are preferred [9]. 
 
This brings us to the thrust of recent work in the area of 
complex networks which has shifted from the initial focus 
on purely structural aspects such as connection topology, to 
the role such features play in determining the dynamical 
processes defined on a network [10]. Our group has been 
involved over the past few years with a research program 
which seeks to understand not only how structure affects 
dynamics, and hence function, in a network, but also the 
reverse problem of how functional criteria, such as the need 
for dynamical stability, can constrain the topological 
properties of a network. In this article, we will briefly 
describe some of our principal results. The goal of this 
program is to understand the features which lead to the 
evolution of robust yet complex structures, viz., networks 
occurring in reality that are stable against perturbations and 
yet which can adapt to a changing environment  

FROM STRUCTURE TO DYNAMICS 

The role that the connection topology of a network plays in 
the nature of its dynamics has been extensively explored for 
spin models. In fact, such systems had been explored for a 
long time prior to the recent interest in complex networks, 
and many results are known regarding ordering transition in 
both regular as well as random structures. It is now known 
that for partial random rewiring in a system of sufficiently 
large size, any finite value of p causes a transition to the 
small-world regime, with the Ising model defined on such a 

network exhibiting a finite temperature ferromagnetic phase 
transition [11]. However, spin models are extremely 
restricted in their dynamical repertoire and therefore, 
researchers have looked at the effect of introducing other 
kinds of node dynamics in such network structures, e.g., 
oscillators. Motivated by recent observations that the brain 
may have a connection structure with small-world 
properties (see e.g., [5]), we have examined the effect of 
long range connections (i.e., non-local diffusion) over an 
otherwise regular network of nodes with links between 
nearest neighbors on a square lattice [12]. The dynamics 
considered is that of the excitable type, with the variable 
having a single stable state and a threshold. If a perturbation 
causes the system variable to exceed the threshold, we see a 
rapid transition to a metastable excited state followed by a 
slow recovery phase when the system gradually converges 
to the stable state. As a result of coupling the dynamics of 
individual nodes through diffusive coupling, various spatial 
patterns (which may be temporally varying) are observed. 
Such dynamics is commonly observed in a large variety of 
biological cells such as neurons and cardiac myocytes, as 
well as in nonlinear chemical systems such the Belusov-
Zhabotinsky reaction.  
 
In our simulations, by varying the probability of long-range 
connections, p, we have observed three categories of 
patterns. For 0 < p < pc

l, after an initial transient period 
where multiple coexisting circular waves are observed, the 
system is eventually spanned by a single or multiple 
rotating spiral waves whose temporal behavior is 
characterized by a flat power spectral density. At p = pc

l, 
the system undergoes a transition from a regime with a 
temporally irregular, spatial pattern to one with a spatially 
homogeneous, temporally periodic pattern. The latter 
behavior occurs over the range pc

l < p < pc
u as a result of 

the increased fraction of long range connections, whereby a 
large fraction of the system gets synchronously active and 
subsequently goes into the recovery phase. Beyond the 
upper critical value pc

u, there is no longer any self-sustained 
activity in the system as all nodes converge to the stable 
state. The patterns in each regime were found to be 
extremely robust against even large perturbations or 
disorder in the system.  
 
Our model explains several hitherto unexplained 
observations in experimental systems where non-local 
diffusion had been implemented. In addition, by identifying 
the long-range connections as those made by neurons and 
the regular network as that formed by the glial cells in the 
brain, our results provide a possible explanation of why 
evolution may have preferred to increase the number of 
glial cells over neurons (with a ratio of more than 10:1 for 
certain parts of the human brain) in order to maintain robust 
dynamical patterns as brain size increased. It also points 
towards possible functional role of small-world brain 
topology in the occurrence of dynamical diseases such as 
epileptic seizures and bursts. More generally, our work 



shows how non-standard network topologies can influence 
system dynamics by generating different kinds of 
spatiotemporal patterns depending on the extent of non-
local diffusion. 
 
FROM DYNAMICS TO STRUCTURE  
 
An important functional criterion for most networks 
occurring in nature and society is the stability of their 
dynamical states. While earlier studies have concentrated 
on the robustness of the network when subjected to 
structural perturbations (e.g., removal of node or link), we 
have looked at the effect of perturbations given to the 
steady states of network dynamics. In particular, the 
question we ask is whether networks become more 
susceptible to small perturbations as their size (i.e., number 
of nodes N) increases, the connections between the nodes 
become denser (i.e., increased connectance probability C) 
and the average strength of interaction (s) increases. This is 
related to a decades-old controversy, often referred to as the 
stability-complexity debate. In the early 1970s, May [13] 
had shown that for a model ecological network, where 
species are assumed to interact with a randomly chosen 
subset of all other species, an arbitrarily chosen stable state 
of the system becomes unstable if any of the parameters 
determining the networks complexity (e.g., N, C or s) is 
increased. In fact, by using certain results of random matrix 
theory, the critical condition for the stability of the network 
was shown to N C s2 < 1 (May-Wigner theorem) [13]. This 
flew against common wisdom, gleaned from large number 
of empirical studies as well as naïve reasoning, which 
dictated that increased diversity and/or stronger interactions 
between species results in more robust ecosystems. Thus, 
ever since the publication of the controversial model, there 
have been attempts to understand the reason behind the 
apparently paradoxical result, especially as this result 
relates not only to ecological systems but extends to all 
dynamical networks for which the stability of steady states 
have functional significance, e.g., intracellular biochemical 
networks where the concentrations of different molecules 
need to be maintained within physiological levels. Two of 
the common charges leveled against the theoretical model 
is that (i) it assumes the interaction network to be random 
whereas naturally occurring networks are bound to exhibit 
certain kind of structure, and (ii) the linear stability analysis 
assumes the existence of simple steady states, which may 
not be the case for real systems that may either be having 
oscillations or be in a chaotic state. 
 
In our work on dynamical systems defined on networks, we 
have tried to address both of these lines of criticism. For 
example, focusing on the question of inadequacy of linear 
stability analysis, we have considered networks with non-
trivial dynamics at the nodes, spanning the range from 
simple steady states to periodic oscillation and fully 
developed chaos, and measured the robustness of the full 
dynamics with respect to variations in N, C and s [14, 15]. 

 
Fig 2 : Evolution of a network with non-trivial dynamics at 
the nodes. The initial (top) and final asymptotic (bottom) 
networks are shown. Only nodes having persistent activity 
are connected to the network. 

Each node in our model network has a dynamical variable 
associated with it, which evolves according to a well-
known class of difference equations commonly used for 
modeling population dynamics. By varying a nonlinear 
parameter, the nature of the dynamics (i.e., whether it 
converges to a steady state or undergoes chaotic 
fluctuations) at each node can be controlled. However, in 
the absence of coupling, each node will always have a 
finite, positive value for its dynamical variable. When 
coupled in a network (initially in a random fashion), with 
links that can have either positive or negative weights, it is 
possible that as a result of dynamical fluctuations, the 
variable for some nodes can become negative or zero. As 
this corresponds to the absence of activity, the 
corresponding node is considered to be extinct and thus 
isolated from the network. This procedure may create 
further fluctuations and cause more nodes to get “extinct”, 
resulting in gradual reduction of the size of the network 
(Fig. 2). The final asymptotic size of the network, relative 
to its initial size, is a measure of its robustness – the more 
robust network being one with a higher fraction of nodes 
having persistent activity. 

Analysis showed that the network robustness (as measured 
by the above global criterion) not only decreased with N, C 
and s, as expected from a local stability analysis, but 
actually matched the May-Wigner theorem quantitatively 
[14]. In addition, the asymptotic network exhibited robust 



macroscopic features: (a) the number of persistently active 
nodes was independent of the initial network size, and (b) 
the asymptotic number of links between these persistently 
active nodes was independent of both the initial size and 
connectivity [15]. This is all the more surprising as the 
removal of nodes (and hence, links) is not guided by any 
explicit fitness criterion but rather emerges naturally from 
the nodal dynamics through fluctuations of individual node 
properties. Our results imply that asymptotically active 
networks are non-extensive: when two networks of size N 
are coupled to each other (with the same connectance as the 
individual networks), although the resulting network 
initially has a size 2N, the ensuing dynamical fluctuations 
will reduce its size to N. This implies that simply increasing 
the number of redundant elements is not a good strategy for 
designing robust systems. 

We have also looked at the effect of empirically reported 
structures, such as small-world connection topology and 
scale-free degree distribution, on the dynamical stability of 
networks. Our results indicate that, in general, introducing 
such structural features do not alter the outcome expected 
from the May-Wigner theorem [9, 16]. However, these 
details can indeed affect the nature of the stability-
instability transition, for example, the transition exhibiting a 
cross-over from being very sharp (resembling first-order 
phase transition) for a random network to a more gradual 
change as the network becomes more regular at the small-
world regime [16].  

EVOLUTION OF ROBUST NETWORKS 

This brings us to the issue of how complex networks can be 
stable at all, given that the May-Wigner theorem seems to 
hold even for networks that have structures similar to those 
seen in reality and where non-trivial dynamical situations 
have also been considered. The solution to this apparent 
paradox lies in the observation that most networks that we 
see around us did not occur fully formed but emerged 
through a process of gradual evolution, where stability with 
respect to dynamical fluctuations is likely to be one of the 
key criteria for survival. In earlier work, we have shown 
that a simple model where nodes are gradually added to or 
removed from a network according to whether this results 
in a (linearly) dynamically stable network or not, results in 
a non-equilibrium steady state where the network is 
extremely robust [17]. The robustness is manifested by 
increased resistance and resilience, as well as, decreased 
probability of large extinction cascades, when the network 
size (i.e., the system diversity) is increased. Thus, our 
results reconcile the apparently contradictory conclusions 
of the May-Wigner theorem and a large number of 
empirical studies.  
 
More recently, we have shown that model networks can 
evolve many of the observed structural features seen among 
networks in the natural world, by taking into account the 
fact that most such systems have to optimize several 
simultaneous conditions – both structural and dynamical. In 

particular, most networks need to have high communication 
efficiency (i.e., low l) and low connectivity (to reduce the 
cost of maintaining large number of links) while being 
stable with respect to dynamical perturbations. Our results 
show that simultaneous optimization of these properties 
result in networks with modular structure, i.e., subnetworks 
with a high density of connections within themselves 
compared to between distinct subnetworks [18]. As such 
evolved systems also exhibit heterogeneous degree 
distribution, these findings have implications for a truly 
wide range of systems in the natural and technological 
worlds where such features have been observed. 
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