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Networks involved in information processing often have their nodes arranged
hierarchically, with the majority of connections occurring in adjacent levels. However,
despite being an intuitively appealing concept, the hierarchical organization of large
networks, such as those in the brain, is difficult to identify, especially in absence of
additional information beyond that provided by the connectome. In this paper, we
propose a framework to uncover the hierarchical structure of a given network, that
identifies the nodes occupying each level as well as the sequential order of the levels.
It involves optimizing a metric that we use to quantify the extent of hierarchy present
in a network. Applying this measure to various brain networks, ranging from the
nervous system of the nematode Caenorhabditis elegans to the human connectome, we
unexpectedly find that they exhibit a common network architectural motif intertwining
hierarchy and modularity. This suggests that brain networks may have evolved to
simultaneously exploit the functional advantages of these two types of organizations,
viz., relatively independent modules performing distributed processing in parallel and
a hierarchical structure that allows sequential pooling of these multiple processing
streams. An intriguing possibility is that this property we report may be common to
information processing networks in general.

connectome | hierarchical networks | modular organization | modular hierarchy |
neural information processing

The brain exhibits complexity at multiple levels, from individual neurons interacting
with neighboring cells, to the emergence of large-scale spatiotemporal patterns of activity
in entire brain areas, ultimately giving rise to behavior and cognition (1). While the size
and scale of nervous systems vary widely across species, it is striking that they nevertheless
perform the key function of enabling the organism to respond appropriately to an ever-
changing environment (2). The nervous system of the nematode Caenorhabditis elegans
comprising ∼300 neurons lies at one end of this spectrum, while mammalian brains
with tens of billions of neurons straddle the other extreme. Thus, the complexity of the
brain does not simply arise from its size alone, e.g., the number of constituent neurons,
but is also associated with the connection topology of the wiring between its constituent
units (3). Understanding this structural organization, which underpins brain function,
requires identifying general design principles that can provide a conceptual scaffolding for
describing the connectome. Here, we focus on modularity and hierarchy, attributes that
have often been associated with structural and/or functional features of brain organization.
However, as these terms have been used with very different connotations depending on
the context (e.g., see refs. 4–8 for instances of distinct ways in which hierarchy has been
interpreted), their explanatory power has been limited. While the use of graph theoretic
concepts has contributed to a rigorous and widely used framework for understanding
modularity (9), even within the specific arena of network neuroscience there has been a
multiplicity of approaches that seek to quantitatively characterize hierarchy.

Hierarchical organization has often been inferred, e.g., in the Macaque visual
cortex (10–12), by observing how information flows across a sequential arrangement
of layers, such that each successive layer integrates the signals obtained from the
preceding layer and performs more complex information processing, thereby defining
a bottom–up flow. In parallel, top–down feedback connections from higher processing
levels to those at lower levels implement control mechanisms that allow adaptation
and fine-tuning of responses (13, 14). Similar hierarchical organization has been
reported in different species (15, 16) as well as other sensory modalities (17). Indeed,
networks in general that are involved in complex information processing appear to
be characterized by such an arrangement of reciprocal connections between nodes
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belonging to successive levels occurring in a sequence (18–20).
This can, in principle, be related to the optimal use of compu-
tational resources by having successive layers receive information
appropriately processed so as not to overwhelm the handling
capacity of the constituent nodes. Distributing the processing task
across the system, so that various steps are performed sequentially
at successive layers, increases the robustness of the network against
congestion-driven failure arising from bottlenecks that could
result from increased computational load at a key node. In the
brain, hierarchical organization is also hypothesized to be crucial
for coordinating complex sequential behavior (21, 22), e.g., HVC
neurons firing in a precise temporal order during the “song” of
the zebra finch (23).

The lack of a universally accepted quantitative measure for
hierarchy has meant that almost all earlier reports of hierarchi-
cal architecture in brain networks have relied on identifying
the distinct layers through additional information about the
attributes of the constituent nodes, such as their function and/or
anatomical characteristics. However, in instances where such
auxiliary knowledge is unavailable or incomplete, we require
a procedure for unambiguously reconstructing the hierarchical
sequence of layers from the connection topology alone. With
rapid progress in methods to determine structural and functional
brain networks in recent times, there is rising interest in devising
novel approaches for analyzing the resulting abundance of
connectome data to identify the inherent organizational features
of such networks, in particular, hierarchy (24). As already implied
above, hierarchical networks share the structural characteristic
that their nodes are sequentially arranged into several layers with
the densest connections occurring between successive layers. The
presence of such an organization which intuitively has functional
implications in terms of directing the flow along the network,
especially for systems involved in processing information, can
be used to fashion a quantitative metric of hierarchy. Thus,
the hierarchical architecture of a network can in principle be
disentangled by identifying the arrangement of all N nodes (say)
of a network into L levels li (i = 1, . . . , L) such that the number
of connections between successive levels is maximized across all
possible choices of a) the number of levels L, b) the sequential
arrangement of li, and c) the level membership of each individual
node.

In this paper, we propose a general framework based on this
insight to identify the mesoscopic structure (in particular, the
presence of a hierarchical organization) in a network exclusively
from information about its connections and apply it to multiple
connectomes. We define a metric, the hierarchy index H, such
that maximizing it yields the optimal hierarchical decomposition
of a network in the sense as described above. This is a nontrivial
search problem, as even for a fixed value of L, the number of
possible ways in which N nodes can be partitioned among the
levels is given by the Stirling number of the second kind, yielding
an astronomically high number of possibilities. For instance,
a connectome comprising 200 brain regions can be arranged
among 10 levels in more than 10193 different ways. We solve this
combinatorial optimization problem by introducing a heuristic
simulated annealing routine developed specifically for identifying
the optimal partitioning of the network components into levels
and their corresponding sequential arrangement. Benchmarking
was carried out on synthetic networks with embedded hierar-
chical organization to establish that the hierarchy is correctly
identified by the algorithm consistently across realizations.

Applying this method to various connectomes, ranging from
the macroscale, consisting of tracts linking brain areas, to

the microscale, comprising synapses and gap-junctions between
neurons, we identify a robust mesoscale feature, viz., modular
hierarchy. Indeed, our results suggest that the organization of
brain networks is characterized by an interplay between the
two prominent mesoscopic structural features, viz., modularity
and hierarchy, such that neither can independently explain the
trajectory of signals flowing through the nervous system, relayed
from layer to layer and module to module. Note that, this concept
is distinct from that of hierarchical modularity (25–29), which
has been used in the literature to refer to a nested arrangement of
modules. We show that the layered structure characterizing each
module is not completely independent of that in other modules,
suggesting a weak sequential order among the modules themselves
rather than a dominant global hierarchy. Such an organization
is consistent with the functional requirements of the nervous
system which processes information in a segregated manner along
specialized streams but eventually requires an overall integration.
Taken in conjunction with recent experimental observations
indicating that modules that are established initially subsequently
get concatenated (30), our results suggest that this structural
feature may well be developmentally programmed, pointing again
to its potential functional relevance.

Results

The hierarchy index H that we define here (Materials and
Methods) attains its highest possible value for a partitioning of
the nodes into a sequence of levels that maximizes the density of
links between adjacent levels. Thus, uncovering the hierarchical
structure of a network is framed as a combinatorial optimization
problem that we solve using simulated annealing (Fig. 1; see
Materials and Methods for details). To establish the effectiveness
of the proposed method in identifying the underlying hierarchical
structure of a network, we first apply it to generated ensembles
of benchmark random networks where such an organization
is present by design and compare the inferred sequence and
composition of levels with that known a priori. The process by
which links are assigned between different nodes allows us to
specify the extent of hierarchical organization, parameterized by
the ratio h of the densities of connections between consecutive
levels to that between all other levels (as well as, within each level).
This allows us to smoothly vary the nature of the constructed
networks from ones where hierarchy is completely absent (h = 1),
with the connections being uniformly distributed throughout
the network, to those that are rigidly hierarchical (h = 0), with
nodes at any level allowed to connect only with those in levels
immediately above or below them (see Materials and Methods
for details). The benchmark networks can be decomposed into
an optimal set of partitions by maximizing H which allows us to
recover the mesoscopic topological organization embedded in the
network to a remarkable accuracy, as measured by the normalized
mutual information between the original and reconstructed
hierarchical configurations. As expected, the performance of the
algorithm declines as the hierarchical character of the network
becomes less pronounced (for h > 0.1), with a reduction in the
similarity between the partitions identified by the algorithm and
those inserted by construction (SI Appendix, Fig. S1).

Having validated the accuracy of the proposed hierarchical
decomposition on benchmark networks, we apply this method to
uncover any underlying hierarchical organization that may exist
in several connectomes that vary in size and complexity as well as
the scale of resolution of the network. These include the neuronal
network corresponding to the somatic nervous system of the
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Fig. 1. Schematic representation of the process for
identifying the underlying hierarchical organization
of a connectome. The iterative application of the
algorithm proposed here allows the innate layered
structure of a network which may not be apparent
a priori (as indicated by the graph representation and
corresponding adjacency matrix of the input, Left) to
be made explicit (shown in graph and matrix represen-
tations of the output, Right), enabling the identification
of the hierarchical organization. At each iteration, the
process incrementally maximizes the hierarchy index
H (Middle) by improving an initial assignment of the
nodes into a number of levels by performing any one
of four types of random rearrangements (selected
with different probabilities; seeMaterials andMethods):
1) moving a node to a different level that is either
chosen randomly from the existing ones or is newly
created, 2) merging two randomly chosen levels, 3)
splitting a randomly chosen level into two adjacent
levels, and 4) exchanging the order of a pair of ran-
domly chosen levels in the sequence. The hierarchical
structure of the network in the output is apparent
from the dense connections in the blocks immediately
adjacent to the diagonal blocks, representing relatively
high connectivity between nodes occurring in adjacent
levels.

nematode C. elegans (31), an aggregated network of brain regions
compiled from numerous tractographic studies of the Macaque
brain (32–35), and structural brain networks of multiple human
subject obtained through diffusion tensor imaging (36, 37) (see
Materials and Methods for details). We describe below the results
of the hierarchical decomposition carried out on these networks.
We begin with the Macaque macroconnectome, whose modular
organization and resulting functional consequences we have
recently investigated in detail (38).

A typical hierarchical decomposition of the Macaque connec-
tome obtained by applying our algorithm is shown in Fig. 2
A and B. The specific sequence displayed here comprises 16
levels into which the brain regions are arranged and is taken as
the reference sequence (Dataset S1) against which we compare
other decompositions generated by multiple realizations of the
algorithm (Materials and Methods). As the diameter of the
network (=8) is much smaller than the number of layers
into which the connectome is seen to be partitioned in these
decompositions, it may initially appear counterintuitive that the
shortest path length connecting the two regions furthest in terms
of the distance measured along the network is not comparable
to the separation between the terminal layers in the hierarchical
chain. Such a feature suggests a marked deviation from a strict
hierarchy (characterized by links existing exclusively between
neighboring layers) and has always proved challenging to any
effort at describing the brain in terms of a serial arrangement of
layers that successively process information (8). This apparent
incongruity arises because of a profusion of “short-cuts” linking
regions that lie in layers that are far apart along the sequential
arrangement. This can be established by observing how the
diameter of synthetic networks having a comparable number
of nodes and layers as the connectome, decreases as the density of
links connecting nonconsecutive layers increases (SI Appendix,
Fig. S2). Indeed, it is the presence of these connections
which obscures the underlying hierarchical arrangement of brain
networks, a problem that has been overcome by the hierarchical
decomposition method introduced here.

Almost all the decompositions exhibit a spatially contiguous
arrangement in that the sequentially adjacent levels also appear
to be spatially adjacent. We observe that the levels exhibit a cyclic

progression from the anterior to posterior before eventually
turning back. As seen from the sagittal section (Top Right panel
of Fig. 2A), the sequence begins at the prefrontal cortex (nodes
in layers 1 to 3) and then moves across the parietal lobe (layers 4
to 7) down to the subcortical regions (layers 8 to 10) before
proceeding up again to the occipital lobe (layers 11 to 13).
The subsequent levels then progress in the reverse direction (see
the horizontal section in the Left panel of Fig. 2A) across the
temporal lobe (layers 14 and 15) to finally terminate in the
prefrontal cortex (layer 16). Thus, the terminal levels of the
hierarchy are both located in the frontal lobe. Fig. 2B shows
that most of the connections between brain regions tend to
be concentrated between consecutive layers (whose nodes occur
within the partitions indicated by the red bounding lines) in
the hierarchical sequence, consistent with the intuitive notion of
hierarchy that we outline earlier. As can be seen, the sizes of the
layers, measured by the number of regions that belong to each
of them, are highly variable, ranging from 3 (Layer 10) to 36
(Layer 5). However, as the brain regions themselves occupy very
different spatial volumes, spanning several orders of magnitude,
the size differences between the layers in terms of the number of
regions may not easily translate to variation in their spatial scale.

As noted earlier, it has already been shown that the Macaque
connectome has a prominent modular organization of the
brain regions, defined by communities characterized by dense
intraconnectivity that are spatially localized to a large extent (38).
Fig. 2C shows how the two mesoscopic organizational features
of the brain, viz., modularity and hierarchy, relate to each other.
As can be seen, each module comprises brain regions that largely
belong to sequentially adjacent hierarchical layers, such that we
can categorize the network as one that is composed of modular
hierarchies. In other words, the connections can be partitioned
into several modules, each of which can be further decomposed
into a series of hierarchical layers. We note that the hierarchy
is defined not only in terms of the sequence of layers within
each module, but the different modules themselves occur in the
decomposition in a specific order.

As the modularity of the network can potentially interfere with
the determination of the hierarchical sequence, given that both
types of mesoscopic organization are based on the differential
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Fig. 2. The hierarchical organization identified in the macaque connectome. (A) Network of brain areas, shown in horizontal (Left), sagittal (Top Right), and
coronal (Bottom Right) projections, with the links representing directed axonal tracts between the areas. The layer in the hierarchy to which an area (filled circle)
belongs is indicated by the corresponding node color (see color key), while the node size provides a representation of its relative volume. Each directed link
between a pair of areas has the same color as that of the source node. (B) Adjacency matrix representation of the macaque connectome, with nodes (brain
areas) arranged according to the hierarchical level in which they occur in the decomposition shown in (A). The existence of a directed connection between a
pair of brain areas i, j is represented by the corresponding entry in the matrix being colored white. The density of connections between areas belonging to the
same or different hierarchical levels is indicated by the brightness of the corresponding block. (C) Alluvial diagram representation of the association between
the modules (Left) and the hierarchical layers (Right) to which the different areas belong. (D) The robust sequential arrangement of the layers is indicated by
the relative frequency ftrls of each layer in a reference sequence (ordered along the ordinate) occurring at specific positions (shown along the abscissae) in the
hierarchical decomposition obtained in each of 103 realizations. The reference sequence is the hierarchical decomposition shown in (A). (E) The invariance of
the hierarchical partitioning of the brain areas identified across different realizations is quantified by the relative frequency ftrls with which an area occurs at a
given layer ordered as per the reference hierarchical arrangement shown in (D).

connection densities within and across partitions, we have carried
out another series of benchmark tests of the decomposition
algorithm aimed specifically at such networks whose nodes are
arranged into modules, as well as, hierarchical layers. For this
purpose, we have constructed an ensemble of synthetic random
networks with a hierarchical structure as determined by the
parameter h (defined above), and whose modular character is
parameterized by the ratio r of the densities of connections
between nodes belonging to the same community (�o) and
those belonging to different communities (�i) (39). Benchmark
networks are obtained for given pairs of values of h and r,
comprising several modules whose nodes are in turn arranged into
multiple sequentially arranged layers, i.e., the networks embody
a modular hierarchical architecture (SI Appendix, Fig. S3). The
networks are then decomposed by maximizing H and the

partitioning thus obtained can be compared with the embed-
ded structure by computing the mutual information between
them. We observe that the algorithm uncovers the underlying
hierarchical organization in the presence of modules, when both
the hierarchical and modular characters of the network are
prominent (i.e., for low h and r). We note that the embedded
organization can be detected with an accuracy that is comparable
to that obtained for the exclusively hierarchical synthetic network
ensembles (described above).

As the process for partitioning of the network into hierarchical
layers (and modules) is stochastic in nature, different realizations
of the decomposition can result in distinct sets of network
partitions, and the sequence in which they are arranged may also
vary. A network with an inherent hierarchical organization should
display broad consistency across the various decompositions, both
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in terms of the membership of the different layers as well as
their sequential order (Materials and Methods). Fig. 2D shows
that there is strong agreement between the different sequences
of layers in the Macaque connectome obtained from multiple
realizations, as indicated by the prominent diagonal (see also
SI Appendix, Fig. S4 A–C ). This implies that specific levels
in the reference sequence (ordinate) occur with high relative
frequency at corresponding positions in the sequences obtained
from the other decompositions (abscissa). This is complemented
by Fig. 2E, which shows that the relative frequency with which
a particular brain region occurs in a specific layer across different
realizations is strongly localized to a single partition. In other
words, the layer memberships of the brain regions are highly
correlated, i.e., if a pair of brain regions belong to a particular
layer in a sequence (considered as the reference), then they will
co-occur in a layer in other hierarchical decompositions of the
network with very high probability. Thus, the Macaque connec-
tome shows a very robust hierarchical organization embedded
within the inherent modular structure of the network, with the
composition of individual layers and the order in which they
occur sequentially being largely invariant across realizations of
the decomposition algorithm.

By identifying a network architecture that can reproduce
observed features arising from the relation between modular
and hierarchical characteristics of the connectome, we can get
vital clues about its organizational principle. In particular, it
will have to demonstrate how a robust, globally sequential
ordering of the identified layers can be consistent with the
embedding of these layers into prominent modules, which are
by definition relatively independent of each other. With this
aim in mind, we have considered two classes of synthetic
networks possessing both modularity and hierarchy. One of these
classes represents networks that are characterized by independent
modular hierarchies (Fig. 3A). In these networks, there is a
definite sequential ordering of the layers within each module, but
not of the modules themselves. As the relatively sparse number of
connections between the different modules may connect nodes
at any level in a given module to those occurring at any level in
another, in principle the modules can be placed in an arbitrary
order without disrupting the hierarchy of the network as a whole.
To contrast with this, we consider another ensemble of networks
in which there is not only a strict ordering of layers within each
module, but also across the modules (Fig. 3B). In other words,
each module is tethered to a specific position in the sequence
relative to the other modules, which arises because most of
the connections between consecutive modules in the sequence
occur between their respective terminal layers. We note that
this implies a rigid sequential arrangement across the modules
which would appear to partially contradict the fundamental
attribute of relative independence that characterizes modular
structure. By decomposing these two classes of networks using
the algorithm presented here, we find that while both ensembles
are characterized by layer memberships that are consistent across
realizations, only networks with independent modular hierarchies
exhibit a robust sequential order of the identified hierarchical
layers, as is observed in the case of the empirical network. It
suggests that the relation between modularity and hierarchy in
the connectome is closer to that represented by networks where
the hierarchical arrangement in each of the modules is relatively
independent.

We next investigate the hierarchical organization of a human
connectome, obtained from a representative individual subject
(Materials and Methods). Fig. 4A shows a specific decomposition

A B

Fig. 3. Inferring the relation between hierarchical layers and modular
organization in the Macaque connectome by comparing the results obtained
by partitioning two classes of synthetic modular networks with embedded
layers. The benchmark networks correspond to (A) those in which each
of the modules has a hierarchical organization independent of the other
modules, and (B) those in which the hierarchical levels across the modules
follow a globally ordered sequence, respectively. In each case, the top panel
is an adjacency matrix representation of the network. The modules and
hierarchical levels are indicated by green and red bounding lines, respectively,
in each matrix. In the central panels, the extent to which the sequential
arrangement of layers is consistent across 200 realizations is indicated by the
relative frequency ftrls of each layer in a reference sequence (ordered along
the ordinate) occurring at specific positions (shown along the abscissae) in
the respective hierarchical decomposition. The reference sequence for each
ensemble is chosen to be the realization that is most similar (quantified by
normalized mutual information) to all other realizations of the hierarchical
decompositions of the corresponding benchmark network. The alluvial
diagram representations show the association between the layers embedded
in the benchmark networks (Left, considered to be identical to those in the
empirical network) and the layers obtained by hierarchical decomposition
upon application of the proposed method (Right). In the Bottom panels, the
invariance of the hierarchical partitioning of the brain areas identified across
different realizations is quantified by the relative frequency ftrls with which
an area occurs at a given layer ordered as per the corresponding reference
hierarchical decomposition.

that is chosen to be the reference sequence (Dataset S2). The
188 brain regions across the two hemispheres that comprise the
connectome are seen to be partitioned into 12 layers. The regions
belonging to consecutive layers are also physically adjacent, as can
be observed from their spatial locations in the horizontal section
of the brain shown in Fig. 4A. As in the case of the Macaque, the
number of hierarchical layers is larger than the diameter of the
network (=4), which can be attributed to the many connections
across nonconsecutive layers functioning as “short-cuts” (see SI
Appendix, Fig. S5 which shows the dependence of the diameter
of equivalent synthetic networks on the ratio h). Fig. 4B shows
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Fig. 4. The hierarchical organization identified in a human connectome. (A) Network of brain areas, shown in horizontal projection, with the undirected links
representing axonal tracts between the areas, for an individual subject in the NKI/Rockland sample (36) (Materials and Methods). The layer in the hierarchy to
which an area (filled circle) belongs is indicated by the corresponding node color (see color key). Each link between a pair of areas is assigned the color of one
of the two nodes it joins. (B) Adjacency matrix representation of the connectome, with nodes (brain areas) arranged according to the hierarchical level in which
they occur in (A). The existence of a connection between a pair of brain areas i, j is represented by the corresponding entry in the matrix being colored white.
The density of connections between areas belonging to the same or different hierarchical levels is indicated by the brightness of the corresponding block.
(C) Alluvial diagram representation of the association between the modules (Left) and the hierarchical layers (Right) to which the different areas belong. (D)
The robust sequential arrangement of the layers is indicated by the relative frequency ftrls of each layer in a reference sequence (ordered along the ordinate)
occurring at specific positions (shown along the abscissae) in the hierarchical decomposition obtained in each of 200 realizations. The reference sequence is the
hierarchical decomposition shown in (A). (E) The invariance of the hierarchical partitioning of the brain areas identified across different realizations is quantified
by the relative frequency ftrls with which an area occurs at a given layer ordered as per the reference hierarchical arrangement shown in (D).

that these short-cuts are quite substantial in number. Indeed,
they are more numerous in the human connectome compared to
that of the Macaque, which can possibly be associated with the
much higher overall connection density in the former (40). The
network also exhibits modular organization characterized by the
existence of four modules, two of which mostly comprise regions
from the left hemisphere while the other two have a majority
of their members in the right hemisphere. The relation between
the compositions of the modules and the hierarchical layers is
indicated by the alluvial diagram in Fig. 4C. It suggests that
similar to the Macaque connectome, the network can be viewed as
possessing modular hierarchies. Again as in the Macaque, we see
that the network displays a robust sequential ordering of the layers
(Fig. 4D; see also SI Appendix, Fig. S4 D–F ), with the identities
of the members of each layer being broadly consistent across
different realizations of the hierarchical decomposition (Fig. 4E).
We have carried out similar hierarchical decompositions of other

human connectomes obtained from subjects of different ages,
which are partitioned by our algorithm into a similar number of
hierarchical layers ranging from 11 to 14 having robust sequential
arrangement, as well as, layer membership (SI Appendix, Fig. S6).

As a final demonstration of the proposed hierarchical de-
composition method, we consider the network of chemical
synapses connecting 279 neurons which belong to the somatic
nervous system of C. elegans (Materials and Methods). A typical
partitioning of the network, chosen to be the reference sequence
(Dataset S3), is shown in Fig. 5A, where the membership of
the neurons among the 12 layers that are obtained for this
realization are indicated using different colors. As in the case
of the networks of brain regions analyzed above, the diameter of
this neuronal network (=7) is seen to be lower than the number
of layers identified. This can be imputed to short-cut connections
spanning nonadjacent layers (SI Appendix Fig. S7). Considering
the spatial positions of the neuronal cell bodies, we observe that
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Fig. 5. The hierarchical structure identified in the somatic nervous system of the nematode C. elegans. (A) Spatial representation of the network of synapses
between the 279 connected neurons that control all activity except pharyngeal movements in the mature hermaphrodite individuals of the species. The nodes
representing the neurons are arranged according to their position in the worm body along the anteroposterior axis, the head and tail being indicated in the
figure. The node color indicates the layer in the hierarchy to which a neuron belongs (see color key), while the shape indicates whether it is a sensory (circle),
motor (square) or inter-neuron (triangle). Each directed synaptic link between a pair of neurons has the same color as the source node. To resolve the layered
organization of the connections between the densely clustered neurons in and around the nerve ring near the head, the area enclosed within the broken lines
is shown magnified in panel (B). (C) The total number of neurons (black), as well as, the individual functional subtypes, viz., sensory (green), motor (red), and
interneurons (blue) at each level of the hierarchy (Upper panel), and the fraction of each subtype in these levels (Lower panel). The solid curve represents the
mean while the band represents the dispersion across 200 realizations of the hierarchical decomposition of the network. Note that the sensory neurons are
relatively more numerous at the initial layers while motor neurons dominate the final layers, with the representation of interneurons peaking in the middle. (D)
Adjacency matrix representation of the C. elegans somatic neuronal network, with nodes (neurons) arranged according to the hierarchical level in which they
occur in the decomposition shown in (A). The existence of a directed synaptic connection between a pair of neurons i, j is represented by the corresponding
entry in the matrix being colored white. The density of connections between neurons belonging to the same or different hierarchical levels is indicated by the
brightness of the corresponding block. (E) The invariance of the hierarchical partitioning of the neurons identified across different realizations is quantified by
the relative frequency ftrls with which a neuron occurs at a given layer ordered as per the reference hierarchical arrangement shown in (D).

the initial layers are concentrated around the nerve ring located
at the head of the organism. Subsequent layers have neurons
that are located in the tail, while the neurons of the ventral
cord (laid out along the anterior–posterior axis of the worm
body and consisting almost exclusively of motor neurons that
coordinate locomotion) occupy the final layers in the sequence.

Thus, we see a deviation from the spatial contiguity of consecutive
hierarchical layers that marked the connectomes of the macaque
and human. This could possibly be a consequence of many of
the neurons having long processes that span almost the entire
length of the organism, such that their connections are not just
confined to the vicinity of the cell body (41, 42). Fig. 5B shows
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the neurons clustered in the various ganglia that are located in
the head of the organism. In this magnified view, we observe
that the initial layers broadly appear to be spatially ordered, with
their composition being dominated by sensory and interneurons
(indicated by the shape of the symbol representing each neuron,
see key in Fig. 5A). This is substantiated in Fig. 5C, which
indicates the number of neurons of different types that occur in
each layer (Top panel), as well as their relative fraction in these
layers (Bottom panel), averaged over multiple realizations of the
hierarchical decomposition algorithm. The variation in the size
of each layer (both in terms of the total number of neurons,
as well as, of each functional type) appears to be relatively low
across the different partitionings. The initial layers appear to
have a larger fraction of sensory neurons, while the interneurons
predominate the composition of layers that occur in the middle
of the sequence. Motor neurons, on the other hand, constitute
the bulk of the last few layers.

The adjacency matrix for C. elegans neuronal connectivity
shown in Fig. 5D illustrates the dense interlevel connectivity
between consecutive levels, which is characteristic of a strongly
hierarchical organization. As in the cases of the networks of
brain regions described above, this network also has a modular
organization comprising three modules (the association between
their neuronal composition and that of the layers is shown in SI
Appendix, Fig. S8, Left panel). One of the modules comprises
neurons that are mostly located in the ventral cord, while
the neurons in the various ganglia are divided among the
other two modules. Each module exhibits a distinct hierarchical
arrangement of layers within them, suggested by the relatively
little overlap in the modular memberships of neurons in each
layer. Thus, it appears that the “modular hierarchy” organization
principle that we observe at the scale of connections between
brain regions could also be operating at the neuronal scale. Also,
as in the other networks, the identities of nodes belonging to the
different layers are consistent across realizations, indicating the
robustness of the decomposition in terms of layer membership
of the neurons (Fig. 5E). While the sequential ordering of
the layers shows more variability (SI Appendix, Fig. S4 G–I )
than that seen in the case of other networks, the reference
sequence is largely conserved across the plurality of the obtained
decompositions. The robustness of the sequence of hierarchical
layers is even more pronounced when we augment the network
with additional links (approximately one-third of the number
of synapses) corresponding to electrical gap junctions between
neurons (SI Appendix, Figs. S9 and S10). Indeed, the network
obtained by incorporating these links also exhibits hierarchical
organization having a similar number of layers, with the identities
of the neurons belonging to each layer remaining consistent across
decompositions. Moreover, the relation between the modules
of this network and its hierarchical layers also supports the
hypothesis that the networks comprise relatively independent
modules, each with an embedded set of hierarchically ordered
layers (SI Appendix, Fig. S8, Right panel).

Discussion

The mesoscopic organization of a network is expected to reflect its
function (43). For instance, the necessity of performing multiple
independent tasks in parallel, with relatively low requirement for
coordination between them, may favor a modular architecture. A
network with such a functional requirement can be partitioned
into a number of subnetworks, each characterized by high
intraconnection density facilitating recurrent communication

between their constituent nodes, while having correspondingly
fewer connections between nodes belonging to different sub-
networks. On the other hand, a hierarchical network may be
preferred if the function typically requires performing several
steps in sequence (such that each step needs to be finished before
initiating the next), possibly coordinating across many input
streams. Such a connection topology would promote efficient
serial processing, often in conjunction with feed-back and feed-
forward connection across the levels. As we show here, the
connection architecture of the brain manifests both of these
fundamental organizing principles.

Indeed, our analysis of the connectomes suggests a structural
feature at the mesoscopic level in these networks that we term
modular hierarchies. These are characterized by the brain regions
being segregated into distinct communities, while at the same
time being arranged in a specific sequence of levels within their
own community. The robustness of the modular partitioning,
as well as, the hierarchical sequence, suggests that both of these
features are fundamental attributes of the network organization.
In fact, while there have been previous attempts to identify
signatures of hierarchy in the brain, we venture that it is
the simultaneous presence of a strong modular arrangement
that has made such an attempt particularly challenging. The
method proposed here is particularly suited for identifying the
interplay of these two kinds of mesoscopic organization. We
note that a similar architecture is known to be extant in the
visual cortex, where information coming from different parts of
the visual field are processed by different microcolumns (hence,
representing a modular partitioning) with each microcolumn
being composed of a sequential arrangement of neurons that
process the information from the specific part of the visual
field received upstream (44). Thus, it appears that a common
organizing principle may be operating at both the micro- and
macroscale of the connectome.

It is of interest that the various hierarchical modules themselves
appear to be sequentially arranged but is consistent with a
model postulating that the hierarchical organization in each of
the modules is independent of the others (Fig. 3). We note
that this parallels recent evidence in mice about the manner in
which the visual network develops, with independent modules
being initially established and subsequently concatenated (30).
It suggests a process by which the modular hierarchies may
be developmentally programmed, lending further support to the
organizational principle suggested by the network structural
analysis presented here. In addition, a plausible functional
relevance of this architecture is hinted at by the robust sequential
relation between the various modules (depicted in SI Appendix,
Fig. S4). The observations are consistent with the possibility that
intermodular connections may have a preference for connecting
a node in a given layer a of a particular module with that in
layer b of a different module, where these two layers belong
to an overall hierarchical sequence. We note that if such a
global arrangement was strictly enforced, nodes would have been
observed to be organized into layers following a global hierarchical
arrangement, which would have been independent of the specific
modules to which the individual nodes belong. On the other
hand, in the absence of any such preference, the hierarchical
level to which a node belongs will have no effect outside of its
module and intermodular links should be equally likely between
any pair of levels. Our results, while not supporting a global
hierarchy independent of the modules, do appear to suggest a
certain preference for sequential arrangement across modules.
Functionally, this may provide a basis for systematic integration
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of information and hence allow for distributive processing in a
network that otherwise has a markedly modular organization
and hence would have appeared to support a segregated (or
specialized) mode of processing (45). Indeed, such a relation
between modularity and hierarchy has been hypothesized in the
specific case of the visual system, as a possible solution to the
ill-posed problem of feature binding (46).

Our analysis of the modular hierarchy present in three
connectomes, viz., the network of white matter tracts linking
brain areas in the macaque and the human, and that of neurons in
the nematode C. elegans, using the hierarchy detection algorithm
we introduce here, reveals various facets of the intriguing interplay
between hierarchy and modularity. In the first brain network we
investigate, viz., that of a single hemisphere of the macaque, our
results suggest the existence of two distinct streams along which
signals could propagate parallel to the anteroposterior axis. One
of these extends from the frontal lobe to the occipital via the
parietal lobe, whereas the other extends from the occipital lobe to
the frontal via the temporal lobe. As the occipital lobe comprises
the primary visual cortex, belonging to one of the first layers
in which sensory information is processed, we can distinguish
the two pathways identified above tentatively as “downstream”
and “upstream,” respectively. While the latter may correspond to
sensory stimuli being successively analyzed in brain areas that
perform higher-level processing, the former can plausibly be
involved in sending feedback signals back to the initial layers.
We note that an analogous model of bottom–up and top–down
processing working in conjunction has been proposed in the
context of vision (13, 14, 47–49). Indeed, the macaque visual
system has been reported to comprise several stages of hierarchical
processing, the number of layers estimated being comparable to
that obtained using our algorithm (which is distinct from the
procedures used by these earlier studies) (8, 50).

For the individual human connectomes, as in the case of
the Macaque, we observe a clearly identifiable arrangement of
brain regions into modular hierarchies, that is consistent across
subjects in terms of the number of layers and their sequential
ordering. Thus, across different individuals we observe that
regions occurring in the terminal layers are located either in the
frontal or in parietal lobes. However, the progression from the
initial layers can either be from the left to the right hemispheres
or the reverse, depending on the subject whose connectome is
being analyzed, suggesting that the connectivity from the fronto-
parietal regions to the left and right hemispheres is asymmetric.
More generally, the structural organization of the human brain
uncovered using the techniques employed here closely resembles
the hierarchically layered architectures employed by artificial neu-
ral networks implementing deep learning (51). These in turn have
been inspired by ideas that, in the brain, information is processed
through several sequentially arranged stages of transformation
and representation. Indeed, recent studies using MEG and fMRI
suggest a strong correspondence between object representation
in the various layers of designed artificial deep neural networks
and the hierarchical topography of visual representations in the
human brain (52). It has long been assumed that the hierarchical
organization of the brain is reflected functionally in a sensory
stimulus being represented at different levels of abstraction in
the successive layers, e.g., in the context of the visual system, the
various stages respond successively to edges, primitive shapes, etc.,
and eventually to complex forms (53). The mammalian brain is,
from the context of such layered neural network architectures,
believed to implement a deep architecture with many layers,
where depth corresponds to the number of sequentially arranged
stages of nonlinear operations, applied on the output of the

immediately preceding layers (54). Intriguingly, our results show
that connectomes exhibit aspects of “deep,” as well as, “shallow”
architecture. Specifically, the various modules that we identify
typically comprise 3 to 4 layers, while the network viewed in
totality can be seen to possess a much higher number of layers,
e.g., 15 to 16 in the macaque, as the modules are themselves
arranged in a sequential order. Thus, it appears that there may
not be a strict dichotomy between shallow and deep architectures,
but rather they are associated with the scale at which one analyzes
the network organization of the brain.

The connectomes of the macaque and human discussed
above differ in a fundamental manner, in that the former is
directed while the latter is undirected. The method proposed
here is nevertheless able to detect broadly similar hierarchical
organizations in both, which points to the robustness of the
technique to the occurrence of directed links. This is important
in the context of our analysis of the neuronal network of C.
elegans, where we focus on the directed network comprising
chemical synapses. However, the neurons are also connected
by electrical gap junctions, that in principle allow bidirectional
communication, and hence can be viewed as constituents of
an undirected network. Considering these networks of synapses
and gap junctions together brings up additional challenges as
the co-occurrence of directed and undirected links in the same
network can obscure the hierarchical nature of the connections.
Furthermore, the size of the organism is small relative to the
typical length scales of the components of its nervous system,
with the longest neuronal processes spanning almost the entire
body. This implies that there may not be a strict correspondence
between the sequential arrangement of the hierarchical layers
and the spatial proximity of neurons occurring in neighboring
levels, unlike in the macroscale networks for the macaque and
human.

The hierarchical architecture reconstructed from the neu-
ronal network (around three-quarters of whose links comprise
synapses) agrees with our intuitive notion of how signals are
processed through the nervous system following the stimulation
of specific sensory organs, encountering in turn, sensory, inter-,
and motor neurons, the latter serving as actuators for possible
muscle activity. The fact that our algorithm is able to do this
despite the specific challenges of analyzing the nematode nervous
system, not only highlights its effectiveness in determining
hierarchical organization across scales (from macroconnectome
of brain areas to microconnectome of neurons) but also un-
derscores the ubiquity of the hierarchical architectural plan
of the nervous system. To conclude, the algorithm that we
present here provides a comprehensive method for uncovering the
hierarchical organization of networks appearing in very different
species, effective across scales, nature of links (viz., directed
or undirected), and the existence of other structural features
such as modules. Indeed, our results provide a perspective on
debates concerning the extent that processing in the brain is
sequential (as in a hierarchically layered system) as opposed to
being compartmentalized (as in modular systems), by suggesting
an architecture, viz., modular hierarchies, combining aspects of
both these mesoscopic organization principles.

Materials and Methods

Data. We have considered empirical connectomes comprising unweighted links
corresponding to anatomical tracts between brain regions in the macaque and
human, and synapses and gap junctions between neurons in the nematode C.
elegans. In cases where the original data have weights associated with each link,
we consider only the adjacency matrix of the network.
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Macaque.
Connectivity. We have used a reconstructed macaque structural connectome
comprising 266 cortical and subcortical brain regions, with 2,602 directed
links between them, as described in ref. 38. It is a revised version of an
earlier database (35), compiled from more that 400 separate tract tracing
studies cataloged in CoCoMac, a comprehensive neuroinformatics electronic
archive (32–34).
Spatial information. The stereotaxic coordinates and the volume of each brain
region in the connectome have been obtained from several sources, including
the website https://scalablebrainatlas.incf.org/macaque/PHT00 associated with
the Paxinos Rhesus Monkey Atlas (55), as well as, manual curation from the
relevant research literature (for details, see ref. 38).

Human. Human brain structural connectomes were chosen from those of
subjects in the Nathan Kline Institute (NKI)/Rockland Sample (36) repository
of diffusion tensor imaging (DTI) data, made publicly available by the UCLA
multimodal connectivity database at http://umcd.humanconnectomeproject.
org/ (37) as undirected connectivity matrices. The three-dimensional coordinates
locating each brain region in a standardized space have been obtained from the
above-mentioned database.

C. elegans.
Connectivity. Information about the directed connections (corresponding to
synapses), as well as undirected gap-junctions, between the 279 connected
neurons of the C. elegans somatic nervous system has been obtained from the
dataset published in ref. 31.
Functional type. Information about the functional type of each neuron, i.e.,
whether it is a sensory, inter-, or motor neuron, has been obtained from the
database provided in ref. 56.
Spatial information. Coordinates of each neuronal cell body projected on a two-
dimensional plane defined by the anterior–posterior axis and the dorsal–ventral
axis, were obtained from the database associated with ref. 57, accessible online
from https://www.dynamic-connectome.org/.

Hierarchy Index. In analogy with the intuitive notion of hierarchy as a
sequential ordering of items (58), we consider a network to be hierarchically
organized if its nodes can be partitioned among multiple levels that are
arranged in a specific sequence, with a discernible preference for nodes
in neighboring levels to be connected to each other. Thus, specifying the
hierarchical organization of a network not only requires the partitioning of the
nodes into different levels but the sequential order of the levels that maximizes
the connectivity between adjacent levels must also be identified. To quantify the
extent to which a given network exhibits hierarchical organization, we introduce
a hierarchy indexH, which for a directed, unweighted network whose nodes have
been partitioned into a number of sequentially arranged levels is defined as

H =
1
L

∑
i,j

Aij −
kini · k

out
j

L

 · (�li ,lj+1 + �li+1,lj), [1]

where Aij represents an element of the adjacency matrix (=1 if there is a
directed link from node j to node i, and 0 otherwise), L (=ΣijAij) is the total

number of connections in the network, kini (=ΣjAij) is the in-degree of node
i, i.e., the total number of connections received by it and koutj (=ΣiAij) is the
out-degree of node j, i.e., the total number of its outgoing connections. The
largest magnitude ofH is obtained for a partitioning that maximizes the number
of connections between adjacent layers in the hierarchical arrangement. This
is ensured by performing the summation over only those pairs of nodes that
occur in immediately neighboring layers in a given partition via the introduction
of the Kronecker delta functions �li ,lj+1 + �li+1,lj (=1 if levels li and lj to
which i and j belong, are adjacent to each other in the sequential arrangement,
and =0, otherwise). As kini k

out
j /L is the probability of a connection from j to

i in a homogeneous random network with the same degree sequence as the
network under consideration, the difference with the occurrence frequency in the
empirical network (given by the adjacency matrix A) provides a measure of the

excess number of links between adjacent layers over that expected by chance.
Note that it is expected that H ∼ 0 for a homogeneous, unstructured network.
We would like to point out that the concept of hierarchy that we quantify by H is
distinct from that of hierarchical modularity, i.e., network structure characterized
by internested communities (25–28).

Maximization of the Hierarchy Index. Having defined the hierarchical
arrangement of a network to be a partitioning of the nodes intoL sequentially
arranged levels that maximizes the hierarchy index H, we require a procedure
by which to obtain this arrangement given only the adjacency matrix of a
network comprising N nodes. Noting that the analogous task of uncovering the
community organization of a network by determining its optimal partitioning
that yields the maximum possible value of the modularity measure Q is known
to be NP-hard (59, 60), we proceed to obtain an approximate solution to the
problem of finding the configuration that maximizes H by using a probabilistic
algorithm, specifically, simulated annealing (61) (see Fig. 1 which summarizes
the procedure described below). As the configuration specifies not only the node
membership of each level but also the sequence in which these levels occur,
the heuristic routine for searching the configuration space needs to explore
different partitionings of nodes, as well as, alternate arrangements of levels. This
is achieved by beginning with an initial configuration that comprises an arbitrary
number (typically 5) of sequentially arranged levels with the nodes randomly
partitioned between them and then iteratively altering the configuration by
performing any one of the following operations at each step: i) randomly select
any one of theNnodes and move it from the level it is occupying to any of the other
L− 1 levels, ii) create a new level, placed at the end of the existing sequence,
comprisinganyoneof theNnodesextractedat randomfromtheLexistinglevels,
iii) merge two levels that are chosen at random from theL levels, iv) exchange the
positions in the sequence of any two levels chosen at random from theL levels,
and v) split any one of theL levels chosen at random into two, placed adjacent
to each other in the sequence. The total number of possible ways in which these
operations can be carried out is (N(L−1)+N+LC2 +LC2 +L =)NL+L2

and at each iteration of the algorithm we choose any one of these with equal
probability.

If the hierarchy index computed for the new configuration resulting from the
operation carried out at a particular step is higher than the H of the existing
configuration, the alteration to the hierarchical structure is accepted. On the
other hand, if the change in the hierarchy indexΔH < 0, the new configuration
is accepted with a probability P ∼ e−|ΔH|/T , where the parameter T is referred
to as temperature in analogy with thermal annealing. In the course of annealing,
the temperature is gradually reduced according to a cooling schedule, viz.,
Tn = T0e

−�n, where n is the number of iterations and T0 is the initial
temperature. For the results shown in our paper, we have chosen T0 = 10,
� = 2 × 10−6 and have carried out the annealing for nmax = 2 × 107

iterations which was sufficient for convergence of the process for networks
having N ∼ 300 nodes (corresponding approximately to the sizes of the
empirical networks we have considered). As the temperature decreases, the
system tends to spend longer times in a particular configuration until a new
configuration is accepted and we terminate the algorithm if the configuration
has not altered in the preceding ncutoff iterations [we have set ncutoff equal to
five times the total number of possible operations, viz., 5 (NL+ L2)].

The solutions resulting from applying the algorithm on a given network need
not be unique, as there could be multiple optimal hierarchical configurations
characterized by high values ofH. Given this degeneracy, multiple realizations of
the hierarchy index maximization process have been carried out (62) to construct
an ensemble of optimal partitionings for each network (e.g., 103 realizations for
the Macaque connectome and 200 for the human and C. elegans connectomes).
A network is determined to possess a robust hierarchical organization if the
solutions comprising the ensemble are mutually consistent in terms of both the
node membership of the different levels, as well as, the sequence in which these
levels are arranged. The process by which the level of agreement between the
different optimal partitionings of a network is quantified is described below (see
section on determining the robustness of the partitions and their sequence). The
impact of randomized rewiring that, by design, reduces the hierarchical character
of a network, on the hierarchy index H is shown in SI Appendix, Fig. S11.
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Benchmarking the Performance of the Algorithm. In order to show that
the maximization of hierarchy index using the procedure outlined above does
indeed uncover the inherent hierarchical structure of a network (if any), we test
the algorithm on ensembles of random networks whose connection topology
has a hierarchical organization by design. To construct a network having a desired
extent of hierarchy, we use the ratioh = �nc/�con as a tuning parameter, where
�con and �nc represent the density of connections between nodes occurring in
consecutive levels in the hierarchical sequence and that between nodes occurring
in all other levels (including the same level), respectively. The parameter h can
vary over the interval [0, 1], with h = 1 corresponding to a homogeneous
network without any hierarchy, while for h = 0, nodes at each level connect
only to those at the levels immediately above or below, corresponding to
a rigidly hierarchical organization. Apart from the ensemble of hierarchical
random networks, we have also considered an additional ensemble of modular
hierarchical random networks wherein the network comprises multiple modules
or communities, each containing an embedded hierarchical structure.

For the ensemble of hierarchical random networks (SI Appendix, Fig. S1), we
generate a benchmark network for a given value of h, having N nodes equally
distributed among L levels by linking nodes occurring at different levels with
the connection probabilities

�con =
�nc
h

=
k · L

2(1− h)(1− L)(N/L) + hLN
, [2]

where k is the average degree of the network. For the simulation results reported
here, we choseL = 4, withN = 272 and k = 10 (similar to the corresponding
values for the empirical networks).

To generate hierarchical modular random networks (SI Appendix, Fig. S3),
we assume that the N (=272) nodes of the network are clustered into m (=4)
modules. Within each moduleLm (=4) hierarchical layers are embedded, such
that the network has L = mLm hierarchical layers in total. Apart from the
tuning parameter h for the hierarchy, we also use an additional parameter r that
specifies the extent of modularity or community organization in the network. It
is defined as the ratio of the density of connections between nodes belonging
to different modules (�o) to those occurring in the same module (�i) (39). The
nodes of a network are equally distributed between the modules and are linked
according to the connection probabilities

�i =
�o
r

=
k

(N/m)(1− r) + Nr
, [3]

where the average degree k = 10. Having determined the mean connection
density �i within a module, we can obtain the connection probability between
nodes occurring in the different hierarchical levels that are embedded within
each module as

�con =
�nc
h

=
Lm(N/m)�i

2(1− h)(Lm − 1)(N/L) + hLm(N/m)
. [4]

For each class of benchmark networks (hierarchical and modular hierarchical)
we generate 20 adjacency matrices for each value of h which logarithmically
spans the interval [10−2, 1]. The algorithm for maximizing the hierarchy index
is applied after randomly permuting the order of the nodes in the adjacency
matrix so that its hierarchical structure is no longer apparent. The optimal
hierarchical configurations of the network that are obtained from multiple
realizations of the H maximization process can then be compared with the
original partitioning of the nodes into levels that have been embedded by
design. We can quantify how close two different hierarchical decompositions A
and B (comprisingLA andLB number of levels, respectively) of a network are
to each other by computing a similarity score between the sequence of levels
{lAi }
LA
i=1 and {lBj }

LB
j=1 describing the two decompositions. For this purpose we

use the normalized mutual information (62), viz.,

Inorm (A, B) =
2
∑

i
∑

j P(l
A
i , l

B
j ) ln[P(lAi , l

B
j )/P(l

A
i )P(l

B
j )]

−
∑

i P(l
A
i ) ln P(lAi )−

∑
j P(l

B
j ) ln P(lBj )

, [5]

where P(lXi ) is the probability that a randomly chosen node lies in level li in
partition X ∈ {A, B}, while P(lAi , l

B
j ) is the joint probability that a randomly

chosen node belongs to level lAi in partition A but occurs in level lBj in partition
B (i = 1, . . . ,LA, and j = 1, . . . ,LB).

Establishing Robust Hierarchical Structure in the Empirical Networks.
As mentioned above, the different hierarchical configurations of a network
obtained from multiple realizations of the H maximization algorithm should
be similar both in terms of the node composition of their levels, as well
as, the sequence in which the levels occur, for any hierarchical organization
identified in the network to be robust. The distribution of normalized mutual
information Inorm (Eq. 5) between every pair of hierarchical configurations
obtained can give us a gross measure for the variability between the
solutions obtained from the different realizations. However, in order to
quantify the extent to which each node in the empirical network occupies
a consistent position in the hierarchical sequence of levels we need to first
identify a reference sequence R with which to compare all configurations.
To this end, for each hierarchical decomposition A, we compute the mean
of the normalized mutual information between it and the decompositions
X obtained from all other realizations, viz., Inorm(A) = 〈Inorm(A, X)〉X ,
and choose the configuration that has the maximum value of Inorm as the
reference.
Robustness of nodal composition of the levels. Upon numbering the levels
of the reference decomposition as they occur in sequence from 1, . . . ,LR,
a mapping Fl : {lXi }

LX
i=1 → {l

R
j }
LR
j=1 is established between the levels in

any hierarchical configuration X obtained from the different realizations and
those occurring in R. This is achieved by identifying for each level i ∈ X the
corresponding level in R with which it has maximum overlap. Thus, it allows
us to express the identity of the level that a particular node belongs to in a
given realization in terms of a standard numbering convention common across
all realizations, viz., that of the levels of the reference configuration R. We
then compute the fraction of realizations (or trials) ftrls(q, p) in which node p
occurs in level q of the reference sequence (see Figs. 2E, 4E, and 5E). For a
hierarchical organization identified by the algorithm to be considered robust,
the nodes should occur consistently in the same hierarchical level, implying that
the distribution of ftrls(q, p) is highly localized. We have ensured that for each
of the empirical networks that we have investigated here, the majority of nodes
p ∈ {1, 2, . . .N} satisfy maxqftrls(q, p) > 0.5.
Robustness of the sequence of hierarchical levels. While the composition of
each of the network partitions that correspond to the different levels may be
consistent across multiple realizations of the hierarchical decompositions, it
is possible that the order {1, . . . ,LX} in which the levels occur sequentially
in a given realization X may be drastically different from that of the reference
sequenceR. Therefore,weneedtoensurethatthesequentialarrangementof the
partitions is also consistent between the different realizations. For this purpose,
we construct another mapping Fs : {lRi }

LR
i=1 → {l

X
j }
LX
j=1 which relates the

levels in the reference sequence R to those occurring in the configuration X.
In contrast to the mapping Fl , this is achieved by identifying for each level
i ∈ R the corresponding level in X with which it has maximum overlap.
Subsequently, we reorder the LR layers of R according to the rank of the
layers in X that they map to. This allows us to identify the extent to which
the sequential arrangement of levels in R gets rearranged in a realization X.
The robustness of the sequential order of the hierarchical levels is quantified
by computing the fraction of realizations (or trials) ftrls(i, j) in which layer i of
the reference sequenceR occurs in position j of the sequence obtained upon
reordering according to the mapping with X (see Figs. 2C and 4C, as well as,
SI Appendix, Figs. S4 and S10). In the ideal situation, where the hierarchical
levels consistently occur in exactly the same sequence across all realizations,
ftrls(i, j) = �ij, i.e., the Kronecker delta function for i, j = 1, . . . ,LR. Note
that for the empirical networks investigated here, the matrices representing ftrls
have most diagonal entries close to 1 with off-diagonal entries�1 indicating
that the sequential arrangement of the levels is robust (see SI Appendix, Text
and Figs. S12–S14 for alternative measures of the robustness of hierarchical
partitioning).

PNAS 2024 Vol. 121 No. 27 e2314291121 https://doi.org/10.1073/pnas.2314291121 11 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 S
ita

bh
ra

 S
in

ha
 o

n 
Ju

ne
 2

6,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

49
.2

05
.8

0.
14

2.

https://www.pnas.org/lookup/doi/10.1073/pnas.2314291121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2314291121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2314291121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2314291121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2314291121#supplementary-materials


Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information. The code has been made publicly
available, see ref. 63.

ACKNOWLEDGMENTS. S.N.M. has been supported by the IMSc Complex
Systems Project (12th Plan), and the Center of Excellence in Complex Systems
and Data Science, both funded by the Department of Atomic Energy, Government

of India. The simulations and computations required for this work were supported
by High Performance Computing facility (Nandadevi and Satpura) of The Institute
of Mathematical Sciences, which is partially funded by Department of Science &
Technology (DST).

Author affiliations: aThe Institute of Mathematical Sciences, CIT Campus, Taramani,
Chennai 600113, India; and bHomi Bhabha National Institute, Mumbai 400 094, India

1. C. W. Lynn, D. S. Bassett, The physics of brain network structure, function and control. Nat. Rev.
Phys. 1, 318–332 (2019).

2. S. Herculano-Houzel, Numbers of neurons as biological correlates of cognitive capability.
Curr. Opin. Behav. Sci. 16, 1–7 (2017).

3. D. S. Bassett, E. T. Bullmore, Small-world brain networks revisited. Neuroscientist 23, 499–516
(2017).

4. E. Ravasz, A. L. Barabási, Hierarchical organization in complex networks. Phys. Rev. E 67, 026112
(2003).

5. N. Chatterjee, S. Sinha, Understanding the mind of a worm: Hierarchical network structure
underlying nervous system function in C. elegans. Prog. Brain Res. 168, 145–153 (2007).

6. D. S. Bassett et al., Hierarchical organization of human cortical networks in health and
schizophrenia. J. Neurosci. 28, 9239–9248 (2008).

7. J. J. Crofts, D. J. Higham, Googling the brain: Discovering hierarchical and asymmetric network
structures, with applications in neuroscience. Internet Math. 7, 233–254 (2011).

8. C. C. Hilgetag, A. Goulas, ‘Hierarchy’ in the organization of brain networks. Philos. Trans. R. Soc. B
375, 20190319 (2020).

9. M. E. J. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A.
103, 8577–8582 (2006).

10. D. C. Van Essen, J. H. Maunsell, Hierarchical organization and functional streams in the visual
cortex. Trends Neurosci. 6, 370–375 (1983).

11. V. A. Lamme, H. Super, H. Spekreijse, Feedforward, horizontal, and feedback processing in the
visual cortex. Curr. Opin. Neurobiol. 8, 529–535 (1998).

12. N. T. Markov et al., Anatomy of hierarchy: feedforward and feedback pathways in macaque visual
cortex. J Comp. Neurol. 522, 225–259 (2014).

13. R. P. N. Rao, D. H. Ballard, Predictive coding in the visual cortex: A functional interpretation of
some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

14. B. A. Urgen, L. E. Miller, Towards an empirically grounded predictive coding account of action
understanding. J. Neurosci. 35, 4789–4791 (2015).

15. T. Coogan, A. Burkhalter, Conserved patterns of cortico-cortical connections define areal hierarchy
in rat visual cortex. Exp. Brain Res. 80, 49–53 (1990).

16. R. D. D’Souza, A. M. Meier, P. Bista, Q. Wang, A. Burkhalter, Recruitment of inhibition and
excitation across mouse visual cortex depends on the hierarchy of interconnecting areas.
eLife 5, e19332 (2016).

17. T. A. Hackett et al., Feedforward and feedback projections of caudal belt and parabelt areas of
auditory cortex: Refining the hierarchical model. Front. Neurosci. 8, 72 (2014).

18. I. Ispolatov, S. Maslov, Detection of the dominant direction of information flow and feedback links
in densely interconnected regulatory networks. BMC Bioinf. 9, 424 (2008).

19. E. H. Davidson, Emerging properties of animal gene regulatory networks. Nature 468, 911–920
(2010).

20. N. Josephs, S. Peng, F. W. Crawford, Communication network dynamics in a large organizational
hierarchy. arXiv [Preprint] (2022). https://arxiv.org/abs/2208.01208 (Accessed 15 June 2023).

21. M. Abeles, Corticonics: Neural Circuits of the Cerebral Cortex (Cambridge University Press,
Cambridge, 1991).

22. S. Seung, Connectome: How the Brain’s Wiring Makes Us Who We Are (Houghton Mifflin Harcourt,
New York, NY, 2012).

23. M. A. Long, D. Z. Jin, M. S. Fee, Support for a synaptic chain model of neuronal sequence
generation. Nature 468, 394–399 (2010).

24. J. A. Harris et al., Hierarchical organization of cortical and thalamic connectivity. Nature 575,
195–202 (2019).

25. E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, A. L. Barabási, Hierarchical organization of
modularity in metabolic networks. Science 297, 1551–1555 (2002).

26. R. Guimerà, L. A. N. Amaral, Functional cartography of complex metabolic networks. Nature 433,
895 (2005).

27. M. Sales-Pardo, R. Guimera, A. A. Moreira, L. A. N. Amaral, Extracting the hierarchical organization
of complex systems. Proc. Natl. Acad. Sci. U.S.A. 104, 15224–15229 (2007).

28. A. Clauset, C. Moore, M. E. Newman, Hierarchical structure and the prediction of missing links in
networks. Nature 453, 98–101 (2008).

29. A. B. Kunin, J. Guo, K. E. Bassler, X. Pitkow, K. Josić, Hierarchical modular structure of the
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