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Abstract The enterprise of trying to explain different social and economic phe-
nomena using concepts and ideas drawn from physics has a long history. Statistical
mechanics, in particular, has often been seen as most likely to provide the means
to achieve this, because it provides a lucid and concrete framework for describing
the collective behavior of systems comprising large numbers of interacting enti-
ties. Several physicists have, in recent years, attempted to use such tools to throw
light on the mechanisms underlying a plethora of socioeconomic phenomena. These
endeavors have led them to develop a community identity—with their academic
enterprise being dubbed as “econophysics” by some. However, the emergence of
this field has also exposed several academic fault lines. Social scientists often regard
physics-inspiredmodels, such as those involving spins coupled to each other, as over-
simplifications of empirical phenomena. At the same time, while models of rational
agents who strategically make choices based on complete information so as to max-
imize their utility are commonly used in economics, many physicists consider them
to be caricature of reality. We show here that while these contrasting approaches may
seem irreconcilable, there are in fact many parallels and analogies between them. In
addition, we suggest that a new formulation of statistical mechanics may be neces-
sary to permit a complete mapping of the game-theoretic formalism to a statistical
physics framework. This may indeed turn out to be the most significant contribution
of econophysics.

1 Introduction

The physicist Ernest Rutherford is believed to have once distinguished physics from
the other sciences, referring to the latter as merely “stamp collecting” (Bernal 1939).
While Rutherford may have been exceptional in explicitly voicing the traditional
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arrogance of physicists towards other branches of knowledge, it is true that the spec-
tacular success of physics in explaining the natural world has led many physicists
to believe that progress has not happened in other sciences because those working
in these fields are not trained to examine observed phenomena from the perspective
of physics. Intriguingly, practitioners in several branches of knowledge have also
occasionally looked at physics as a model to aspire to, a phenomenon sometimes
referred to as “Physics-envy”. For instance, the science of economics has undergone
such a phase, particularly in the late nineteenth century, and concepts from classical
physics, such as equilibria and their stability, were central to the development of the
field during this period (Mirowski 1989). However, this situation gradually changed
starting at the beginning of the twentieth century, curiously just around the timewhen
physics was about to be transformed by the “quantum revolution”, and economics
took a more formal, mathematical turn. The development of game theory in the
1920s and 1930s eventually provided a new de facto language for theorizing about
economic and social phenomena. However, despite this apparent “parting of ways”
between economics and physics, there have been several attempts, if somewhat iso-
lated, throughout the previous century to build bridges between these two fields. In
the 1990s, these efforts achieved sufficient traction and a subdiscipline sometimes
referred to as “econophysics” emerged with the stated aim of explaining economic
phenomena using tools from different branches of physics (Sinha et al. 2010).

In earlier times, the branch of physics now known as dynamical systems theory
had been a rich source of ideas for economists developing their field. More recently,
however, it has been the field of statistical mechanics, which tries to explain the emer-
gence of system-level properties at the macroscale as a result of interactions between
its components at the microscale, that has become a key source of concepts and tech-
niques used to quantitatively model various social and economic phenomena. The
central idea underlying this enterprise of developing statistical mechanics-inspired
models is that, while the behavior of individuals may be essentially unpredictable,
the collective behavior of a large population comprising many such individuals inter-
acting with each other may exhibit characteristic patterns that are amenable to quan-
titative analysis and explanation, and could possibly even be predicted. This may
bring to one’s mind the fictional discipline of “psychohistory”, said to have been
devised by Hari Seldon of Isaac Asimov’s Foundation series fame (Asimov 1951),
that aimed to predict the large-scale features of future developments by discerning
statistical patterns inherent in large populations. Asimov, who was trained in chem-
istry (and was a Professor of Biochemistry at Boston University), in fact used the
analogy of a gas, where the trajectory of any individual molecule is almost impossi-
ble to predict, although the behavior of a macroscopic volume is strictly constrained
by well-understood laws.

A large number of statistical mechanics-inspired models for explaining economic
phenomena appear to use the framework of interacting spins. This is perhaps not
surprising given that spin models provide possibly the simplest descriptions of how
order can emerge spontaneously out of disorder. An everyday instance of such a
self-organized order–disorder transition is exemplified by the so-called effect of a
staring crowd (Kikoin and Kikoin 1978). Consider a usual city street where pedes-
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trians walking along the sidewalk are each looking in different arbitrarily chosen
directions. This corresponds to a “disordered” situation, where each component is
essentially acting independently and no coordination is observed globally. If however
a pedestrian at some point persistently keeps looking at a particular object in her field
of view (which corresponds to a fluctuation event arising through chance), this action
may induce other pedestrians to also do likewise—even though there may actually
be nothing remarkable to look at. Eventually, it may be that the gaze of almost all
pedestrians will be aligned with each other and each of them will be staring into
the same point in space that is devoid of any intrinsic interest. This situation will
correspond to the spontaneous emergence of “order” through interactions between
the components, i.e., as a result of the pedestrians responding almost unconsciously
to each other’s actions. It is of course also possible to have everyone stare toward the
same point by having an out-of-the-ordinary event (a “stimulus”) happen there. In
this case, it will be the stimulus extrinsic to the pedestrians—rather than interactions
between the individuals—that causes the transition from the disordered to ordered
state.

The simplest of the spin models, the Ising model, was originally proposed to
understand spontaneous magnetization in ferromagnetic materials below a critical
temperature. It assumed the existence of a large number of elementary spins, each of
which could orient in any one of two possible directions (“up” or “down”, say). Each
spin is coupled to neighboring spins through exchange interactions, which makes it
energetically favorable for neighboring spin pairs to be both oriented in the same
direction. However, when the system is immersed in a finite temperature environ-
ment, thermal fluctuations can provide spins with sufficient energy to override the
cost associated with neighboring spins being oppositely aligned. The spins could
also be subject to the influence of an external field that will break the symmetry
between the two orientations and will make one of the directions preferable to the
spins. By associating temperature to the degree of noise or uncertainty among agents,
field to any external influence on the agents, and exchange coupling between spins
to interaction between individuals in their social milieu, it is easy to see that the
Ising model can be employed to quantitatively model a variety of social and eco-
nomic situations involving a large number of interacting individuals. Such modeling
is particularly relevant when the question of interest involves qualitative changes
that occur in the collective behavior as different system parameters are varied. The
nature of the transition may also be of much interest as external field-driven order-
ing typically manifests as a first-order or discontinuous transition, while transitions
orchestrated entirely through interactions between the components has the charac-
teristics of a second-order or continuous transition. As the latter is often associated
with so-called power laws, it is not unusual that these are often much sought after by
physicists modeling social or economic phenomena (sometimes to the puzzlement
of economists).

The popularity of spin models in the econophysics community has however not
percolated tomainstreamsocial scientists,who, probably justifiably, find suchmodels
to be overly simplified descriptions of reality. Many economic and social phenomena
are therefore quantitatively described in terms of game-theoretic models, where the
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strategic considerations of individuals, who rationally choose between alternatives
in order to maximize their utilities or payoffs, come to the fore. However, such
approaches have also been criticized as being based upon an idealized view of the
capabilities of individual agents and of the information that they have access to for
making decisions. A complete description of aspects of economic life is possibly
neither provided by spin models nor by game-theoretic ones—but being two very
different types of caricature of reality, an attempt to integrate them may provide us
with a more nuanced understanding of the underlying phenomena. With this aim in
view, in the following two sections, we describe in brief the essential framework of
these two approaches that are used to understand collective behavior in a population
of agents. We show that despite their differences, there are in fact many parallels and
analogies between spin model-based and game-theoretic approaches to describing
social phenomena. We conclude with the suggestion that the statistical mechanics
approach used at present may not be completely adequate for describing strategic
interactions between many rational agents, which is the domain of game theory.
This calls for the development of a new formalism that will allow for a seamless
integration of statistical mechanics with game theory—which will possibly be the
most enduring contribution of econophysics to the scientific enterprise.

2 Collective Decision-Making by Agents: Spins…

We can motivate a series of models of the dynamics of collective decision-making
by agents that differ in terms of the level of details or information resolution that
one is willing to consider. We begin by considering a group of N agents, each of
whom is faced with the problem of having to choose between a finite number of
possible options at each time step t , where the temporal evolution of the system is
assumed to occur over discrete intervals. To simplify matters, we consider the special
case of binary decisions in which the agents, for instance, simply choose between
“yes” or “no”. Thus, in the framework of statistical physics, the state of each agent
(representing the choicemade by it) can bemapped to an Ising spin variable Si = ±1.
Just as spin orientations are influenced by the exchange interaction coupling with
their neighbors in the Ising model, agents take decisions that can, in principle, be
based on the information regarding the choicesmade byother agents (withwhom they
are directly connected over a social network) in the past—as well as the memory of
its own previous choices. If an agent needs to explicitly identify the specific choice
made by each neighbor in order to take a decision, then this constitutes the most
detailed input information scenario. Here, each agent i considers the choices made
by its ki neighbors in the social network of which it is a part (if its own choices
also need to be taken into account we may assume that it includes itself in its set
of neighbors). Furthermore, each agent i has a memory of the choices made by its
neighbors in the precedingmi time steps. Thus, the agent, upon being presented with
a history represented as a mi × ki binary matrix, has to choose between −1 and +1.
As there are 2mi ki possible histories that the agent may need to confront, this calls
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for formulating an input–output function fi for the agent that, given a string of miki
bits, can generate the probability that the agent will make a particular choice, viz.,
Pr(Si = +1) = fi ({±1,±1, . . . ± 1}mi ki ) and with Pr(Si = −1)= 1−Pr(Si = +1).
In other words, the choice of each agent i will be determined by a function whose
domain is a miki -dimensional hypercube and whose range is the unit interval [0, 1].

The previous situation is simplified by assuming that agents do not know the
exact identity of the choices made by each of its neighbors but only have access
to the aggregate information as to how many chose a particular option, e.g., +1.
A natural extension of this is the scenario where, instead of an explicit network,
agents are considered to essentially interact with the entire group. Such an effectively
“mean-field” like situation (where pairwise interactions between spins are replaced
by a self-consistent field representing the averaged effect of interactions of a spin
with the collective) will arise when, in particular, an agent’s choice is made on the
basis of a global observable that is the record of the outcome of choices made by
all agents. For instance, one can model financial markets in this manner, with agents
deciding whether or not to trade in an asset based entirely on its price, a variable
that is accessible to all agents and which changes depending on the aggregate choice
behavior of agents—with price rising if there is a net demand (more agents choose
to buy than sell) and falling if the opposite is true (more agents choose to sell than to
buy). Thus, if N+ and N− are the number of agents choosing+1 and−1, respectively,
then agents base their decision on their knowledge of the net number of agents who
choose one option rather than the other, i.e., N+ − N− = ∑

i Si = NM , with M
being the magnetization or average value of spin state in the Ising model. In this
setting, the choice of the i th agent having memory (as stated previously) is made
using information about the value ofM in the precedingmi time steps. Therefore, the
input–output function specifying the choice behavior of the agents maps a string of
m continuous variables1 lying in the interval [−1, 1] to a probability for choosing a
particular option, viz., Pr(Si = +1) = fi (M1, M2, . . . , Mm) where Mj is the value of
magnetization j time steps earlier. One can view several agent-basedmodels that seek
to reproduce the stylized features of price movements in financial markets as special
cases of this framework, including the model proposed by Vikram and Sinha (2011)
that exhibits heavy-tailed distributions for price fluctuations and trading volume
which are quantitatively similar to that observed empirically, as well as volatility
clustering and multifractality.

A further simplification can be achieved upon constraining the function fi to
output binary values, so that Pr(Si = +1) can only be either 0 or 1. The set of
functional values realized for all possible values of the argument (i.e., all possible
histories that an agent can confront) which defines the strategy of the agent can,
in this case, be written as a binary string of length 2m log2(N+1) = (N + 1)m . It is
easy to see that the total number of possible distinct strategies is 2(N+1)m . In reality,
of course, many of these possible strategies may not make much sense and one
would be focusing on the subset for which fi has some well-behaved properties

1We however note that as there are only N agents whose choices need to be summed, the relevant
information can be expressed in log2(N + 1) bits. As N diverges, m becomes continuous.
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such as monotonicity. To simplify the situation even more, the granularity of the
information on choices made in the past can be reduced (Sasidevan et al. 2018). In
the most extreme case, the information about the aggregate or net choice of agents at
a particular instant can be reduced to a single bit, viz., sign(Mj ) instead of Mj . This
will be the case, for instance, when one only knows whether a particular option was
chosen by the majority or not, and not how many opted for that choice. The number
of possible different histories that an agent may confront is only 2m in this situation,
and thus, the total number of possible strategies is 22

m
. The well-known Minority

Game (Moro 2004) can be seen as a special case of this simplified formalism. It is
the very antithesis of a coordination game, with each agent trying to be contrary to
the majority. In other words, each agent is aiming to use those fi that would ensure
Si× sign(M) = −1 in each round of the game.

In the detailed input information scenario described previously, a Minority Game
(MG) like setting will translate into an Ising model defined over a network, where
connected spin pairs have antiferromagnetic interactions with each other. Such a
situation will correspond to a highly frustrated system, where the large number of
energy minima would correspond to the various possible efficient solutions of the
game. However, if the system remains at any particular equilibrium for all time, this
will not be a fair solution as certain individuals will always form the minority and
thus get benefits at the expense of others. A possible resolution that may make it
both efficient and fair is to allow for fluctuations that will force the collective state
to move continuously from one minima to another, without settling down into any
single one for a very long time (see, e.g., Dhar et al. 2011).

An important feature of the MG is the ability of agents to adapt their strategies,
i.e., by evaluating at each time step the performance or payoff obtained by using each
of the strategies, the agent can switch between strategies in order tomaximize payoff.
One can ask how the introduction of “learning” into the detailed input information
scenariowill affect the collective dynamics of the system. In the classicalMG setting,
each agent begins by randomly sampling a small number of f s (typically 2) from
the set of all possible input–output functions and then scores each of them based on
their performance against the input at each time step, thereafter choosing the one
with the highest score for the next round. In the detailed information setting, we
need to take into account that an agent will need to consider the interaction strength
it has with each of its neighbors in the social network it is part of. Thus, agents could
adapt based on their performance not just by altering strategy but also by varying the
importance that they associate with information arriving from their different neigh-
bors (quantified in terms of weighted links). Hence, link weight update dynamics
could supplement (or even replace) the standard strategy scoring mechanism used by
agents to improve their payoffs in this case. For example, an agent may strengthen
links with those neighbors whose past choices have been successful (i.e., they were
part of theminority) while weakening links with those whowere unsuccessful. Alter-
natively, if agent i happened to choose Si correctly, i.e., so as to have a sign opposite
to that of sign(M), while its neighbor agent j chose wrongly, learning may lead to
the link from j to i becoming positive (inducing j to copy the choice made by i in
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the future) while the link from i to j becomes negative (suggesting that i will choose
the opposite of what j has chosen).

It may be worth noting in this context that the role of a link weight update rule
on collective dynamics has been investigated in the context of spin models earlier,
although in the different context of coordination where agents prefer to make similar
choices as their neighbors (Singh et al. 2014). Using a learning rule that is motivated
by the Hebbian weight update dynamics that is often used to train artificial recurrent
neural network models, it has been seen that, depending on the rate at which link
weights adapt (relative to the spin state update timescale) and the degree of noise
in the system, one could have an extremely high diversity in the time required to
converge to structural balance (corresponding to spins spontaneously segregating
into two clusters, such that within each cluster all interactions are ferromagnetic and
all interactions between spins belonging to different clusters are antiferromagnetic)
from an initially frustrated system. It is intriguing to speculate as to what will be
observed if instead the learning dynamics tries to make the spins misalign with their
neighbors, which would be closer to the situation of MG.

3 Collective Decision-Making by Agents: …and Games

We now shift our focus from the relatively simpler spin model-inspired descriptions
of collective behavior of agents to those that explicitly incorporate strategic consid-
erations in the decision-making of agents. Not surprisingly, this often involves using
ideas from game theory. Developed by John von Neumann in the early part of the
twentieth century, the mathematical theory of games provides a rigorous framework
to describe decision-making by “rational” agents.

It appears intuitive that the states of binary Ising-like spins can be mapped to the
different choices of agents when they are only allowed to opt between two possible
actions. We will call these two options available to each agent as action A and
action B, respectively (e.g., in the case of the game Prisoner’s Dilemma, these will
correspond to “cooperation” and “defection”, respectively). However, unlike in spin
models, in the case of games, it is difficult to see in general that the choices of actions
by agents are somehow reducing an energy function describing the global state of
the system. This is because instead of trying to maximize the total payoff for the
entire population of agents, each agent (corresponding to a “spin”) is only trying to
maximize its own expected payoff—sometimes at the cost of others. Possibly the
only exception is the class of the Potential Games wherein one can, in principle,
express the desire of every agent to alter their action using a global function, viz.,
the “potential” function for the entire system.

Let us take a somewhat more detailed look into the analogy. For a spin model, one
can write down the effective time-evolution behavior for each spin from the energy
function as the laws of physics dictate that at each time step the spins will try to adopt
the orientation that will allow the system as a whole to travel “downhill” along the
landscape defined by the energy function
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E = −
∑

i j

Ji j Si S j + h
∑

i

Si .

Here, Ji j refers to the strength of interaction between spins i and j , the summation∑
i j is performed over neighboring spin pairs and h refers to an external field. In the

absence of any thermal fluctuations (i.e., at zero temperature), it is easy to see that
the state of each spin will be updated according to

Si (t + 1) = sign(
∑

j

Ji j S j + h).

For the case of a symmetric two-person game, the total utility resulting from the
choice of actionsmade by a group of agents whose collective behavior can be decom-
posed into independent dyadic interactions will be given by

U = R fAA + P fBB + (S + T ) f AB .

Here R and P refer to the payoffs obtained by two agents when both choose A or
both choose B, respectively, while if one chooses A and the other chooses B, the
former will receive S while the latter will receive T . The variables f AA, fBB and f AB
refer to the fraction of agent pairs who both choose A, or both choose B, or where
one chooses A while the other chooses B, respectively. On the other hand, for an
individual agent, the payoff is expressed as

Ui =
∑

j

pi p j R + pi (1 − p j )S + (1 − pi )p j T + (1 − pi )(1 − p j )P,

where pi , p j refer to the probabilities of agents i and j , respectively, to choose
action A. As an agent i can only alter its own strategy by varying pi , it will evaluate
∂Ui/∂pi and increment or decrement pi so as to maximize Ui , eventually reaching
an equilibrium.

Different solution concepts will be manifested according to the different ways an
agent can model the possible strategy p j used by its opponent j (which of course
is unknown to the agent i). Thus, in order to solve the previous equation, the agent
i actually replaces the variable p j by its assumption p̂ j about that strategy. In the
conventional Nash solution framework, the agent is agnostic about its opponent’s
strategy so that p̂ j is an unknown. To physicists, this approach may sound similar
to that of a maximum entropy formalism, where the solution is obtained with the
least amount of prior knowledge about the situation at hand. However, advances
in cognitive science and attempts to develop artificial intelligence capable of semi-
human performance in various tasks have made us aware that human subjects rarely
approach a situation where they have to anticipate their opponent’s move with a
complete “blank slate” (so to say). Even if the opponent is an individual who the
subject is encountering for the first time, she is likely to employ a theory of mind to
try to guess the strategy of the opponent. Thus, for example, a goalie facing a penalty
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kick will make a decision as to whether to jump to the left or the right as soon as the
kick is taken (human response time is too slow for it to make sense for the goalie to
wait until she actually sees which direction the ball is kicked) by trying to simulate
within her mind the thought process of the player taking the kick. In turn, the player
taking the penalty kick is also attempting to guess whether the goalie is more likely
to jump toward the left or the right, and will, so to say, try to “get inside the mind”
of the goalie. Each player is, of course, aware that the other player is trying to figure
out what she is thinking and will take this into account in their theory of mind of the
opponent. A little reflection will make it apparent that this process will ultimately
lead to an infinite regress where each individual is modeling the thought process of
the opponent simulating her own thought process, to figure out what the opponent
might be thinking, and so on and so forth (Fig. 1).

The coaction solution framework (Sasidevan and Sinha 2015, 2016) solves the
problem of how agents decide their strategy while taking into account the strategic
considerations of their opponent by assuming that if both agents are rational, then
regardless ofwhat exact steps are used by each to arrive at the solution, theywill even-
tually converge to the same strategy. Thus, in this framework, p̂ j = pi . This results
in solutions that often differ drastically from those obtained in the Nash framework.
For example, let us consider the case of the two-person Prisoner’s Dilemma (PD),
a well-known instance of a social dilemma. Here, the action chosen by each of the
agents in order to maximize their individual payoffs paradoxically results in both of
them ending up with a much inferior outcome than that would have been obtained
with an alternative set of choices. In PD, each agent has the choice of either cooper-
ation (C: action A) or defection (D: action B) and the payoffs for each possible pair
of actions chosen by the two (viz., DC, CC, DD or CD) have the hierarchical relation
T > R > P > S. The value of the payoff T is said to quantify the temptation of an

Fig. 1 A schematic diagram illustrating the infinite regress of theories of mind (viz., “she thinks
that I think that she thinks that I think that…”) that two opponents use to guess the action that the
other will choose. Figure adapted from a drawing of the cover of The Division Bell, a music album
by Pink Floyd, which was designed by Storm Thorgerson based on illustrations by Keith Breeden
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agent for unilateral defection, while R is the reward for mutual cooperation, P is the
penalty paidwhen both agents choose defection and S is the so-called sucker’s payoff
obtained by the agent whose decision to cooperate has been met with defection by
its opponent. Other symmetric two-person games can be defined upon altering the
hierarchy among the values of the different payoffs. Thus, T > R > S > P char-
acterizes a game referred to as Chicken (alternatively referred to as Hawk-Dove or
Snowdrift) that has been used extensively to model phenomena ranging from nuclear
saber-rattling between nations (with the prospect of mutually assured destruction)
to evolutionary biology. Another frequently studied game called Stag Hunt, which
is used to analyze social situations that require agents to coordinate their actions in
order to achieve maximum payoff, is obtained when R > T ≥ P > S.

In the Nash framework, the only solution to a one-shot PD (i.e., when the game
is played only once) is for both agents to choose defection. As is easily seen, they
therefore end up with P , whereas if they had both cooperated they would have
received R which is a higher payoff. This represents the dilemma illustrated by the
game, namely, that choosing to act in a way which appears to be optimal for the
individual may actually yield a suboptimal result for both players. Indeed, when
human subjects are asked to play this game with each other, they are often seen
to instinctively choose cooperation over defection. While this may be explained by
assuming irrationality on the part of the human players, it is worth noting that the
apparently naive behavior on the part of the players actually allows them to obtain
a higher payoff than they would have received had they been strictly “rational” in
the Nash sense. In fact, the rather myopic interpretation of rationality in the Nash
perspective may be indicative of more fundamental issues. As has been pointed out
in Sasidevan and Sinha (2015), there is a contradiction between the two assumptions
underlying the Nash solution, viz., (i) the players are aware that they are both equally
rational and (ii) that each agent is capable of unilateral deviation, i.e., to choose an
action that is independent ofwhat its opponent does.The coaction framework resolves
this by noting that if a player knows that the other is just as rational as her, she will
take this into account and thus realize that both will eventually use the same strategy
(if not the same action, as in the case of a mixed strategy). Therefore, cooperation is
much more likely in the solution of PD in the coaction framework, which is in line
with empirical observations.

A much richer set of possibilities emerges when one allows the game to be played
repeatedly between the same set of agents. In this iterative version of PD (IPD),
mutual defection is no longer the only solution even in the Nash framework, because
agents need to now take into account the history of prior interactions with their
opponents. Thus, direct reciprocity between agents where, for example, an act of
cooperation by an agent in a particular round is matched by a reciprocating act of
cooperation by its opponent in the next round, can help in maintaining coopera-
tion in the face of the ever-present temptation toward unilateral defection. Indeed,
folk theorems indicate that mutual cooperation is a possible equilibrium solution of
the infinitely repeated IPD. Multiple reciprocal strategies, such as “tit-for-tat” and
“win-stay, lose-shift” have been devised and their performance tested in computer
tournaments for PD. Intriguingly, it has been shown that when repeated interactions
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are allowed between rational agents, the coaction solution is for agents to adopt a
Pavlov strategy. In this, an agent sticks to its previous choice if it has been able to
achieve a sufficiently high payoff but alters the choice if it receives a low payoff,
which allows robust cooperation to emerge and maintain itself (Sasidevan and Sinha
2016).

Moving beyond dyadic interactions to general N -person games, the analysis of sit-
uations where an agent simultaneously interacts with multiple neighbors can become
a formidable task, especially with increasing number of agents. Thus, one may need
to simplify the problem considerably in order to investigate collective dynamics of a
group of rational agents having strategic interactions with each other. One possible
approach—which deviates from assuming a strictly rational nature of the agents—
invokes the concept of bounded rationality. Here, the ability of an agent to find the
optimal strategy that will maximize its payoff is constrained by its cognitive capa-
bilities and/or the nature of the information it has access to. A notable example of
such an approach is the model proposed by Nowak and May (1992), where a large
number of agents, arranged on a lattice, simultaneously engage in PD with all their
neighbors in an iterative fashion. As in the conventional two-player iterated PD, each
agent may choose to either cooperate or defect at each round, but with the difference
that the agents nominate a single action that it uses in its interactions with each of
its neighbors. At the end of each round, agents accumulate the total payoff received
from each interaction and compare it with those of its neighbors. It then copies the
action of the neighbor having the highest payoff to use in the next round. Note that
each agent only has access to information regarding the decisions of agents in a local
region, viz., its topological neighborhood, and hence, the nature of the collective
dynamics is intrinsically dependent on the structure of the underlying connection
network. Nowak and May demonstrated that the model can sustain a nonzero frac-
tion of cooperating agents, even after a very large number of rounds. In other words,
limiting interactions to an agent’s network neighborhood may allow cooperation to
remain a viable outcome—a concept that has been referred to as network reciprocity.

This model has been extremely influential, particularly in the physics community,
where it has motivated a large number of studies that have built upon the basic frame-
work provided by Nowak and May. Beyond the implications for how cooperation
can be sustained in a population of selfish individuals, these studies have revealed
tantalizing links between game theory and statistical physics. For instance, by con-
sidering the distinct collective dynamical regimes as phases, one may describe the
switching between these regimes in terms of nonequilibrium phase transitions. The
nonequilibrium nature is manifest from the breakdown of detailed balance (where
the transition rate from one state to another is exactly matched by that of the reverse
process) because of the existence of absorbing states. These states, once reached by
the system, are defined by the cessation of further evolution and correspond to either
all agents being cooperators or all being defectors. The system cannot escape these
states as agents can only copy actions that are still extant in the population.

While Nowak and May had considered a deterministic updating procedure (viz.,
the “imitate the best” rule described previously), there have been several variants that
have incorporated the effect of uncertainty into an agent’s decision-making process.
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One of the most commonly used approaches is to allow each agent i to choose a
neighbor j at random and copy its action with a probability given by the Fermi
distribution function:

Πi→ j = 1

1 + exp(−(π j − πi )/K )
,

where πi and π j are, respectively, the total payoffs received by agents i and j in the
previous round, and K is the effective temperature or noise in the decision-making
process (Szabó and Tőke 1998). The utility of this function is that it allows one
to smoothly interpolate between a deterministic situation in the limit K → 0 (viz.,
agent i will copy agent j if π j > πi ) and a completely random situation in the limit
K → ∞ (viz., agent i will effectively toss a coin to decide whether to copy agent j).
Implementing this scheme in a population of agents whose interactions are governed
by different connection topologies allows us to investigate the spectrum of collective
dynamical states that arise, and the transitions between them that take place upon
varying system parameters (Menon et al. 2018).

Figure2 shows the different collective states of the system that occur at various
regions of the (K , T ) parameter space. It is tempting to compare this with the phase
diagrams obtained by varying the temperature and external field in spin systems.
First, the state of an agent, i.e., the action chosen by it at a particular time instant,
can be mapped to a spin orientation—e.g., if the i th agent chooses cooperation, then
the corresponding spin state can be designated Si = +1, whereas Si = −1 implies
that the agent has chosen defection. Typically, there is symmetry between the two
orientations {−1,+1} that a spin can adopt. However, in games such as PD one of
the actions may be preferable to another under all circumstances (e.g., unconditional
defection or p = 0 is the dominant strategy in PD). This implies the existence of
an effective external field, whose magnitude is linearly related to the ratio of the
temptation for defection and reward for cooperation payoffs, viz., 1 − (T/R), that
results in one of the action choices being more likely to be adopted by an agent than
another. We also have noise in the state update dynamics of the agents as, for a finite
value of K , an agent stochastically decides whether to adopt the action of a randomly
selected neighbor who has a higher total payoff than it. This is not unlike the situation
where spins can sometimes switch to energetically unfavorable orientations because
of thermal fluctuations, when the system is in a finite temperature environment.

Analogous to ordered states in spin systems (corresponding to the spins being
aligned), we have the collective states all C (all agents choose to cooperate) or all
D (all agents have chosen defection), and similar to a disordered state we observe
that the collective dynamics of agents can converge to a fluctuating state F, in which
agents keep switching between cooperation and defection. Just as in spin systems,
the phases are distinguished by using an order parameter, namely, magnetization per
spin m = ∑

i Si/N ∈ [−1, 1], we can define an analogous quantity 2 fC − 1, which
is a function of the key observable for the system of agents, viz., the fraction of
agents who are cooperating at any given time fC . As form, the value of this quantity
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is bounded between −1 (all D) and +1 (all C), with the F state yielding values close
to 0 provided sufficient averaging is done over time.

Note that despite this analogy between the parameters (viz., temperature/noise
and field/payoff bias) governing the collective dynamics of spin systems and that of
a population of agents that exhibit strategic interactions with each other, there are in
fact significant differences between the two. As is manifest from Fig. 2, an increase in
the noise K does not quite have the same meaning as raising the temperature in spin
systems. Unlike the latter situation, agents do not flip from cooperation to defection
with equal probability as the temperature/noise increases. Instead, with equal proba-
bility agents either adopt the action chosen by a randomly selected neighbor or stick
to their current action state. Not surprisingly, this implies that all C and all D states
will be stable (for different values of the field T , the payoff value corresponding to

Fig. 2 Schematic parameter space diagrams illustrating the dependence on the contact network
structure of the collective dynamics of a system of agents that synchronously evolve their states
(representing actions) through strategic interactions with their neighbors. Each agent in the system
adopts one of two possible actions at each round, viz., cooperate or defect, and receives an accu-
mulated payoff based on each of their neighbors choice of action. The agents update their action
at every round by choosing a neighbor at random and copying their action with a probability that
is given by a Fermi function, where the level of temperature (noise) is controlled by the parame-
ter K . The broken horizontal line in both panels corresponds to the case where the temptation T
(payoff for choosing defection when other agent has chosen cooperation) is equal to the reward
R for mutual cooperation. Hence, the region above the line corresponds to the case where agents
play the Prisoner’s Dilemma game, while that below corresponds to the case where they play the
Stag Hunt game. Note that the temptation T can be viewed as a field, in analogy to spin systems,
as its value biases an agent’s preference for which action to choose. The three regimes displayed
in each case correspond to situations where the system converges to a state where all the agents
cooperate (“all C”), all agents choose defection (“all D”) or the states of the agents fluctuate over
time (“F”). We note that the region corresponding to fluctuations appears to comprise two large
segments connected by a narrow strip. However, the nature of the collective behavior is qualitatively
different in the two segments, as the dynamics observed for large K can be understood as arising
due to extremely long transience as a result of noise. The left panel displays the regimes obtained
when agents are placed on a two-dimensional lattice, where each agent has eight neighbors, while
the right panel displays the situation where agents are placed on a homogeneous random network
where all nodes have eight neighbors. The difference in the collective dynamics between the two
scenarios is most noticeable at intermediate values of K , where the system can converge to an all
C state even in the Prisoner’s Dilemma regime in the right panel
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temptation for unilateral defection, relative to the reward for mutual cooperation)
even when K diverges.

In addition, even in the absence of noise (i.e., at K = 0), we observe that agents
can keep switching between different actions. In other words, unlike the situation in
spin systems at zero temperature, the system will keep evolving dynamically. When
an agent determines that a randomly selected neighbor has higher total payoff than it,
the agentwill switch to the action chosen by its neighbor deterministically. Therefore,
if there is a coexistence of cooperation and defection states there will be switching
between these two actions—thereby ensuring the existence of the fluctuating state at
K = 0.

Spin systems are also characterized by coarsening dynamics, wherein spins of
similar orientation coalesce over time to form domains. Existence of such domains
in a spin system, whereby spins of opposite orientations can coexist even in the
ordered phase, means that even at low temperatures, the global magnetization of a
sufficiently large system can yield quite small values. This happens not because of
the absence of order, as is obvious, but because of coexistence of ordered regions
that happen to be oppositely aligned. At the boundary of two such domains, the
existence of spin pairs that are oppositely aligned means that there is an energy cost
which increases with the perimeter of the boundary. Thus, energy minimization will
result in the boundaries becoming smoother over time and the shape of the domains
eventually stabilize.

Agents on lattices or networks will also exhibit the spontaneous formation of
domains or clusters of interacting agents who have chosen the same action. Indeed,
in order to maintain cooperation in the system for any length of time (in the presence
of defectors), the cooperators will have to form clusters.Within these clusters, agents
receive a sufficiently high payoff from cooperating neighbors to prevent them from
switching to defection, despite the potential for being exploited by any neighbor
that chooses to defect. However, the collective dynamics leads to a form of “anti-
coarsening”. This is because agents choosing defection would like to be surrounded
by as many cooperating agents as possible in order to maximize their payoff, so
that the boundary between groups of cooperators and defectors will tend to develop
kinks and corners over time, instead of becoming smoother as in the case of spins.
Furthermore, as the cooperators would tend to prefer as few defectors as possible at
neighboring positions, we would observe ceaseless flux in the shape of the domain
boundaries unless the system eventually converges to any one of the two absorbing
states, all C or all D.

As already mentioned earlier, the mechanism of agents copying the action of
neighbors who are more successful than them—although helping to simplify the
dynamics—is somewhat dissatisfactory as the agents are now no longer strictly ratio-
nal. For instance, if the collective dynamics results in the system converging to the
all C absorbing state, all agents will always cooperate with each other from that time
onwards, as there is no agent left to copy the defection action from. Yet, in a one-shot
PD game, defection is always the dominant strategy as will be realized by any agent
who is being “rational” and works out the implications of its action in light of the
payoff matrix (instead of blindly copying its neighbor). Of course, in the iterated PD,
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it is no longer true that unconditional defection is the best strategy (Axelrod 1984).
Nevertheless, an all C state is highly unstable as it provides a lucrative target for
agents who choose to defect, knowing that they will reap an extremely high payoff
at the expense of the cooperators. One possible way to prevent global cooperation
from being an absorbing state in the modeling framework described previously is to
introduce a mutation probability. This will allow agents to spontaneously switch to
a particular action with a low probability, independent of whether any of their more
successful neighbors are using it or not. This will ensure that even if a population
has reached an all C state, it need not remain there always.

A more innovative approach that reintroduces the essential rationality of agents
in the context of studying the collective dynamics of a large number of agents inter-
acting over a social network has been introduced in Sharma et al. (2019). Although
formulated in the specific context of agents making rational decisions as to whether
to get vaccinated (based on information about the incidence of a disease and knowl-
edge of how many neighbors have already gotten vaccinated), the framework can be
generally applied to understand many possible situations in which a large number
of agents make strategic decisions through interactions with other agents. In this
approach, each agent plays a symmetric two-person game with its “virtual self”,
rather than with any of its neighbors, in order to decide its action. The interaction
with neighbors is introduced by making specific entries in the payoff matrix that
an agent uses for its decision process into functions of the number of its neighbors
who have chosen a particular action. Thus, in the context of vaccination, if all its
neighbors have already chosen to vaccinate themselves, an agent is already protected
from disease and is most likely to choose not to get vaccinated (thereby avoiding any
real or imagined cost associated with vaccination, e.g., perceived side effects). As
the neighborhood of each agent is different (in general) when considering either a
lattice or a network, this means that each agent is playing a distinct game. Not only
will the games played by each other differ quantitatively (i.e., in terms of the payoffs
of the game) but also qualitatively. Thus, for instance, one agent may be playing what
is in effect PD while another may be playing Chicken. Initial explorations suggest
that such spatiotemporal variation of strategies may give rise to a rich variety of
collective dynamical phenomena, which have implications for problems as diverse
as designing voluntary vaccination programs so as to have maximum penetration in
a population and predicting voter turnout in elections.

4 In Lieu of a Conclusion

The brief presentation in this chapter of several approaches toward understanding
the collective dynamics of a population of interacting agents, by using both physics-
inspired spin models and game-theoretic models of rational individuals making
strategic decisions, has hopefully made it clear that there are clear parallels and
analogies between the two frameworks. Although both are at best caricatures of
reality, albeit of different types, comparing and contrasting between the results gen-
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erated by both of these approaches should help us understand better how and why
large groups or crowds behave in certain ways.While physicists may harbor the hope
of revolutionizing the understanding of society through the use of simple models of
self-organizing phenomena, it may also be that the contribution may be the other
way around. In general, for a group of rational agents, unlike the case in spin models,
there appears to be no single global function (such as energy) whose minimization
leads to the collective states. Thus, it appears that the traditional tools of statistical
mechanics may be inadequate for describing situations where the same collective
state may have different utilities for each agent. For instance, in PD, agent 1 choos-
ing C while agent 2 choosing D may be the best of all possible outcomes for 2—but
it is the worst of all possible outcomes for agent 1. Therefore, while agent 2 may be
desirous of nudging the system to such an outcome, agent 1 maybe as vehemently
trying to push the system away from such a state. How then would one proceed to
model the collective activity of such systems using the present tools of statistical
mechanics? It does appear that we may need to have a new formulation of statistical
mechanics that applies to the situation outlined previously. Thus, it may well turn
out that the lasting significance of econophysics will be in not what it does for eco-
nomics, but rather in the new, innovative types of physical theories, particularly in
statistical physics, that it may spawn.
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