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Disorder in cellular packing can alter proliferation dynamics to regulate growth
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The mechanisms by which an organ regulates its growth are not yet fully understood, especially when the
cells are closely packed as in epithelial tissues. We explain growth arrest as a collective dynamical transition in
coupled oscillators on disordered lattices. As the cellular morphologies become homogeneous over the course of
development, the signals induced by cell-cell contact increase beyond a critical value that triggers coordinated
cessation of the cell-cycle oscillators driving cell division. Thus, control of cell proliferation is causally related
to the geometry of cellular packing.
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A central question in biology is how do individual organs,
or indeed an entire organism, know that they have attained
their appropriate size and hence stop growing [1–3]. As tis-
sues and organs are composed of large numbers of cells,
each implementing intrinsic programs to regulate their divi-
sion, self-organized coordination across the system [4–8] is
required to arrest growth [9]. Failure to achieve this can not
only result in potentially fatal deformities during development
[Fig. 1(a)] but can also lead to cancer later in the adult stage
through unchecked growth [10,11]. As growth is primarily
due to cell proliferation via mitotic division [2], the key to
ensuring the appropriate final size for any developing system
lies in controlling the cell cycle which regulates mitosis. As
transitions between different stages of the cell cycle are gov-
erned by oscillations in the concentrations of cyclin proteins
[12,13], preventing further cell division once the system has
reached optimal size requires a mechanism for ensuring co-
ordinated cessation of these intracellular oscillations. While
it is known that increasing cell density can eventually arrest
growth via contact inhibition of proliferation (CIP) [14–19]
[see Fig. 1(b)], in general the processes through which signals
encoding intercellular contact events modulate the oscillatory
dynamics are not fully understood.

Terminating growth at the appropriate time is particularly
challenging in tissues comprising epithelial cells, which are
present in most organs of the body [2]. As adjacent cells
remain in contact during growth of epithelial sheets over the
course of development, contact inhibition cannot be invoked
to explain the arrest of growth [20]. Understanding the process
that stops further cell division in such systems is important, as
uncontrolled proliferation in epithelia is linked to more than
85% of all human cancers [21,22]. While it is generally be-
lieved that the Hippo intracellular signaling pathway [16,23–
29] plays a crucial role in transducing increased mechanical
tension among cells that result from growth in order to inhibit
proliferation [30], the mechanism linking these is yet to be
fully understood. As the morphological characteristics of cells

(e.g., size and shape) continually change in a growing epithe-
lial sheet, an intriguing possibility is that the local geometry of
cell-cell interfaces convey information about the state of the
growing organ to the intracellular signaling pathway which
can eventually arrest the cell-cycle oscillations. More gener-
ally, regulation of growth could be viewed as an emergent
feature of the collective dynamics in a disordered lattice of
coupled oscillators with a dynamically evolving contact ge-
ometry.

In this Letter, we propose a unified framework that de-
scribes both CIP resulting from the increase in cellular
contacts with rising density, as well as growth termination
triggered by morphological changes in confluent epithelial
sheets. We show both to be consequences of arresting the
cell-cycle oscillator by a signal whose intensity conveys in-
formation about the geometry of intercellular interfaces. As
the heterogeneity of cellular morphological characteristics de-
creases over the normal course of development, implemented
here by generating progressively more homogeneous packings
in lieu of incorporating explicit cell division, it triggers a
coordinated cessation of oscillations across the system. This
suggests that arrest of growth can arise exclusively through
changes in local cell-cell contact geometry as the organ size
increases. Expressing the oscillator frequency as a function
of the signal intensity and its coupling with the oscillator,
we show that beyond a critical coupling strength, the system
exhibits a transition to oscillation arrest as the signal inten-
sity increases. Indeed, the strength of coupling defines two
contrasting regimes characterized by opposing responses of
the growth rate to increasing heterogeneity, a result that has
intriguing implications for pathologies such as developmental
dysplasia and cancer. Earlier models (see, e.g., Refs. [31–35])
proposed to explain growth regulation have mostly focused
on mechanical feedback associated with cell growth and di-
vision and/or dynamic changes in growth-promoting signals.
While our proposed mechanism can work in conjunction with
these other proposed mechanisms (e.g., mechanical feedback
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FIG. 1. Increased contact with neighbors over time results in
a decreasing rate of cell division, culminating in growth arrest.
(a) Schematic diagram showing an overgrown Drosophila imag-
inal disk (compared to the wild type, wt, shown in the inset)
resulting from the overexpression of yorkie (yki), the main transcrip-
tional effector of the Hippo signaling pathway (figure adapted from
Ref. [24]). (b) The time-varying concentration A of a representative
molecular species constituting the oscillator of a cell is shown at
three instances in which it has progressively more surface in contact
with adjacent cells. The frequency of the oscillations (governing the
rate of cell division) decreases as the total contact area increases,
eventually culminating in oscillator death and termination of cell
division. (c) Proposed mechanism for the regulation of cell-cycle
oscillations by contact-mediated signaling. A receptor (blue) binding
to a ligand (orange) from a neighboring cell triggers a signaling
cascade whose terminal effector molecule S regulates the cell-cycle
oscillator, represented by the loop comprising molecules A, B, and C.

resulting in local variations in the intercellular interaction
strengths, which is one of the key parameters in our proposed
mechanism), we would like to stress that, independent of any
other mechanisms, the change in the disorder of the cellular
packing by altering the interface geometry can control growth
rate so as to bring about the observed regulation of tissue
growth giving rise to their characteristic shape and size.

To explore how self-organized arrest of tissue growth
can arise over the course of development, we investigate a
model of a two-dimensional (2D) sheet of cells, in which
the cell-cycle oscillations governing proliferation, and hence
tissue growth, are regulated by contact-mediated signaling
[Fig. 1(c)]. Receptors on the surface of a cell can bind to
membrane-bound ligands of a neighboring cell in close phys-
ical proximity, eventually triggering a signaling cascade (such
as the Hippo pathway). This is coupled to the cell-cycle os-
cillator by assuming that a downstream effector molecule of
the cascade, whose magnitude S conveys information about
the local extracellular ligand concentration, represses one of
the molecular components of the oscillator. For concreteness,
we use an oscillator involving three molecular species (one
of which is self-activating) that repress each other in a cyclic

manner [Fig. 1(c)]. It is capable of oscillating with an almost
invariant amplitude over a wide range of frequencies [36],
a desirable property as cell division rates can vary widely
within the same organism. Expressing the concentrations of
the activated forms of the molecules as A, B, and C, the
dynamics of the system upon coupling to S (via C [37]) can
be described by the following set of equations:

dA

dt
=

[
k1 + k7 Ah

Kh + Ah

]
(AT − A) − k2Ch

Kh + Ch
A , (1)

dB

dt
= k3(BT − B) − k4Ah

Kh + Ah
B , (2)

dC

dt
= k5(CT − C) − k6Bh

Kh + Bh
C − k8Sg

�g + Sg
C , (3)

where AT , BT ,CT correspond to the time-invariant total con-
centration of the three molecular species, respectively [38].
Each equation includes a term representing the production
(involving conversion of the inactivated form of a molecular
species to its activated form, and including a self-catalysis
term for A) and another corresponding to inactivation (occur-
ring through a complex formed by the activated form with its
repressor via a cooperative mechanism). The inactivation of
each molecular species by its repressor is modeled by a Hill
function, parametrized by h and K . A similar Hill function,
with parameters g and �, describes the inactivation of C by
S. The parameters k1, . . . , k8 represent rate constants, with
k1, k3, k5, and k7 governing the activation transitions, while
k2, k4, and k6 regulate the inactivation processes mediated
by the corresponding repressors. The rate k8 quantifies the
coupling strength between the contact-induced signal S and
the cell-cycle oscillator via the repression of C.

The cell-cycle model can be made analytically tractable
by replacing the Hill functions involving A, B,C with their
limiting forms, viz., Heaviside step functions: �(z) = 1 if
z � 0, and 0 otherwise [39]. The dynamics of this reduced
model can be represented as trajectories between a set of
discrete states represented by binary strings of length 3. The
three bits indicate whether A, B, or C exceed the threshold
K (= 1) or not (= 0) [Fig. 2(a)]. Two different attractors are
observed depending on the coupling strength k8 between the
cell-cycle oscillator and the signal S. Despite the differences
in the pattern of oscillations exhibited by the cell-cycle model
[Eqs. (1)–(3)] and its reduced version [compare the two panels
of Fig. 2(b)], the curve k∗

8 (S) separating the domain of these
two attractors in the (k8, S) parameter space are qualitatively
similar [compare the left and central panels of Fig. 2(c)]. For
the reduced model, we can derive an exact expression for
k∗

8 = k5[(CT /K ) − 1]/[Sg/(ψg + Sg]), such that for k8 < k∗
8 ,

the system cycles between six states, while for k8 > k∗
8 , the

dynamics converges to a fixed point. In the former case, the
oscillation period is the sum of the time intervals spent in
each state comprising the cyclic attractor. The frequency of
oscillations thus obtained accurately reproduces the results of
the reduced model [compare the central and right panels of
Fig. 2(c)].

We note that the period of the cell cycle increases with
the magnitude S of the contact-induced signal, and for large
values of the coupling k8, results in arrest of the oscillations.
To reproduce a CIP-like scenario with increasing cell density
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FIG. 2. Coupling-mediated dynamical transition from cell-cycle
oscillations to growth arrest. (a) State transition graphs representing
(left) the cyclic cellular dynamics corresponding to cell division and
(right) convergence to a globally attracting steady state (100) repre-
senting a cell that has stopped dividing. The cellular states, shown as
circles, are identified by binary strings whose entries indicate if the
molecular concentrations of the oscillator components, viz., A, B, and
C, respectively, are above a threshold value K . The cell switches from
one type of dynamics to the other when the bifurcation parameter
k8, the strength of coupling between the contact-induced signal and
the cell-cycle oscillator, is increased above the critical value k∗

8 .
(b) Comparison of the oscillations exhibited by the cell-cycle model
(top) and those in the reduced model (bottom) obtained by replacing
the continuous functions describing the interactions between A, B,
and C with step functions. (c) The scaled oscillation frequency ν ′ (ex-
pressed relative to its maximum possible value) shown as a function
of the magnitude of the signal S and the strength of coupling k8. The
parameter space diagram for the cell-cycle model (left) is seen to be
qualitatively similar to that obtained for the reduced model (center),
which in turn can be reproduced with a high degree of accuracy using
a closed-form expression obtained analytically (right).

resulting from successive cell divisions, we note that the cells
become more likely to come in contact with each other over
time, thereby increasing S on average. This suggests that there
is an effective “negative feedback” operating between the rate
at which cells multiply that is governed by the oscillator, and
the resultant local cell density which regulates its dynamics
through contact-mediated signaling. Such a process will result
in the sequence shown in Fig. 1(b), with cells initially prolif-
erating rapidly, then slowing down over time and eventually
ceasing to divide altogether as their density progressively
rises. As cellular proliferation also serves to homogenize the
cellular morphology in a tightly packed domain, as is the
case in growing epithelial tissue [40–42], a more intriguing

possibility is that changes in the sizes and shapes of cells can
themselves alter the contact-induced signal. We show below
that these morphological transitions can indeed control the
cell-cycle periods, thereby influencing the rate at which cells
proliferate.

To investigate how the rate of proliferation (controlled by
the cell-cycle period) varies with the shape of the cells in a
growing tissue, we consider a 2D plane tiled with nonoverlap-
ping polygons. These are generated from Voronoi diagrams
to represent the space-filling arrangement of cells in a tis-
sue [43]. The polygons are initially obtained by randomly
choosing N generating points (“seeds”) uniformly distributed
across the 2D domain, resulting in highly heterogeneous dis-
tributions of their areas, perimeters, and number of sides.
Subsequently, Lloyd’s algorithm is used to iteratively generate
progressively more homogeneous arrangements of these N
polygons [43]. It reproduces the evolution of the distribution
of cellular geometries observed in normal development as
cells proliferate (e.g., see Refs. [44,45]) without explicitly
incorporating cell division into our model. This allows us
to attribute the observed changes in the collective dynamics
resulting in growth arrest exclusively to the altered geometry
of the cellular interfaces over the course of development. We
have verified that the proposed mechanism is robust in the
presence of temporally increasing system size as a conse-
quence of cell division (for details of the implementation, see
Supplemental Material [39]).

The process we use to generate progressively more homo-
geneous cellular configurations involves replacing the seed
of every Voronoi cell by an approximation of the centroid
(obtained as the mean of the coordinates of many randomly
generated points inside the polygon) at each iteration and re-
computing the Voronoi diagram [46]. Applying this sequence
of steps repeatedly results in convergence to a centroidal
Voronoi tessellation (CVT) in which the centroids and gen-
erating points coincide for all cells, corresponding to the most
uniform tiling of the domain with N cells. Figure 3(a) shows
a representative initial arrangement of cells that are highly
heterogeneous in terms of sizes and shapes (left panel). For
comparison, we show alongside it the configuration (right
panel) obtained after ten iterations of the algorithm described
above, whose relatively higher homogeneity is visually ap-
parent. To demonstrate this quantitatively, Fig. 3(b) shows
the evolution of the distribution of the perimeters l of the N
polygons tiling the plane through each step j in the transition
from the initial to the final state shown in Fig. 3(a).

The homogenization of cell sizes and shapes can in turn
affect the rate at which the tissue grows, as the perimeter of
the cell determines the frequency of ligand-receptor binding
events that trigger the signaling cascade regulating the cell
cycle. Thus, we assume that the ligand concentration Li bound
to cell i is proportional to its perimeter li, viz., Li = (li/〈l〉)L0,
where 〈l〉 and L0 are the average perimeter of the cells and
the mean ligand concentration across the tissue, respectively.
The corresponding strength of the contact-induced signal is
Si = Smax Lq

i /(Kq
S + Lq

i ), where Smax, KS , and q represent the
maximum signal strength, the half-saturation constant, and
the Hill coefficient regulating the steepness of the response
function, respectively. We have explicitly verified that other
possible dependencies of the signal on cell size and shape
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FIG. 3. Increasing homogeneity in the distribution of cell shapes
can have differential outcomes depending on the coupling between
the contact-induced signal and the cell-cycle oscillator. (a) Cellular
packing in an epithelial sheet represented by Voronoi tessellations.
The two configurations shown have the same number of cells (N =
103) but differ in the heterogeneity of the degrees k, i.e., the number
of neighbors of a given cell (see colorbar). The initial heterogeneity
(left) is progressively reduced using Lloyd’s algorithm, as seen from
the tiling shown after ten iterations (right). (b) The approach to
uniformity with successive iterations j is indicated by the narrowing
distribution of the cell perimeters l . (c) The tissue growth rate r, given
by the mean of the frequencies of the cellular oscillators, varies with
the heterogeneity (determined by the iteration j) and the bifurcation
parameter k8. Two contrasting regimes are observed as the polygons
become more uniform: for higher (lower) values of k8 the growth
rate decreases (increases) as the tissue becomes more homogeneous.
(d) The fraction φ of cells that have stopped oscillating at each itera-
tion j and (e) the frequency of oscillations of cells having perimeter l ,
shown for the two regimes, viz., k8 = 1.53 (triangles) and k8 = 2.56
(circles) [corresponding to the dashed curves in (c)]. The broken line
in (e) indicates the mean perimeter of the N cells. (f) The initial
( j = 0, blue) and final ( j = 10, red) distributions of l corresponding
to the weak- (lower panel: k8 = 1.53) and strong-coupling (upper
panel: k8 = 2.56) regimes. The shaded region indicates perimeters
above the critical value beyond which oscillations are arrested.

(e.g., area or number of neighbors) yield results that are
qualitatively similar to those reported here [39]. Figure 3(c)
shows that the growth rate r of the tissue (obtained by av-
eraging over the cell-cycle frequencies across the domain)
varies systematically as the cellular configuration becomes
more homogeneous (with increasing number of iterations j
of the Lloyd’s algorithm). However, there are two distinct

regimes seen for different values of the coupling strength k8.
For stronger k8 [=2.56 in Fig. 3(c)] increased homogeneity is
accompanied by a slowing growth rate, while for weaker k8

[=1.53 in Fig. 3(c)], r decreases with increasing heterogene-
ity.

To elucidate these two contrasting regimes, we first note
that with increasing homogeneity, an increased fraction φ of
cells stop oscillating when the coupling k8 is strong, while the
reverse is true for weaker k8 [Fig. 3(d)]. This can be under-
stood in terms of the role that the cell perimeter l , which has
a monotonic relation to the magnitude of the contact-induced
signal S, plays in the cell-cycle oscillator. Figure 3(e) shows
that while increased l results in the oscillation frequency (and
hence, the rate of cell division) decreasing eventually to 0,
the critical cell size at which the oscillation is arrested is
lowered as the coupling k8 becomes stronger [consistent with
Fig. 2(c)]. As increased homogeneity implies a decreasing
width of the distribution of l , we can explain the differential
evolution of the growth rate in the two regimes as follows. For
weaker k8, where the critical value of l is higher than the mean
perimeter, we will observe a relative increase in the fraction of
oscillating cells and also their mean frequency with decreas-
ing width of the distribution [Fig. 3(f), upper panel]. It follows
that decreasing growth rate will be associated with increasing
heterogeneity in the weak-coupling regime. In contrast, the
lower panel in Fig. 3(f) shows that for a stronger value of k8,
when the critical value of l at which oscillation is arrested is
lower than the mean cellular perimeter, the fraction of oscil-
lating cells (as well as their mean frequency) will decrease
as the dispersion of l decreases. Thus, in this strong-coupling
regime, it is increased homogeneity of cellular morphology
that will accompany the slowing growth rate of the tissue.

To conclude, we have shown that increasing heterogeneity
in cell sizes and shapes can lead to differential outcomes in
the collective activity of a system of cell-cycle oscillators
forming a disordered lattice, depending on the strength of the
intercellular interactions that implement contact inhibition.
With decreasing impact of the contact-induced signal on the
cell-cycle oscillator (low k8), we expect the growth rate to
increase as the cellular arrangement becomes more irregular,
as is observed in dysplasia that sometimes precedes tumor
growth. Indeed, intercellular communication is known to be
impeded in cancers along with an increased rate of cellular
proliferation [47–49]. This can be associated in our model to
a system trajectory involving both k8 (regulating the signaling
between cells) and j (controlling the disorder in cellular mor-
phology) decreasing simultaneously, causing the proliferation
rate r to increase. A possible experimental approach to verify
this can involve altering the strength of cellular interactions by
regulating the number of relevant cell surface receptors (e.g.,
by attenuating the expression of the corresponding genes)
at different stages of development (corresponding to distinct
regimes of disorder) and observing the subsequent change
in the rate of growth of the tissue. While suppressing the
components of the intercellular signaling mechanism should
result in an increase in the growth rate, our results suggest
that doing it at a later stage would give rise to a much higher
subsequent growth rate than if the manipulation is done at a
relatively early stage. Our work also suggests a causal rela-
tion between the simultaneous increase in regularity of the
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planar arrangement of cells in growing epithelial tissue and
the arrest of growth in the cellular assembly in normal devel-
opment (i.e., strong coupling) [40,50,51]. It further suggests
that heterogeneous contact topology in networks of oscillators
interacting via lateral inhibition [52] will increase the range
over which chimera states, characterized by the coexistence
of oscillating and nonoscillating elements [53], are likely to
occur.
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