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Emergence of frustration signals systemic risk
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We show that the emergence of systemic risk in complex systems can be understood from the evolution
of functional networks representing interactions inferred from fluctuation correlations between macroscopic
observables. Specifically, we analyze the long-term collective dynamics in the New York Stock Exchange, the
largest financial market in the world, for almost a century and show that periods marked by systemic crisis
are associated with emergence of frustration. This is indicated by the loss of structural balance in the networks
of interaction between stocks. Moreover, the mesoscopic organization of the networks during these periods
exhibits prominent core-periphery organization. This suggests an increased degree of coherence in the collective
dynamics of the system, which is reinforced by our observation of the transition to delocalization in the dominant
eigenmodes when the systemic risk builds up. While frustration has been associated with phase transitions in
physical systems such as spin glasses, its role as a signal for systemic risk buildup leading to severe crisis as
shown here provides a novel perspective into the dynamical processes leading to catastrophic failures in complex
systems.
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I. INTRODUCTION

Analyzing the collective behavior of a complex system
comprising many components is challenging as the interac-
tions between the local dynamics of the individual compo-
nents often result in the emergence of qualitatively different
phenomena at the systems level [1,2]. Indeed many natural
and social systems have an extremely large number of con-
stituent elements, each following complicated trajectories and
influencing others through heterogeneous forms of coupling
which may also evolve over time [3,4]. Thus, a complete
microscopic description of such systems in terms of all the
variables involved will be intractable. Instead, a parsimonious
description in terms of effective interactions between a rel-
atively fewer number of key macroscopic observables may
prove to be more effective in understanding the global evo-
lution of the system [5,6]. The nature of connectivity between
the observables can be inferred from the cross-correlations be-
tween their temporal evolution [7], allowing the construction
of a functional network coordinating the overall behavior. This
approach has been successfully used for analyzing many nat-
ural (e.g., the brain [8,9]) and socioeconomic (e.g., financial
markets [10–14]) systems, where it can help us understand
how extreme events, such as large-scale failures leading to
systemic crisis, can arise [15–17].

Financial markets provide a particularly appropriate exam-
ple where such an approach can be used to identify possi-
ble universal patterns characterizing self-organized collective
phenomena because of the availability of a large volume
of high-quality data [18–21]. The global dynamics of such
a system emerges from millions of transactions daily at
the micro-scale between market participants, ranging from

individual traders to institutional investors who are variously
driven by changes in economic fundamentals, herding ef-
fects, idiosyncratic motives, and exogenous shocks like news
[22,23]. A macroscopic description can thus be framed in
terms of effective interactions between financial assets in-
ferred from correlations in their price fluctuations that result
from the aggregation of all transactions in these assets by
market participants. Here, we have analyzed the collective
dynamics of price fluctuations in the largest stock market,
viz., New York Stock Exchange (NYSE), over a period of
nine decades (1926–2016) to understand the evolution of
this complex system over extremely long time-scales [24].
Specifically, we aim to identify quantitative signatures of sys-
temic risk [25–29] whereby initially localized perturbations
can eventually trigger economy-wide catastrophic changes
[30,31].

In this paper we uncover several important features of
the long-term dynamics of the market by investigating the
topological features characterizing the interaction networks
between stocks reconstructed for the different intervals com-
prising the period under study [see Fig. 1(a–b) for two repre-
sentative networks from periods prior to and during the 2007–
9 crisis]. The most striking of these is the observation that
periods of major economic crisis, viz., the Great Depression
of 1929–33 and the Great Recession of 2007–9, are associ-
ated with the loss of structural balance in the corresponding
interaction network for those periods. It is significant that
such a phenomenon, which is equivalent to the emergence of
frustration, is often identified with a major regime transition in
complex systems, e.g., in physical systems (spin glass [32,33])
as well as in social systems (such as the loss of structural
balance in the network of strategic alliances between nations
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FIG. 1. (a–b) Interaction networks of stocks traded in the New
York Stock Exchange (NYSE) showing the top 300 in terms of aver-
age price during (a) Period 80: Dec. 2002–Dec. 2006 and (b) Period
85: Feb. 2008–Feb. 2012, corresponding to time-intervals prior to
and during the Great Recession. Edges represent significant inter-
actions obtained by spectral filtering of the cross-correlation matrix
removing the common “global” mode and noise which mask these
interactions. The crisis period is characterized by the emergence of a
large number of negative edges (indicated by red color) representing
anti-correlation between pairs of stocks. This period also exhibits
dense clustering evident from the presence of many connected triads.
(c–d) The time-evolution of the number of total edges (NE , in blue)
and negative edges (N (−)

E , in red) is shown in (c) and that of the
number of connected triads [N (�), blue: all triads, red: frustrated
triads] is shown in (d) for the interaction networks of NYSE stocks
between 1926–2016. The intervals corresponding to systemic crisis
(viz., the Great Depression of 1929–1933 and the Great Recession
of 2007–9) in the economy are indicated by the shaded regions. The
red inverted triangles indicate the periods where structural balance in
the interaction network is lost. Node colors in (a) and (b) indicate the
business sectors to which the stocks belong (key to the color code is
as in Fig. 4).

preceding the outbreak of the first world war [34]). We show
the existence of a slowly evolving trend in the properties
of the interaction network, most notably in the number of
edges with negative weights which is related to the intensity
of anti-correlated movements [Fig. 1(c)] and in the number
of connected triads that indicates the extent of clustering
[Fig. 1(d)]. These measures have low values for most of
the duration under study but become high close to the two
periods of crisis mentioned earlier. An associated result is
that the networks corresponding to the crisis periods exhibit
stronger assortativity indicative of a prominent core-periphery
organization. We indeed observe large, densely connected
inner cores in the periods around the two crises, suggesting
an increased degree of coherence in the movement of stocks.
This is reinforced by our demonstration of delocalization in
the strongest eigenmodes characterizing large-scale correlated
movements during these times [35].

II. MATERIALS AND METHODS

The data used for our analysis is obtained from a database
comprising time series of daily closing prices for all stocks
traded in NYSE between December 31, 1925 and March 18,
2016, which is maintained by the Center for Research in
Security Prices (CRSP) [36]. We have segregated the total
duration into 89 overlapping periods of T = 1001 d, with
an overlap of 260 d (approximately corresponding to the
number of working days in a year). In each of these periods
we focus on N = 300 stocks having the highest average
price in that interval among all the stocks [37]. We have
repeated the analysis with different samples obtained from the
database, e.g., by increasing N to 500 or choosing 300 stocks
by random sampling, and have obtained qualitatively similar
results. To construct the interaction network between stocks
for each period, we focus on cross-correlations Ci j = 〈rir j〉
(i, j = 1, . . . , N) in the normalized logarithmic returns ri,t (=
[Ri,t − 〈Ri〉]/σi, 〈· · · 〉 and σ representing mean and standard
deviation, respectively) that measures daily fluctuations in the
stock prices pi [Ri,t = log(pi,t+1/pi,t ), i = 1 . . . , N]. Spectral
decomposition of the cross-correlation matrix C allows it to
be expressed as the sum of N terms (corresponding to the dif-
ferent eigenmodes), viz.,

∑
α λαuαuT

α (α = 1, . . . , N), where
λ and u are the eigenvalues (arranged in descending order)
and eigenvectors of C. By comparing with the spectrum of
the corresponding Wishart matrix, i.e., the random correlation
matrix constructed from N mutually uncorrelated time-series

each of length T , viz., PW (λ) = T/N
2π

√
(λW

max−λ)(λ−λW
min )

λ
, we filter

out from C all modes corresponding to eigenvalues that lie
within the bounds λW

max,min = [1 ± √
N/T ]2 of the Wishart

matrix spectrum [38]. These “random” modes are essentially
indistinguishable from noise and we thus focus only on the
deviating modes whose eigenvalues are higher than λW

max. The
eigenmode corresponding to the largest eigenvalue is iden-
tified as the “global” mode that represents signals common
to the entire market, while the other deviating eigenmodes
together represent the “group” dynamics between related
stocks which are responding to similar signals specific to the
community to which they belong, e.g., stocks in the same
industrial sector. Thus, the spectral decomposition of the col-
lective dynamics allows it to be split into three components,
viz., C = Cglobal + Cgroup + Crandom. Figure 2(a) shows the
time-evolution of the distribution of the elements of Cgroup

over the period under study.

III. RESULTS

The distinct nature of the eigenmodes belonging to these
three components is indicated by the qualitatively different
distributions followed by the corresponding eigenvector com-
ponents. In particular, one can quantify this difference by mea-
suring the degree of localization of the eigenmodes using their
inverse participation ratio (IPR) [11,12,14,39,40], which has
been used earlier to investigate critical transitions in financial
markets [41]. This is defined for the kth eigenvector uk as Ik =∑N

i=1[uki]4, where uki is the ith component of the vector [42].
A completely delocalized eigenmode where all components
have exactly identical contribution, viz., uki = 1/

√
N , will
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FIG. 2. (a) The evolution of the probability distribution of sig-
nificant correlations between stocks (after spectral filtering) during
1926–2016. The adjoining contour plot shows the temporal variation
in the dispersion of the distribution across the period of about
90 y, the different contours corresponding to integral multiples of
the standard deviation. (b) The inverse participation ratio (IPR) of
the global mode corresponding to the largest eigenvalue (u1) and
that for the next few leading “group” modes corresponding to the
second, third, and fourth highest eigenvalues (u2, u3, u4). The lower
bound of IPR, viz., 1/N corresponds to a completely delocalized
mode in which all components contribute equally while the broken
line represents the expected IPR for random noise (=3/N). The
group modes exhibit stronger localization during periods of relative
economic calm, while systemic crisis is associated with increased
coherent movement among stocks implied by delocalization.

yield an IPR value of 1/N . We note that this is approximately
the case for the global eigenmode corresponding to the largest
eigenvalue of C [Fig. 2(b)]. The “random” eigenmodes also do
not exhibit substantial localization having IPR values around
3/N [indicated by the broken line in Fig. 2(b)]. In contrast,
the “group” eigenmodes can show a high degree of local-
ization, with the highest possible value of IPR, viz., Ik = 1
corresponding to a single component (say i) dominating the
eigenmode, i.e., uki = 1 and uk j = 0 for j �= i. We note from
Fig. 2(b) that for most of the periods investigated, the IPR for
the eigenmodes u2, u3, u4 corresponding to the three highest
deviating eigenvalues are indeed much larger than those for
the random and global modes. They signify the existence of
groups of stocks (viz., the ones having dominant contribution
to a deviating eigenmode) such that members of a group
have their dynamics more in synchrony with each other as
compared to the rest. However, in the periods immediately
following systemic crises, viz., the Great Depression and the
Great Recession, the IPR for all three deviating eigenmodes
shown here become almost indistinguishable from that of
the random modes (see Supplemental Material [43]). This
substantial decrease of the IPR indicates the occurrence of
delocalization in the group eigenmodes during times of crises,
which in turn signifies that stocks lose any distinct dynamical

identity. Thus, systemic crises are marked by globally syn-
chronized collective dynamics characterized by delocalization
in all eigenmodes.

In order to analyze this evolution in the nature of in-
teractions between stocks in greater detail, we have recon-
structed signed, undirected networks representing significant
correlations between stocks for each of the 89 periods under
investigation [two instances are shown in Fig. 1(a–b)]. To
obtain the adjacency matrix A for such a network from the
corresponding group correlation matrix Cgroup, we impose
a threshold such that Ai j = 1 if Cgroup

i j > μrandom + 3σrandom,
Ai j = −1 if Cgroup

i j < μrandom − 3σrandom and Ai j = 0 other-
wise. Here, μrandom(≈ 0) and σrandom are the mean and stan-
dard deviation (respectively) of the distribution of Crandom

matrix elements [44]. Our analysis of the networks for the
89 successive periods reveal significant temporal variation in
the frequency of edges with negative weights between various
stocks [Fig. 1(c)]. The number of connected triads (linked by
statistically significant cross-correlations) that are observed
also vary over a large range spanning 5 orders of magnitude
but become particularly large only during the period preceding
(and following) the two particularly catastrophic events that
occurred during the period under study, viz., the Great Depres-
sion of 1929 and the Great Recession of 2007 [Fig. 1(d)]. Most
strikingly, the number of frustrated triads which measures
the extent of the loss of structural balance in the network
of interactions only show non-zero values in the periods just
prior to and during the two crisis periods [Fig. 1(d)].

The concept of structurally balanced networks was origi-
nally introduced in the context of social interactions [45] and
refers to systems having positive or negative links arranged
such that they do not give rise to inconsistent relations within
cycles in the network. An example of arranging such links so
that they give rise to an inconsistency (resulting in frustration
or, equivalently, loss of balance) occurs when three nodes
A, B, and C are connected to each other such that the links
between A, B and B,C are positive, but that between A,C
is negative. If the node states can be in one of two states
(e.g., “up” or “down”), it is easy to see that no possible
assignment of states exist that satisfy all the given relations
between the nodes. In general, a system loses balance if
triads of connected nodes possess an odd number of negative
relations. It is also known that a balanced network can be
always mapped to a system comprising two subnetworks, with
only positive interactions existing within each subnetwork,
while links between the two are exclusively negative [46].

To explore how the balance of the interaction network
evolves over different periods, we show in Fig. 3 the sign
composition of all the triads that occur in the network in a
given period. The first two panels [(a) and (b)] correspond
to the fraction of balanced triads (i.e., those having two
or no negative edges) while the next two panels [(c) and
(d)] show the fraction of unbalanced triads (i.e., having one
or three negative edges). We also show for comparison the
fraction of triads of each type that are expected to arise by
chance given the degree sequence of the network (calculated
from the corresponding signed degree-preserved randomized
networks). We observe that in the empirical networks, unbal-
anced triads are far less likely to occur than by chance (with
the triad having all negative links occurring only once over the
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FIG. 3. (a–d) The evolution of the fraction of connected triads
(red triangles) in the network of significant interactions resolved into
the four possible distinct signed triads, (a) and (b) corresponding to
balanced (viz., + + + and + − −, respectively), and (c) and (d) to
unbalanced triads (viz., + + − and − − −). For each, the fraction
of triads expected from degree-preserved randomized networks are
also shown (gray inverted triangles). Note that the unbalanced triads
are much less likely to occur in the empirical network. (e) The
number of frustrated triads [N (�frust ), indicated by the color bar] in
each of the eigenmodes corresponding to the deviating eigenvalues
(i.e., λi > λW

max) of the cross-correlation matrix for the periods 1–89
spanning the entire duration being investigated. Eigenmodes falling
within the bounds set by the corresponding Wishart matrix spectrum,
and which are therefore indistinguishable from random modes, are
not considered (shown in white). While frustrated triads appear in
individual eigenmodes at many periods, the network of significant
interactions exhibit such triads only prior to and during systemic
crisis in the economy [indicated by negative growth rate, i.e., �g <

0, in (f)]. (f) Relative change �g in the inflation-adjusted gross
domestic product (GDP) per capita of USA measured in terms of
logarithmic returns over successive intervals for the same period as
in (a–d).

entire duration investigated), and are seen exclusively during
systemic crises in the financial system. In Fig. 3(e) we show
how each individual eigenmode α belonging to Cgroup (used
for reconstructing the interaction network) contributes to the
loss of structural balance. This is done by computing the
number of frustrated triads in the network corresponding to
the eigenmode α. This network is constructed from the matrix
obtained through the outer product λαuT

α uα . We observe a
striking correlation between frustrated triads appearing in in-
dividual eigenmodes and negative growth rate of the economy
as a whole measured in terms of relative change �g in the
GDP per capita [compare panels (e) and (f) of Fig. 3] suggest-
ing a subtle relation between macroeconomic fluctuations and
statistical signatures shown by financial markets. We would
like to stress that even when frustrated triads occur in the
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FIG. 4. (a) The evolution of the degree assortativity rLCC of the
largest connected component of the interaction networks over the
duration under study. Periods associated with financial crisis are seen
to have positive values of rLCC suggesting that the corresponding
networks can exhibit core-periphery organization. This is supported
by k-core analysis of the networks with (b) showing the evolution of
the order of the innermost core kmax of the networks. It is apparent
that the depth of the core increases during systemic crisis, indicating
higher degree of coherence in the movement of stocks in the market.
(c–d) Multi-level pie chart for (c) Period 80 and (d) Period 85
showing the sector composition of each of the k-shell quartiles.
The radii of the quartiles are proportional to the fraction of stocks
belonging to them. The color code in the adjoining key indicating the
business sectors to which stocks belong correspond to (1) Mining and
Construction, (2) Manufacture (basic), (3) Manufacture (advanced),
(4) Transportation, (5) Trade, (6) Finance, Insurance and Real Es-
tate, (7) Services (Business), (8) Services (Public), and (9) Public
Administration.

individual eigenmodes, they do not appear in the interaction
network obtained by aggregating over these modes except in
the two major financial crises that occurred during the entire
duration under study.

Analysis of the interaction networks (reconstructed from
the group correlation matrix) across time also indicates
changes in the macroscopic properties of the network which
correlate with the stress in the economy. For instance, we
observe that the network gets more connected during crisis
periods as indicated by the time-evolution of the number of
edges NE [Fig. 1(c)]. More intriguingly, there is evidence
of degree homophily, i.e., nodes tend to preferentially con-
nect with other nodes having similar degree (i.e., number
of connections). This is measured for the largest connected
component of each of the networks using the measure of
assortativity coefficient rLCC [47] [Fig. 4(a)]. It allows us to
observe a systematic variation in the mesoscopic structure of
the interaction network with r being positive (i.e., the network
is assortative) during periods of stress and negative (i.e.,
disassortative) in other times. We note that degree assortativity
in a network implies the existence of a densely connected
core of high degree nodes with low degree nodes forming the
periphery [48].
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To characterize the core-periphery structure of the net-
works in detail we have performed k-core decomposition [49]
on them. This technique successively reveals cores of higher
order by sequentially removing shells comprising nodes of
lower degree in a recursive manner. The order kmax of the
innermost core provides a measure of the depth of intercon-
nectedness in the system for a particular period. Figure 4(b)
shows that kmax peaks during the periods of systemic crisis
further underlining the earlier observation that these periods
are associated with global synchronization in the collective
dynamics. Figure 4(c–d) shows the sector compositions of
the shells by grouping them into quartiles, for two of the
interaction networks corresponding to Periods 80 (pre-crisis)
and 85 (crisis), respectively. The fractional occupancy of
a shell quartile by stocks belonging to different industrial
sectors is shown using a color code constructed from the
four digit Standard Industrial Classification (SIC) as has been
indicated in the key. In the pre-crisis period most of the stocks
occupy the outer periphery of the network, while during crisis
the inner cores become densely populated as indicated by the
increased radius of the innermost shell quartile. The diverse
sectoral composition of the inner cores is consistent with
the emergence of system-wide coherent activity during the
crises periods as was suggested by the delocalization of group
eigenmodes. This is a quantitative demonstration of the fact
that the 2007–9 crisis spilled over to the entire economy after
originating in the financial sector [50].

IV. DISCUSSION

It is tempting to conclude that the loss of structural balance
in the interaction networks characterizing a financial market
can act as a robust indicator signaling the onset of a systemic
crises. As already noted earlier, we have obtained qualitatively
similar results for other representative samples obtained from
the same database. While it may appear that the loss of
balance occurs as a sudden event that coincides with the onset

of systemic crisis in the system, the other results reported
here show that it is in fact connected to a gradual build-up
of stress in the market. The resulting change in the nature
of the collective dynamics is reflected in the localization-
delocalization transition in the group eigenmodes, as well as
structural transformations in the core-periphery organization
of the interaction network. We find that there is a strong cor-
respondence between these phenomena and the evolution of
market behavior in the 90-year interval under study, where an
initial period of high stress (Great Depression) was followed
by a long interval of relative calm but that eventually ended in
another period of high stress (Great Recession).

Financial markets are known to exhibit periods of high
volatility leading to extreme fluctuations in asset prices which,
however, seem to have little impact on the economy as a
whole [51]. There have been only two major exceptions to this
general trend, viz., the 1929–33 and the 2007–9 crises, where
the disturbance originating in the financial sector spilled over
to the other sectors eventually resulting in a economy-wide
slump. The results reported in this paper may provide sig-
nificant insights into understanding how local perturbations
propagating through complex networks can occasionally trig-
ger such global catastrophes. In particular, our work suggests
that loss of structural balance in the networks representing
interactions within the components of the financial market
can signal critical accumulation of macroeconomic stress that
leads to severe systemic crises.
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