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Abstract—Transitions observed in the dynamical patterns of
vehicular traffic, for instance, as a result of changes in traffic
density, form an important class of phenomena that is sought
to be explained by large-scale modeling using many interacting
agents. While the dynamics of highway traffic has been the subject
of intense investigation over the last few decades, there is as yet
comparatively little understanding of the patterns of urban traffic.
The macroscopic collective behavior of cars in the network of
roads inside a city is marked by relatively high vehicular densities
and the presence of signals that coordinate movement of cross-
flowing traffic traveling along several directions. In this article, we
have presented a novel kinetic Monte Carlo simulation approach
for studying the dynamics of urban traffic congestion. This allows
us to study continuous-time, continuous-space models of traffic
flow in the presence of stochastic fluctuations, which contrast
with the dominant paradigm of cellular automata models. We
first reproduce well-known results of such discrete models for
traffic flow in the absence of any intersections, and then, show the
corresponding behavior in the presence of an intersection where
cross-flowing traffic is regulated by a signal. The fundamental
diagram of traffic flow in the presence of a signal shows a
broad plateau indicating that the flow is almost independent of
small variations in vehicle density for an intermediate range of
densities. This is unlike the case where there are no intersections,
where a sharp transition is observed between free flow behavior
and jamming on changing vehicle density. The distribution of
congestion times shows a power-law scaling regime over an
extended range for the stochastic case when exponential-like
right skewed probability distributions are used. These results
reproduce in a simple setting the empirically observed power-
law behavior in congestion time distributions for Indian urban
traffic that is validated here with a much larger data-set.

I. INTRODUCTION

The modeling of large-scale social dynamics using inter-
acting agents, where macroscopic changes can be observed at
the level of the entire system as a result of the micro-dynamics
of the individual constituents, is increasingly becoming possi-
ble with advances in computing infrastructure and numerical
techniques [1]. Transitions observed in the dynamical patterns
of vehicular traffic, for instance, as a result of changes in traffic
density, is an important class of phenomena that is sought
to be explained by such modeling methods. Indeed, detailed
study of highway traffic, both in terms of models as well as
using empirical data, has given some measure of understanding
on how free flow can change to jamming behavior and vice
versa [2], [3]. However, there is as yet comparatively little
understanding of the patterns of urban traffic, i.e., the large-

978-1-4673-9622-6/16/$31.00 ©2016 |IEEE

scale collective behavior of cars in the network of roads inside
a city which is marked by relatively high vehicular densities
and the presence of signals that coordinate movement of cross-
flowing traffic traveling along several directions. As has been
observed for some time, the rapid increase in the number of
vehicles plying the roads of major cities has resulted in a high
incidence of congestion and jamming that threaten to result in a
breakdown of the urban transportation infrastructure. Modeling
studies aimed at understanding how the transition to congestion
occurs and the role of signals in such a process should help
in coming up with more effective strategies for controlling
traffic flow along urban road networks, aimed at reducing the
incidents and intensity of traffic congestion.

Here we present a novel kinetic Monte Carlo simulation
approach for studying the dynamics of urban traffic con-
gestion. This allows us to study more realistic continuous-
time, continuous-space models of traffic flow in the pres-
ence of stochastic fluctuations. We reproduce results of well-
known discrete models for traffic flow in the absence of any
intersections, and then show the corresponding behavior in
the presence of an intersection where cross-flowing traffic is
regulated by a signal. The fundamental diagram of traffic flow
in the presence of a signal shows a broad plateau indicating
that the flow is almost independent of small variations in
vehicle density for intermediate densities. This is unlike the
case where there are no intersections, where a sharp transition
is observed between free flow behavior and jamming on
changing vehicle density. The distribution of congestion times
shows a power-law scaling regime over an extended range
for the stochastic case when exponential-like right skewed
probability distributions are used. These results reproduce in
a simple setting the empirically observed power-law behavior
in congestion time distributions in Indian urban traffic that is
validated here with a much larger data-set.

II. MODEL

Monte Carlo methods are a generic class of algorithms that
involve repeated random sampling. Kinetic Monte Carlo tech-
niques have been extensively used, e.g., in statistical physics, to
simulate the dynamical evolution between states of a system.
Here we use the basic methodology of kinetic Monte Carlo
to propose a simulation technique for studying the continuous
time, continuous space dynamics of vehicles. For simplicity
we consider a single-lane road that has an intersection where
traffic is controlled by a signal (Fig. 1). It is assumed that the
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Fig. 1. Schematic diagram of the model for investigating urban traffic dy-
namics around an intersection with a signal. Vehicular movement is simulated
explicitly along one road, while the effect of cross-flow traffic from the other
road at the intersection is manifested only in the signal periodically preventing
vehicular movement along the road under consideration for a certain duration.
The vehicles move slow or fast depending on their distance from the preceding
car, the average speed being decided by a function that can be chosen to be
deterministic or stochastic. For convenience, periodic boundary conditions are
imposed that allows the entry and exit rates of vehicles to be determined by
the traffic density chosen for a simulation.

cross-flow traffic from the other road(s) at the intersection do
not impinge otherwise on the road that we focus on (i.e., we
do not allow the vehicles whose dynamics we are simulating
to exit onto these intersecting roads nor do we let cars from
these other roads to enter it), except through blocking the flow
of traffic periodically at the signal. The signal cycle T;gnai
measures the total duration between two successive occasions
that the signal turns “red” preventing vehicle movement along
the road in question at the intersection. The ratio of the
temporal duration in which the signal allows vehicles to pass
and that during which they are stopped is taken to be 1 for all
simulations reported here. For convenience, we can also take
the road to be joined at the ends, thus implementing a periodic
boundary condition. This means we do not have to explicitly
consider the rate of entry and exit of vehicles on the road, as
these are now simply related to the vehicle density p, i.e., the
fraction of total road surface that is occupied by vehicles.

We now focus on the dynamics of individual vehicles.
It is intuitive to expect that the mean speed c of a vehicle
will be functionally related to the headway, i.e., the distance
d between it and the preceding vehicle. In absence of any
vehicle in front, it will travel at its maximum mean speed,
Cmaz- HOwever, as the vehicle approaches another its speed
will gradually reduce until, when they are extremely close,
the car at the back will essentially stop. Thus, a sigmoidal
form is a natural candidate for the function relating c to d and
we choose ¢ = Cpard?/(Q + d?), where the half-saturation
constant () determining the steepness of the sigmoid curve
is one of the model parameters. In a deterministic version,
we take the actual speed v of the car to be the same as
this mean speed c. However, in reality, there will be a large
number of intrinsic and extrinsic factors that will affect the
value of the instantaneous speed. For simplicity, we can assume
that these result in effectively stochastic fluctuations of v
around the mean value c. The nature of the distribution of the
fluctuations can play an important role in deciding the nature
of the collective dynamics of the vehicles. We have therefore
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Fig. 2. The proposed kinetic Monte Carlo updating method for simulating
traffic dynamics illustrated using a schematic diagram. At any time 7' = tg,
if we know the speeds v;(to) of different vehicles (n, n+1, n+2, ...) and
the distances d;(¢o) of each of them from the preceding vehicle, we can find
the earliest time 7" = ¢1 when any of them will reach the position occupied
at to by the preceding vehicle. This is when all variables are updated, i.e., the
new speeds of each vehicle v;(t1) are determined based on the inter-vehicle
distances d;(t1) at that time. The trajectory of the cars are recalculated with
the new speeds (the broken lines show their trajectories had they continued in
their old speed while the continuous curves show the revised trajectories) and
the next update occurs at 7" = t2 when a car first reaches the position that was
occupied at time 7" = ¢ by the preceding vehicle. The process is repeated
with the new speeds of all vehicles v; (¢2) being obtained based on knowledge
of d;(t2). Continuing this update scheme yields a time-series for position, as
well as, for speed of each vehicle for the duration of the simulation.

considered v to be distributed according to a Gamma (K, 6)
distribution, viz.,

1 K-1_—v/60
R e /9, (1)

where K and 6 are the shape and scale parameters, respec-
tively. The choice of the Gamma distribution allows us to
obtain deterministic dynamics as a limiting case of the more
general stochastic version, viz., when § — 0 and K — oo
such that K6 is finite. As we would like to be able to compare
results between simulations with different Gamma distributions
having the same mean ¢ = K6, it implies that once we have
chosen a value for K and for ¢, § = ¢/K is fixed. For the
simulations reported here we have taken ¢ = 1, and focused
on two values of K: (i) K = 1 which corresponds to a
exponential distribution and (ii) K = 20 which approximates
a Gaussian distribution. These two cases allow us to contrast
results obtained for a heavily right-skewed distribution with a
more symmetric one.

P(v) =

The kinetic Monte Carlo nature of our simulations is
apparent in the dynamical updating scheme (Fig. 2). At an
initial instant ¢, we have information about the distance
between each adjacent pair of vehicles and the speed at which
each is traveling. This allows us to construct the trajectory of
each car and find at what time they are going to intersect
the position that the car in front occupied initially, i.e., at
tp. The earliest of such events decides the first update time
t1, when the distance between each adjacent pair of vehicles
is re-calculated and the resulting mean speeds obtained from
the sigmoidal function relating ¢ and d. In a deterministic
model, we then use this to calculate the trajectory of each
car again. For stochastic models, we draw a random number
from the relevant Gamma distribution for each vehicle to
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determine their instantaneous speed, before constructing their
trajectories as in the deterministic case. We then again find the
earliest time at which a vehicle will reach the position occupied
by the preceding vehicle at time t;, which then decides the
second update time ¢ and the entire procedure described
above is repeated. In contrast to fixed interval updates, this
iterative procedure is very efficient in reducing the number
of calculations while at the same time ensuring that vehicles
adapt their speeds to match those of their neighbors and do
not end up in collisions.

In our simulations, all vehicles are assumed to be of the
same size and the maximum speed at which they can travel
is also taken to be similar. We have measured spatial distance
in units of car length while the time unit is defined by the
duration in which a vehicle moving at the mean maximum
speed advances by 1 space unit (i.e., 1 car length). For all
results reported here we have chosen the total perimeter length
of the road to be 200 units while simulation runs upto 10%
time units have been done. We have verified that choosing
other lengths or simulation durations do not affect our results
significantly. To allow comparison of results obtained using
different parameter values we have ensured that increasing the
mean maximum speed is always matched by either propor-
tionately increasing the road perimeter length or decreasing
the signal cycle. The movement data for the first few hundred
time units is excluded from the analysis to avoid any initial
state dependent transients.

III. RESULTS

The traffic movement patterns obtained by carrying out
the simulations according to the kinetic Monte Carlo method
are shown in Fig. 3. The top panel shows the situation in
the absence of any intersection. It is, therefore, a continuum
analog of the discrete Nagel-Schreckenberg model [4]. If the
vehicles had adopted speeds according to a deterministic rule,
the system would rapidly converge to state where all cars
move with same speed and maintain fixed distances from each
other. However, in presence of stochastic fluctuations, they
will occasionally show congestion while at other times they
will exhibit free flow (Fig. 3, top). When a traffic signal is
introduced (at the right end of Fig. 3, center and bottom), the
congestion is far more pronounced as the vehicles stopped at
the intersection gradually accumulate. With time more vehicles
join the end of the queue, significantly reducing the overall
flow in the system. Even when the signal allows the leading
vehicles to move again, it takes a certain amount of time
before those at the back can move. Indeed, it may a take a
vehicle which is stopped at the accumulation zone before the
intersection, several signal cycles to get past it. This broad
picture is seen in both the deterministic and stochastic cases,
with the latter showing a degree of variation in the trajectories
of individual vehicles.

The manifestation of variability at the level of individual
vehicles is clearer when we look at how the speed of a
vehicle varies in time (Fig. 4). In the deterministic case,
we observe that vehicles trapped in the region before the
signal move only during short durations until they are past the
intersection. They then move at speeds close to the maximum,
until they slow down again at the region of congestion near the
signal. The stochastic case, while showing a similar pattern,
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Fig. 3. Spatio-temporal evolution of traffic in a road without any intersections
(top) compared with that when a signal is present at the right end which
prevents vehicular movements at periodic intervals (center and bottom). The
vehicular density (i.e., the fraction of road surface occupied by cars) is 0.3
in all cases. Each line denotes the space-time trajectory of a single vehicle
moving along the road. The ordinate indicates time so that when a vehicle
slows down the line becomes more vertical. In the absence of any cross-flow
traffic (top), congestions are caused by stochastic fluctuations in the speeds
of individual vehicles. When an intersection is present (center and bottom
panels), traffic is coordinated by a signal whose cycle is taken as 120 time
units and the red vertical bars at the right margin indicate when cars are not
allowed to move past the signal (i.e., the signal is “red”). The center panel
shows that for a deterministic rule determining the speed of a car based on
its distance (headway) from the preceding car, the system rapidly converges
to an invariant pattern of motion and stasis in the flow of cars. Introducing
stochasticity in the speed determination rule (bottom) produces some variation
in the traffic movement patterns.
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Fig. 4. The temporal variation in the speed of a particular vehicle (continuous
curve) and the average speed of all vehicles (broken curve) shown for (a)
deterministic and (b) stochastic rules for determining the speed as a function
of the distance to preceding car. The red horizontal bars at the top of each
panel indicate the times when the signal stops vehicular movement.
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Fig. 5. The fundamental diagrams of traffic dynamics in the model showing
the dependence of (top) mobility and (bottom) flow, i.e., average number of
moving vehicles per unit time, on the vehicular density, when a signal with
a cycle of 120 time units is operating at the intersection (continuous curves).
Two different stochastic rules are used for determining vehicle speed based on
their distance from the preceding car, employing (a) the right-skewed Gamma
(1,1) distribution, which is equivalent to an exponential distribution, and (b) the
more symmetric Gamma (20,1/20) distribution, which is effectively a Gaussian
distribution centered around the mean 1. In all cases the curves are compared
with the corresponding diagrams (broken curves) obtained in the absence of
any intersection or signal.

superimposes high-frequency fluctuations on the instantaneous
speed. However, at the level of the entire ensemble, there is
little difference between the deterministic and stochastic cases
and the average speed shows oscillations with the same period
as the signal cycle.

The fundamental diagram of traffic flow (Fig. 5) shows
the transition from free flow to a congested state as density is
increased. However, unlike the case where intersections with
signals are not present (e.g., as in highway traffic), we do
not observe a single critical density at which this transition
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congestion time 7, i.e., the duration for which a vehicle moves with a speed
less than a specified value (threshold speed), shown for the model with
different rules for determining vehicle speed based on their distance from the
preceding car. The deterministic rule exhibits a sharply decaying tail, while a
stochastic rule employing the Gamma (1,1) distribution (i.e., an exponential
distribution) shows a power-law scaling regime over almost two decades. The
exponent value for the latter is estimated using maximum likelihood technique
as a ~ 2.58. The stochastic rule using a more symmetric Gamma (20,1/20)
distribution (which is an effectively Gaussian distribution about the mean value
1) shows a partial scaling regime.

takes place. Instead, there is a broad plateau corresponding to
a wide range of vehicle densities, where the flow is effectively
unchanging as density increases (compare the broken and
continuous curves in Fig. 5). The corresponding mobility
diagram shows a concave dependence on density in this range
in the presence of signal, while in absence of intersections,
the dependence was rather convex. Thus, the coordination
provided by a signal to traffic allows the same flow to be
maintained over large variations in vehicle density, broadening
out the otherwise sharp transition point between freely flowing
traffic and jamming.

We have also looked at the distribution of congestion
times during which a vehicle is either effectively stopped
or traveling at extremely reduced speeds compared to the
mean maximum speed it can travel at, as a result of the
congestion around it. For the purpose of the simulation we
choose to designate the congestion time of a vehicle as the
duration during which it is always having a speed that is
less than 10% of ce.. As seen from Fig. 6, the results
are remarkably different depending on whether we use de-
terministic or stochastic rules, and also for the latter, on the
nature of the probability distribution we use. Deterministic rule
shows a sharply decaying distribution of congestion time, with
the bulk of the distribution centered around the value of the
duration for which the signal is ‘red’. The stochastic rules
show, however, very broad distributions, with one employing
a heavily right-skewed exponential distribution exhibiting a
power-law scaling regime over a considerable range. This is
extremely intriguing as it reproduces in a highly simplified
setting empirical observation of power-laws in the waiting time
distributions for traffic reported earlier for Bengaluru [5].

To ensure that the power law reported earlier for empiri-
cally obtained congestion time distributions was not an artifact
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Fig. 7. The complementary cumulative probability distribution of the

congestion time 7 in three major Indian cities calculated over all weekdays
in the month of July 2013. Broken lines show the fit obtained with power-
law scaling using maximum likelihood estimation technique (the calculated
exponent values are mentioned in the legend).

or limited to a single city or time period, we have recently
carried out such an analysis for a much more extensive data
set (spanning more than a year) of call-taxi GPS traces for the
cities of Bengaluru, Delhi and Mumbai obtained from Traf-
fline [6]. The distribution of congestion times (defined as the
time spent by a taxi traveling at a speed lower than a specified
threshold value) calculated over all taxis for all weekdays in a
particular month of the period under consideration is shown in
Fig. 7. The bulk of the complementary cumulative distribution
appears to be fit well by a power-law scaling form, so that
the probability distribution of congestion times 7 should also
be described by a power law P(7) ~ 7~%, while the tail is
an exponential cut-off that presumably is appearing because of
finite-size effects. The power-law exponent for the bulk of the
distribution is estimated by maximum likelihood methods [7]
yielding different values for different cities. Statistical tests of
significance have been carried out to ensure that one cannot
reject the possibility that the distribution form is described by
a power law.

IV. CONCLUSION

Here we have presented a novel kinetic Monte Carlo
simulation approach for studying the dynamics of urban traffic
congestion. This allows us to study more realistic continuous-
time, continuous-space models of traffic flow in the pres-

ence of stochastic fluctuations. We reproduce results of well-
known discrete models for traffic flow in the absence of any
intersections, and then show the corresponding behavior in
the presence of an intersection where cross-flowing traffic is
regulated by a signal. The fundamental diagram of traffic flow
in the presence of a signal shows a broad plateau indicating
that the flow is almost independent of small variations in
vehicle density for intermediate densities. This is unlike the
case where there are no intersections, where a sharp transition
is observed between free flow behavior and jamming on
changing vehicle density. The distribution of congestion times
shows a power-law scaling regime over an extended range
for the stochastic case when exponential-like right skewed
probability distributions are used. These results reproduce in
a simple setting the empirically observed power-law behavior
in congestion time distributions for Indian urban traffic that is
validated here with a much larger data-set.
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