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Ahstract-The movement of large numbers of vehicles along 
the complex network of roads in a city result in interactions be­
tween them that become stronger as the traffic density increases. 
The non-trivial behavior arising from the collective dynamics 
of vehicles include the occurrence of persistent congestion at 
different points of the transport network that typically reduce 
the efficiency of overall traffic flow. In order to understand the 
mechanisms responsible for the characteristic spatio-temporal 
patterns of urban traffic, we first need to identify statistically 
robust features from empirical observations, which one can then 
try to recreate in computational models of traffic dynamics. In 
this article, we have analyzed the GPS traces collected round the 
clock for more than a hundred taxis operating in a major Indian 
city over a period of 1 month. The available information allows 
us to precisely measure the periods during which the vehicle 
is static and when it is moving. We focus on the intermittent 
patterns of rest and motion that a car exhibits during its passage 
through city traffic, which provides a window into key aspects 
of collective dynamics resulting from congestion. We show that 
the distribution of waiting time, i.e., the period during which a 
car is static between two successive epochs of movement, has a 
highly skewed nature. The bulk of the probability distribution 
appears to follow power-law scaling with exponent value of 1.78. 
As city traffic has very different densities during peak hours 
and off-peak hours, we have also investigated this distribution at 
different times of the day. While the power-law scaling is found to 
be robust, the exact value of the exponent does change slightly. We 
have also considered the active time distribution, i.e., the period 
of movement between two epochs when the car is static, which 
does not exhibit a power-law signature but rather resembles a 
inverse Gaussian or a log-logistic distribution. We also look at the 
recurrence relation between the durations of successive waiting 
times, as well as, that between active time duration and the 

duration of the preceding waiting time. Our results can be used 
to help understand how the statistical properties of large-scale 
traffic movement over complex road networks which characterize 
cities deviate from that of other types of collective dynamics, e.g., 
the diffusion of random walkers. 

I. INTRODUCTION 

Vehicular traffic provides a fascinating perspective into 
large-scale social dynamics where the micro-dynamics of in­
teractions between self-propelled agents results in macroscopic 
changes of phase, e.g., from free flow to jammed states [1], 
[2] , [3] . In the recent decades the spatio-temporal behavior of 

highway traffic has been investigated in detail. By contrast, 
urban traffic, i.e., the large-scale movement of cars within a 
city, which is characterized by high densities and signals co­
ordinating the movement of vehicles converging from several 
directions, has remained relatively unexplored. However, the 
increasing number of vehicles in our cities and the resulting 
higher probability of congestion and jams severely reduces the 
efficiency of the complex road networks spanning a city that 
severely affects the quality of life. A deeper understanding 
of the mechanisms leading to, e.g., stop-and-go traffic in 
typically urban settings, may help in devising better strategies 
for controlling the flow of vehicles along the road network, 
resulting in less likelihood of jams. 

Several model studies have tried to understand various 
aspects of traffic dynamics that are usually seen in an urban 
environment, such as, the role of traffic light periodicities. 
However, in order to be able to construct traffic models that 
accurately describes real phenomena, we first need to identify 
statistically robust features in the empirical data which can 
then be reproduced in models. With this aim in view, we have 
analyzed a data-set containing the GPS traces of 127 taxis 
plying in the roads of a major Indian city for the period of 
one month. Use of such data is analogous to the use of tracer 
particles in fluids to obtain a global understanding of their flow 
patterns, as opposed to using local probes at specific regions 
(which would correspond to collecting data on traffic volume 
at specific locations of the road network) that yield highly 
localized information. 

By focusing on the pattern of intermittent bursts of motion, 
that are preceded and followed by periods of rest, we try to 
gain an understanding of the collective dynamics resulting in 
congestion. In particular, we have analyzed the distribution of 
waiting times (i.e., the time during which a vehicle does not 
move at all), and seen power-law scaling whose exponents 
appear to depend on the overall traffic density. We have also 
seen the absence of power-law scaling in the distribution of 
the complementary quantity, active time (which corresponds 
to the period between two successive waiting times). We also 
observe that there are recurrence dynamical patterns between 
two successive waiting periods and between a waiting period 
and the subsequent active period. Our results should motivate 
further studies on the properties of waiting times in urban 
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Fig. I. Time-series of vehicular speed obtained from GPS trace of a single 
taxi showing typical pattern of intermittent periods of motion and stasis. The 
duration of the n-th period during which the vehicle is stopped is referred to 
as the n-th waiting period, Wn, while the duration of the period immediately 
following this when the car is in motion is called the n-th active period, An. 

vehicular congestion. 

II. DATA 

The data that we have analyzed occurs as GPS traces of 
127 taxis in a major Indian city over a period of 24 hours for 
30 consecutive days in a month. Apart from the position, the 
instantaneous speed of the taxi is also mentioned in the data 
files that allow us to construct time-series, a typical example 
being shown in Fig. 1 (which also shows how waiting time and 
active time is defined). Note that, vehicular density is highly 
variable throughout the day (Fig. 2) - with very high values 
occurring during the morning and evening peak hours (which 
we have taken as corresponding to 7 AM-ll AM and 5 PM-lO 
PM respectively) and conversely lower values during much of 
the off-peak hours in the mid-day (11 AM-5 PM) and night 
(10 PM -7 AM). 

III. RESULTS 

We have looked at the statistical aspects of waiting times 
when a vehicle is stopped, either because of signals at inter­
sections or because of congestion due to heavy traffic. The 
distribution of waiting times calculated over all taxis for the 
entire period under consideration is shown in Fig. 3. The bulk 
of the complementary cumulative distribution appears to be 
fit well by a power-law scaling form, so that the probability 
distribution of waiting times should also be described by a 
power law P(W) � w-a, while the tail is an exponential cut­
off that presumably is appearing because of finite-size effects. 
Note that this deviation from power-law scaling at the tail 
is appearing for periods larger than 104 seconds; such long 
durations of waiting periods are unlikely to be because of the 
vehicle being stopped in traffic. The power-law exponent for 
the bulk of the distribution is estimated by maximum likelihood 
methods [4] yielding 0: "::' 1.78 with the fitting being carried 
out over the range W > Wrnin = 239 secs. Statistical tests of 
significance have been carried out to ensure that one cannot 
reject the possibility that the distribution form is described by 
a power law. 
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Fig. 2. The average fraction of taxis that are moving at different 15 minute 
intervals over the 24 hour cycle. The average is calculated over all the days 
whose data is available. The two different shaded regions correspond to the 
period before noon and that after noon respectively. An arbitrary threshold, 
set at the value 0.3, differentiates high-density traffic during peak hours in 
the morning and evening and low-density traffic during off-peak hours in the 
afternoon and night. 
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Fig. 3. The complementary cumulative probability distribution of waiting 
periods W calculated over the weekdays of the entire period for which data 
is available, showing the fit obtained (broken line) with power-law scaling 
using maximum likelihood estimation technique (broken line). 

As the traffic density varies over the course of a day, being 
highest during peak hours, it is natural to ask whether the 
waiting times distribution will be affected by it. Fig. 4 shows 
the distribution of waiting times at four different intervals of 
the day, corresponding to the morning peak hours (maximum 
likelihood estimate of the power-law exponent being 0: "::' 
1.75), mid-day off-peak hours (0: "::' 1.60), the evening peak 
hours (0: "::' 2.11) and night off-peak hours (0: "::' 1.77). While 
the exponent value indeed appears to depend on the overall 
traffic density, being higher during the evening peak hours 
(corresponding to a sharper decay of the distribution for higher 
values of the waiting period), the power-law scaling nature 
of the bulk of the distribution appears to be invariant. The 
observation of this statistically robust property naturally leads 
one to ask if a simple theoretical model can be used to generate 
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Fig. 4. The complementary cumulative probability distributions of the waiting 
periods at different times of a weekday, differentiating between peak hours 
in the morning and evening, and off"peak hours in the afternoon and night. 
The broken lines indicate the maximum likelihood estimates of the power law 
exponents during different periods. 

the exponent values that have been observed. Queuing models 
suggested earlier in different contexts are known to give rise to 
power laws with exponent 3/2 (see e.g. Ref. [5] and references 
therein); however, the occurrence of exponent values closer to 
2 in the empirical data raises the possibility that, for the present 
system, one may need to explicitly consider heterogeneity in 
the system [6] or interactions between congestions occurring 
at different sections of the network. 

One can also ask whether the complementary quantity of 
active time (i.e., the period during which a car travels with a 
non-zero speed) also has a distribution characterized by power­
law scaling. Fig. 5 shows that the active time distribution 
does not follow a power law, and is in fact better described 
by inverse Gaussian or log-logistic forms. Note that these 
distributions are often associated with times between two 
successive crossings of a threshold in a random walk. It thus 
appears that while the active time behavior may be described 
through a process akin to random diffusion, the waiting time 
may require a more complex explanation. 

We have also looked at the recurrence relation between the 
durations of two successive waiting periods, Wn and Wn+1 
(Fig. 6), and between the duration of a waiting period Wn and 
that of the active period An immediately following it (Fig. 7). 
For both of these cases, the statistically significant elements 
of the joint distribution of the two periods are determined 
by measuring a z-score for the joint probability of each pair 
of periods, calculated as the difference between the empirical 
value and the mean value of random surrogates (corresponding 
to an ensemble of 500 randomized permutations of each 
sequence of the waiting and active periods), scaled by the 
standard deviation of the surrogates. Our results appear to 
suggest that very short waiting times (� 1 min) are likely to 
be followed by equally short waiting times, while long waiting 
times are more likely to be followed by long waiting times. 
Thus, there seems to be evidence for statistically significant 
long-range autocorrelation of waiting time durations. On the 
other hand, short waiting periods (� 2 mins) are likely to be 
followed by long active periods ((> 8 mins) - although, long 
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Fig. 5. The complementary cumulative probability distribution of active 
periods A calculated over the weekdays in the entire period for which data is 
available. Note that it does not exhibit power"law scaling. 
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Fig. 6. Statistically significant elements (measured by z"score) for the joint 
distribution of the durations of two successive waiting periods W n and Wn+ 1 
in the data corresponding to weekdays. 

waiting periods (� 8 - 9 mins) are also likely to be followed 
by long active periods ((> 7 mins). However, one would need 
to explore in detail the conditional probability distributions of 
these quantities separately for peak hours and off-peak hours 
before more substantive conclusions can be drawn. 

IV. CONCLUSION 

In this paper we have considered waiting and active time 
statistics in data corresponding to GPS traces of more than a 
hundred taxis operating in a major Indian city for a period 
of I month. By focusing on the intermittent patterns of rest 
and motion that a car exhibits during its passage through city 
traffic, we hope to uncover statistically robust features of the 
collective dynamics. We believe that the use of data from a few 
mobile elements to understand the properties of the system­
wide transport patterns is analogous to using tracer particles 
in fluids to obtain a global understanding of the flow patterns as 
opposed to using local probes at specific regions. We observe 
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Fig. 7. Statistically significant elements (measured by z-score) for the joint 
distribution of the duration of a waiting period Wn and the duration of the 
following active period An in the data corresponding to weekdays. 

that the distribution of waiting times exhibits a invariant power­
law scaling regime in the bulk, whose exponent varies with 
the time of the day (and hence, the volume of traffic). By 
contrast, the active time distribution does not exhibit a power­
law signature but rather resembles a inverse Gaussian or 
a log-logistic distribution. The recurrence relations between 
successive waiting times and between a waiting time and the 
following active time shows statistically significant elements 
suggesting evidence of long-range autocorrelation for waiting 

times. Our results can help in framing theoretical enqUirIes 
into the mechanisms that give rise to the large-scale patterns 
in urban traffic. 
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