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Lateral inhibition provides a unifying framework for spatiotemporal pattern
formation in media comprising relaxation oscillators

R. Janaki,1,2 Shakti N. Menon,1 Rajeev Singh,1,3 and Sitabhra Sinha1,4

1The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
2Department of Theoretical Physics, University of Madras, Guindy Campus, Chennai 600025, India

3Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
4Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India

(Received 12 February 2019; revised manuscript received 26 April 2019; published 23 May 2019)

Differential excitatory and inhibitory interactions, specifically lateral inhibition, between the constituent
elements of complex systems underlie a wide range of spatiotemporal patterns in nature. Here, we show
that when systems of relaxation oscillators, whose dynamics involve widely separate timescales, are coupled
primarily through diffusion of the inactivation component, they exhibit strikingly similar patterns regardless
of specific details of the model kinetics and spatial topology. This universality stems from the fact that all
observed patterns can be viewed as either specific manifestations of, or arising through interactions between,
two fundamental classes of collective dynamics, viz., a state comprising clusters of synchronized oscillators, and
a time-invariant spatially inhomogeneous state resulting from oscillator death. Our work provides an unifying
framework for understanding the emergent global behavior of various chemical, biological, and ecological
systems spanning several time and length scales.
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I. INTRODUCTION

The ubiquity of patterns in nature has, for several decades,
stimulated efforts at understanding possible mechanisms that
underlie their emergence [1–3]. Such patterns can be man-
ifested in both space and time, with perhaps the most
widespread instance of the latter being provided by systems
that exhibit relaxation oscillations (see, e.g., Refs. [4–7]). In
the simplest scenarios, these can be understood as resulting
from interactions between an activator component and an
inhibitory (or inactivation) component that operate at fast
and slow timescales, respectively [8]. Such oscillators can, in
turn, interact with each other, which can result in nontrivial
emergent collective dynamics in systems ranging from the cell
to the food web [9,10]. As competition between neighboring
elements is a recurring motif in such systems, it is natural
to consider the consequences of lateral inhibition [11–14] in
systems of relaxation oscillators.

In this paper we have explored the collective dynamics
in a variety of models arising in chemical, biological, and
ecological contexts. The common thread connecting these
diverse systems is that all of them are described by systems
of relaxation oscillators coupled to their neighbors through
the diffusion of their inactivation components. This may,
for instance, arise in spatially extended ecological habitats
comprising several patches, with each exhibiting oscillations
in predator and prey populations, where only the predator
(acting as the inactivation component) can move across neigh-
boring patches, e.g., as in herbivore-vegetation interactions
[15]. Experimental realizations of such systems involving
oscillating chemical reactions in microfluidic devices have
demonstrated the existence of several striking patterns [16].
These include antiphase synchronization, as well as spatially

heterogeneous time-invariant patterns. While the latter resem-
ble stripes generated by the Turing mechanism [17], it has
been analytically demonstrated using a generic model that
these result from spatially patterned oscillation death [18].
Here, we show that the patterns seen in these systems can arise
in much more general contexts, specifically involving models
characterized by different local dynamics and connection
topologies, and which describe processes across a wide range
of spatial scales. Such “universality” arises from the fact that
the patterns generated by such systems are either specific man-
ifestations of, or arise through interactions between, two basic
classes of patterns. Moreover, these fundamental patterns
should be observable in any system where lateral inhibition
couples oscillators whose dynamics is governed by interac-
tions between components characterized by widely separate
timescales.

II. THE MODEL

The dynamical behavior of a spatially extended system of
N relaxation oscillators (each comprising R variables) that
interact over a general connection topology can be described
by the coupled system of equations:

dx(p)
i

dt
= F(p)

(
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) + D(p)
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(1)
where x(p)

i (i = 1, 2, . . . , N , p = 1, 2, . . . , R) represents the
pth component of the ith oscillator. The dynamics of an
uncoupled node is specified by the functions F(p) and gov-
erned by parameters whose values are chosen so as to yield
oscillations. The diffusion terms represent the interactions
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of each node i with its ki neighbors (comprising the set Si)
through the different components x(p) with coupling strengths
D(p). The net contribution that each node receives through
these diffusive interactions is normalized by the number of
its neighbors ki, so as to make the results comparable across
systems with different connection topologies. For systems of
oscillators that are coupled over regular lattices with peri-
odic boundary conditions, each node has a fixed number of
neighbors, e.g., ki = 2 for a ring and ki = 4 for a square
lattice. The same framework can also be applied to networks
of oscillators having arbitrary connection topology, where ki

may vary across nodes.
With the exception of one of the models (viz., the cell-cycle

model, described below in Sec. II A), the individual oscillators
that we have considered are described by only two compo-
nents (u and v, say) that are responsible for activation and
inhibition, respectively. These systems can hence be described
by the equations

dui

dt
= Fu(ui, vi ) + Du

∑
j∈Si

u j − ui

ki
,

dvi

dt
= Fv (ui, vi ) + Dv

∑
j∈Si

v j − vi

ki
, (2)

where ui and vi (i = 1, 2, . . . N) represent the activation and
inactivation components, respectively. In this paper we fo-
cus on spatiotemporal patterns seen in systems possessing
simple regular geometries, viz., one-dimensional (1D) and
two-dimensional (2D) lattices. Motivated by examples of
lateral inhibition in nature, where communication between
neighboring regions occurs almost exclusively through the
inactivation component (such as the ones mentioned earlier),
we consider the case Du = 0 for all simulations reported here
(unless mentioned otherwise). We have explicitly verified that
qualitatively similar results are obtained even when this con-
straint is relaxed (e.g., when Du = Dv), provided the kinetics
of the inactivation component is sufficiently slower than that
of the activation component. We would also like to point out
that when the coupling is exclusively through diffusion of
the activation variable (i.e., Dv = 0), the collective dynam-
ics does not display the wide variety of patterns obtained
in the current investigation and exhibits only synchronized
oscillations (Fig. 1). For most results reported here, N = 20
(for 1D) and N × N = 602 (for 2D), although we have used
other values of N to verify that our results are not sensitively
dependent on system size. The boundary conditions are taken
to be periodic to minimize boundary effects. The equations
are solved using a variable step stiff solver. Time units in
each case are normalized with respect to the time period of
an uncoupled oscillator for the corresponding set of parameter
values. In the following subsections we describe in detail each
of the four models, characterized by different choices of the
functional forms for F , and whose collective dynamics we
investigate. Spatiotemporal evolution (for one-dimensional
arrays) and snapshots (for two-dimensional lattices) of the
activation patterns for the different models are shown in
Figs. 2(a)–2(d), while Figs. 3(a)–3(h) indicate the different
types of dynamical behavior observed in these models by
varying the parameter values.

FIG. 1. The collective dynamics of a ring of N = 20 oscillators,
described by the FitzHugh-Nagumo model (FHN), that are diffu-
sively coupled through the activator component u alone (i.e., Dv =
0). The (Du, b) parameter plane, where Du represents the coupling
strength between activator components of the neighboring oscillators
and b is a measure of the asymmetry of the oscillators, shows that the
dynamics of the system converges either to gradient synchronization
(GS) or synchronized oscillation (SO) attractors.

A. Cell-cycle model

In the first system that we consider, the individual oscil-
lators describe the cell cycle, i.e., the periodic sequence of
events in a cell resulting in it dividing into two daughter cells.
The oscillator description used here is adapted from a three-
component model for early embryogenesis in Xenopus laevis,
developed by Ferrell et al. [19], which involves interactions
between the proteins CDK1, Plk1, and APC. Over the course
of the cell cycle, CDK1 activates Plk1, which in turn activates
the protein APC that subsequently suppresses CDK1.

Representing the concentrations of CDK1, Plk1, and APC
by u, v, and w, respectively, the time-evolution of this system
is governed by Eq. (1) with the functions Fu, Fv , and Fw

described by

Fu(u, v,w) = α1 − β1u

(
wn1

kn1
1 + wn1

)

+α4 (1 − u)

(
un4

kn4
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)
,

Fv (u, v,w) = α2 (1 − v)

(
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kn2
2 + un2

)
− β2 v,

Fw(u, v,w) = α3 (1 − w)

(
vn3

kn3
3 + vn3

)
− β3 w. (3)

Note that the positive and negative feedback loops make each
of the uncoupled elements a relaxation oscillator with distinct
fast and slow phases. Typical values of the model parameters
that generate oscillations are α1 = 0.02, α2 = 3, α3 = 3, α4 =
3, β1 = 3, β2 = 1, β3 = 1, k1 = 0.5, k2 = 0.5, k3 = 0.5, k4 =
0.5, n1 = 8, n2 = 8, n3 = 8, and n4 = 8.

As APC is a relatively large regulatory complex, one may
consider interactions through the diffusion of this protein to
be negligible. We use the fact that Plk1 indirectly suppresses
CDK1 by activating APC, to consider its concentration as the
inactivation variable in our simulations. We have therefore
considered only diffusive coupling through the variable v (i.e.,
Du = Dw = 0). The patterns shown in Fig. 2(a) are obtained
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FIG. 2. Diversity of complex spatiotemporal patterns observed in
several systems described by lattices of relaxation oscillators, cou-
pled through diffusion of their inactivation variables. (a, b) Pseudo-
color representation of the spatiotemporal evolution of the activation
variable u for one-dimensional arrays of oscillators described by
(a) a cell cycle model adapted from Ferrell et al. [19] and (b) the
Brusselator model for autocatalytic chemical reactions [20]. Both
systems comprise N = 20 oscillators arranged on a ring. Attractors
of the spatiotemporal dynamics of the system shown in (a) include
(L-R) gradient synchronization (GS), synchronized oscillations (SO,
a special case of GS), antiphase synchronization (APS), a pattern
exhibiting generalized synchronization, chimera state (CS) charac-
terized by coexistence of oscillating and nonoscillating elements, and
spatially patterned oscillation death (SPOD) state. Other complex
patterns in addition to those mentioned above emerge from the
spatiotemporal evolution of the system of coupled chemical oscil-
lators shown in (b). Snapshots of the activation variable u in a two
dimensional array (with periodic boundary conditions) comprising
N × N relaxation oscillators described by (c) the Brusselator model
and (d) the Rosenzweig Macarthur model of predator-prey dynamics
[15]. For both systems, N = 60 with each oscillator coupled to their
four nearest neighbors. The patterns seen in (c) include (L-R) GS and
generalized APS, both exhibiting spiral waves, a tightly wound spiral
representing a complex phase relationship between the oscillators
and CS (checkerboard regions comprise nonoscillating nodes). Sim-
ilar patterns are seen in (d), viz., (L-R) single and multiple spirals,
CS, and SPOD.

by varying the model parameters α1, α2, β1 and the coupling
strength Dv . A detailed parameter phase diagram is shown

FIG. 3. The distinct collective dynamics observed in different
regions of the parameter space for arrays of relaxation oscillators
diffusively coupled through the inactivation variable, where each
oscillator is described by the Brusselator (a–d), cell-cycle (e, g),
or Rosenzweig-MacArthur (f, h) models. (a, b) Different dynamical
regimes for a ring of oscillators described by the Brusselator model,
shown in the (Dv , A − Ahopf ) and (Dv, B) parameter planes respec-
tively. The regimes are labeled by the attractor to which the majority
(> 50%) of initial conditions converge, viz., SO, GS, APS, CS, and
SPOD, as well as a variety of other patterns that are referred together
as OTHERS. For both panels N = 40, with B = 2 for panel (a) and
A − Ahopf = 1 for panel (b). At A = Ahopf(= 1 + B2), an uncoupled
element undergoes a Hopf bifurcation. (c, d) Multistability of differ-
ent regimes is indicated by the variation of the basin sizes (BS) for
each attractor as Dv is varied along the broken lines in panels (a) and
(b), respectively (BS is defined as the fraction of initial conditions
that converge to a particular dynamical attractor). (e) Parameter
space diagram for a ring of N = 20 oscillators described by the
cell-cycle model, shown along the (Dv , α1) plane. (f) Collective
dynamical states of a two-dimensional lattice of N × N (N = 10)
oscillators described by the Rosenzweig-MacArthur prey-predator
model, shown along the (Dv , b) plane. (g, h) Coexistence of multiple
regimes at different parameter values is manifested in the BS of these
regimes shown as a function of Dv along the broken lines in panels
(e) and (f), respectively.

in Fig. 3(e). The sizes of the basins of attraction for the
different dynamical regimes obtained when Dv is varied along
the broken line in Fig. 3(e) are displayed in Fig. 3(g).

B. Brusselator chemical oscillator model

The next system we consider consists of oscillators that
describe the far-from-equilibrium behavior of chemical sys-
tems in which the concentrations of some reactants exhibit
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periodic variations. The specific model used is the Brusselator
[20], a simplified description of autocatalytic chemical reac-
tions, such as those belonging to the Belousov-Zhabotinsky
(BZ) class of reactions [21]. Representing the activator and
inhibitor by u and v respectively, the time evolution of the
system is described by Eq. (2) with the functions Fu and Fv

described by

Fu(u, v) = B + u2 v − (1 + A) u,

Fv (u, v) = A u − u2 v, (4)

where A, B are parameters whose values can be appropriately
chosen to make the system oscillate. For our simulations, we
consider A > Ahopf (= 1 + B2), where Ahopf is the value of A at
which a Hopf bifurcation occurs. Motivated by recent experi-
ments on coupled chemical oscillators in microfluidic devices
[16], where beads containing the BZ reactive solution are
suspended in a chemically inert medium that allows passage
of only the inhibitory chemical species, we have considered
Du = 0. Figs. 2(b) and 2(c) shows the different patterns that
are obtained by varying the values of the parameters A, B,

and Dv and detailed parameter phase diagrams are shown in
Figs. 3(a) and 3(b). The sizes of the basins of attraction for
the different dynamical regimes as a function of Dv along the
broken lines in Figs. 3(a) and 3(b) are shown in Figs. 3(c) and
3(d), respectively.

C. Rosenzweig-MacArthur predator-prey model

We next consider a model system whose individual oscilla-
tors describe the dynamics arising from interactions between
populations of prey (described by the fast activation variable
u) and predator species (described by the slow inactivation
variable v). The specific form for the functions Fu and Fv

are obtained from the Rosenzweig-MacArthur model [15,22],
viz.,

Fu(u, v) = r u
(

1 − u

K

)
− q

u

b + u
v,

Fv (u, v) = ε q
u

b + u
v − d v, (5)

where r is the intrinsic growth rate, K is the carrying capacity
of the prey population, q is the maximum predation rate of
the predator, b is the half saturation constant and ε and d
represent the efficiency and the death rate of the predator,
respectively. For our simulations, we have set r = 1, K = 1,
q = 2, d = 0.1 b = 0.1 and ε = 0.1. At K = Khopf [= b(εq +
d )/(εq − d )], an uncoupled element undergoes a Hopf bi-
furcation. There are many trophic interactions in which the
prey is immobile (e.g., vegetation) and the predator is able to
graze by moving from one patch to another (e.g., herbivore).
In such a context, one can set Du = 0 and vary Dv . Figure 2(d)
shows the different patterns that are obtained on varying Dv .
A detailed parameter phase diagram is shown in Fig. 3(f). The
sizes of the basins of attraction for the different dynamical
regimes obtained as Dv is varied along the broken line in
Fig. 3(f) are shown in Fig. 3(h).

D. FitzHugh-Nagumo model

For the bulk of our simulations, we have considered per-
haps the most generic model of relaxation oscillators, viz., the
FitzHugh-Nagumo (FHN) model [23]. Here, each oscillator is
described by a fast activation variable u and a slow inactiva-
tion variable v. The time-evolution of this model is governed
by the functions

Fu(u, v) = u(1 − u)(u − α) − v,

Fv (u, v) = ε(ku − v − b), (6)

where α = 0.139 and k = 0.6 are parameters specifying the
kinetics, b characterizes the asymmetry (related to the ratio
of the time spent in the high- and low-value branches of
the u nullcline), and ε = 10−3 is the recovery rate. We have
verified that the results reported here are not sensitive to small
variations in these values. Moreover, introducing different
boundary conditions can yield qualitatively similar results
[18].

III. RESULTS

We have carried out simulations on systems of coupled
oscillators, whose individual kinetics are described by the
different dynamical systems detailed in Sec. II. Despite very
different expressions for F(p) representing the intrinsic activ-
ity for each of these systems, upon coupling the oscillators
exhibit strikingly similar patterns (Fig. 2). Furthermore, the
broad nature of the collective dynamics does not appear to
depend appreciably on the dimensionality of the lattice, or
indeed, its connectivity. It is apparent from Fig. 3 that the
broad trends of observing synchronized oscillations at low
Dv and time-invariant, arrested states at higher Dv values
hold across different model kinetics and lattice dimensions.
The diversity of patterns that can be generated by these
models is illustrated in Figs. 2(a) and 2(b), corresponding to
spatiotemporal activity in a ring of cell-cycle oscillators (see
Sec. II A) and a chemical system undergoing autocatalytic
reactions that exhibits periodic activity far from equilibrium
(see Sec. II B), respectively. The different patterns shown
in panel (a) correspond to different arrangements of phase
relations between neighboring oscillators that are seen for a
broad range of system parameters. These include (i) Gradient
Synchronization (GS), characterized by a monotonic change
in the phase of oscillators along the array (manifested as
a propagating front of activity), a special case of which is
(ii) synchronized oscillations (SO) in which all oscillators
are in the same phase, (iii) antiphase synchronization (APS)
where the phase of neighboring oscillators differ by π , (iv)
states corresponding to generalized phase synchronization,
(v) chimera state (CS) comprising co-occurring oscillating
and nonoscillating nodes (also referred to as “localization”
[24]), and (vi) spatially patterned oscillator death (SPOD) in
which the oscillators are arrested at different phases. While
the term “Chimera” has been used in several different contexts
when describing the emergent behavior of dynamical systems
[25–29], it is used here to indicate states characterized by
coexistence of regions with distinct dynamical behavior [18].
Rings comprising oscillators described by the Brusselator
model shows patterns similar to those seen in Fig. 2(a), as
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well as more complex ones. As shown in Fig. 2(b), the
latter include one or more phase defects, viz., a local phase
relation between a set of neighboring oscillators that is distinct
from the rest of the lattice, moving across the domain. These
relatively exotic patterns occur over a restricted range of the
parameter space and are specific to the nature of F(p). We
note that these patterns are reminiscent of the phenomenon
of domain boundaries, which have been extensively studied in
the context of nonlinear dissipative media [30].

Even for higher spatial dimensions, we observe that the
collective dynamics of systems characterized by different
relaxation oscillator models exhibit similar characteristics.
Specifically, on comparing the spatiotemporal activity of
two-dimensional lattices of coupled Brusselators [Fig. 2(c)]
and interacting predator-prey populations described by the
Rosenzweig-MacArthur model [Sec. II C, Fig. 2(d)], a com-
mon set of patterns is observed. These include higher dimen-
sional analogues of GS (that manifest as traveling waves in
the lattice), as well as generalized APS (where the phase of
an oscillator at time t differs by π from that of its neighbor
at t + δt , where δt is a short time delay). In both of these
cases, we observe that the propagating fronts can take the
form of spiral waves. For stronger diffusive couplings in both
systems, we observe CS and SPOD patterns analogous to
those reported above for 1D systems. This suggests that the
effective lateral inhibition implemented by diffusion through
the inactivation variable is the dominant factor underpinning
the patterns that can be seen in these very different systems.

To investigate in detail the collective dynamical phenom-
ena common to the systems of relaxation oscillators shown
in Fig. 2 we consider a generic model of such oscillators,
viz., the FitzHugh-Nagumo (FHN) model (see Sec. II D), to
describe the dynamics of each node. Figure 4(a) shows the
three most general patterns that can be observed in a ring
of FHN oscillators, viz., GS, generalized APS and SPOD. In
addition to these, the system exhibits all of the other robust
patterns that are seen over a wide range of parameter values in
the systems described earlier [see Figs. 2(a) and 2(b)], which
can be viewed as either special cases (such as SO and APS)
or combinations of the three aforementioned general patterns.
For instance, CS corresponds to part of the system being in
GS while the remainder converges to SPOD.

To quantitatively analyze the robustness of the observed
patterns over the (Dv, b) parameter space, we have estimated
the size of their respective basins of attractions from many
(∼103) realizations [Fig. 4(b)]. To classify the space into
distinct pattern regimes we have used the following order
parameters. First, SPOD and CS states are distinguished by
determining the number of nodes for which the temporal
variance of the activation variable, σ 2

t (ui ) is zero. This allows
us to define the number of nonoscillating cells Nno that is
used to distinguish between SPOD (Nno = N) and CS (0 <

Nno < N). To distinguish between states where all nodes are
oscillating, including SO, APS, and GS, we obtain the time-
average of the variance of the activation variable calculated
over the lattice, 〈σ 2

i (u)〉t , as well as the corresponding quantity
for each of the two sublattices comprising alternating sites.
The latter are zero for both SO and APS states, which are
then distinguished by determining whether 〈σ 2

i (u)〉t is zero
(SO) or not (APS). If all three time-averaged variances have

FIG. 4. Collective dynamics in lattices of coupled relaxation os-
cillators described by the generic FitzHugh-Nagumo (FHN) model.
(a) Pseudocolor representation of the spatiotemporal evolution of
the activation variable u for one-dimensional arrays showing (L-R)
GS, of which SO is a special case, generalized APS and SPOD.
Almost all patterns exhibited by the system, as well as those in
Figs. 2(a) and 2(b), are either one of these or can be viewed as combi-
nations thereof (e.g., CS). The system comprises N = 20 oscillators
diffusively coupled on a ring through the inactivation variable v with
strength Dv . (b) Different dynamical regimes of the above system
in the (Dv, b) parameter plane, labeled by the attractor to which
the majority (> 50%) of initial conditions converge, viz., SO, GS,
APS, CS, SPOD, and OTHERS. If a majority of initial conditions
do not converge to a single attractor, then the corresponding region
is shown in black. (c) Snapshots of the activation variable u in
a two-dimensional array comprising N × N relaxation oscillators
displaying: (L-R) a GS and a generalized APS state both exhibiting
traveling fronts in the form of spiral waves, “gliders” (linelike phase
defects propagating on SO background), and CS. (d) Dynamical
regimes of the two-dimensional system analogous to the parameter
space diagram shown in panel (b). For panels (c, d), oscillators are
coupled to their four nearest neighbors on the lattice with periodic
boundary conditions; for (c) N = 60 and (d) N = 10. Note that both
the parameter space diagrams (b, d) exhibit reflection symmetry
about b = 0.17 (represented by the broken horizontal line).

finite values, the state is characterized as GS if the times at
which the activation variable of different nodes reaches the
peak value changes monotonically over the lattice, else it is
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classified as OTHERS. Note that OTHERS includes a large
number of diverse complex spatiotemporal patterns including
generalized APS. In practice, the different pattern regimes
are identified by specifying thresholds on the above order
parameters, whose specific values do not affect the qualitative
nature of the results. Parameter regions are marked as GS,
SO, APS, SPOD, and CS states if they are obtained for >50%
of random initial conditions (i.e., have the largest basin). We
note that SO is harder to obtain in larger systems as the rapid
coordination required for exact synchronization is easier to
achieve in smaller systems.

A striking feature of the (Dv, b) parameter space diagram
for the one-dimensional array of coupled FHN oscillators
is that the three general patterns occur at either end of the
coupling strength range, with SPOD being found at the higher
values of Dv while in the lower range we observe GS, as
well as antiphase patterns. The antiphase collective dynamics
manifests itself when the individual oscillator limit cycles are
highly asymmetric, corresponding to lower values of b. In-
deed, in the limit of extreme asymmetry where a node remains
in one of the branches (slow or fast) for almost the entire dura-
tion of its oscillation period, it can be shown analytically that
APS is the only stable state for the system [18]. We would also
like to note that while SPOD states resemble Turing patterns
[17], the generative mechanism is quite distinct from that of
Turing instability and involves the arrest of oscillators into a
heterogeneous stationary state, as demonstrated in Ref. [18].
Consistent with the earlier statement that all patterns other
than the three general ones (and their special cases) can be
seen as combinations thereof, we observe that these patterns
(such as CS) occur in the region between the GS and SPOD
regimes. Observation of SO at higher values of Dv can be
interpreted as a result of increased coordination resulting from
stronger coupling between the oscillators.

Investigation of the spatiotemporal dynamics in two-
dimensional lattices of N × N coupled FHN oscillators re-
veals the existence of patterns similar to those seen in
Figs. 2(c) and 2(d), including spiral waves, propagating phase
defects and CS [Fig. 4(c)]. The corresponding (Dv, b) pa-
rameter space [Fig. 4(d)] displays regimes corresponding to
SO, APS, CS, SPOD, and OTHERS identified using methods
similar to those used for 1-dimensional lattices. The strong
qualitative similarity with Fig. 4(b) is visually apparent. Note
that SO is seen to occur over a large region of the parameter
space to the exclusion of GS as Fig. 4(d) is for a small lattice
(viz., N = 10). For larger lattices, signals take longer to tra-
verse the domain making global phase coherence less likely,
which results in localized phase coordination manifesting as
waves (i.e., GS will dominate).

The qualitative similarity of the parameter space diagrams
for one- and two-dimensional lattices [Figs. 4(b) and 4(d)]
suggests that the nature of the pattern regimes seen for a sys-
tem of such coupled oscillators is independent of the dimen-
sionality. To verify this we now consider a mean-field system
of globally coupled FHN oscillators which corresponds effec-
tively to the limit of extremely large number of dimensions
(Fig. 5). We observe that the parameter space is dominated
by essentially two collective dynamical states, viz., Cluster
Synchronization (CLSn) comprising in general n oscillator
clusters (each cluster being characterized by the common

FIG. 5. Different dynamical regimes of a globally coupled sys-
tem of N (= 100) FHN oscillators diffusively coupled through the
inactivation variable v are shown in the (Dv, b) parameter plane. This
mean-field model displays two fundamental patterns of collective
activity, viz., Cluster Synchronization (CLS) at low Dv and inhomo-
geneous steady state (ISS) at high Dv . The CLS states are further
classified on the basis of the number of clusters n into which the
oscillators are grouped according to their phase, e.g., CLS1 which
is identical to SO, CLS2 which is equivalent to APS and CLS3 that
is seen for high b. The insets show the location of each oscillator
(colored circles) on its trajectory in (u, v) phase space at a particular
time instant for the dominant attractor in each regime. Note that in
ISS the oscillators are arrested at low or high values, analogous to
SPOD seen in lattices.

phase of all the constituent nodes) and the temporally invariant
inhomogeneous steady state (ISS), where the dynamics of
each node is arrested to one of two possible values [see inset
in Fig. 5]. We would like to point out that all the observed
spatiotemporal patterns mentioned earlier can be viewed as
instances or combinations of these two fundamental states. In
particular, ISS is equivalent to the SPOD state observed in a
finite-dimensional lattice. The spatially symmetric SO state
where all oscillators have the same phase, and hence belong
to a single cluster, corresponds to CLS1. Similarly, the spon-
taneously broken spatial symmetry APS state comprising two
clusters of oscillators that are exactly π out of phase, belongs
to CLS2. We also observe other CLSn states corresponding
to higher values of n in small regions of the parameter
space.

Deviating from the mean-field situation by reducing the
number of connections per node will result in the emer-
gence of other robust patterns. In particular, it is possible to
observe collective states where the number of clusters is
equal to the total number of nodes in the system, i.e., CLSN .
This will correspond to GS in lattices with a finite coor-
dination number. Its occurrence is inversely related to the
communication efficiency, i.e., how rapidly signals coordinate
activity across the system. This is governed by the diffusion
strength, as well as, the number of connections (relative to
the system size), and increasing either may result in merging
of clusters that could possibly lead to the globally coherent
SO (i.e., CLS1) state. We would like to note that qualitatively
similar results to those observed for the case Du = 0 can be
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FIG. 6. Different dynamical regimes of a system of FHN oscil-
lators, diffusively coupled through the inactivation variable v for the
case Du = Dv , are shown in the (Dv, b) parameter plane for (a) a
globally coupled system (N = 100) that exhibits two fundamental
patterns of collective activity, viz. Cluster Synchronization (CLS)
and Inhomogeneous Steady State (ISS), and (b) a ring of size N = 20
that exhibits SO, GS, APS, CS, SPOD, and OTHERS. In each case,
the dynamical regimes are labeled by the attractor to which the
majority (>50%) of initial conditions converge.

obtained even when Du = Dv , i.e., when both activation and
inactivation variables are diffusively coupled with the same
strength to their neighboring sites (Fig. 6).

As it is now apparent that the observed patterns in the one-
and two-dimensional lattices can be understood as instances
of the fundamental patterns CLSn, ISS and combinations
thereof, we now focus on how these two collective dynamical
states compete with each other at the interface of these two
regimes in the FHN parameter space. Figure 7 shows that
close to this boundary the system can converge to either one
of the two attractors depending on the (randomly chosen)
initial condition. This convergence happens after a period of
transient activity that resembles diffusion-mediated coarsen-
ing phenomena seen, e.g., in binary mixtures [31,32]. As seen
in Fig. 7(a), a ring of FHN oscillators in this parameter regime
exhibit the rapid creation of several domains of varying sizes,
each being either in a CLS or SPOD state. Over time some of
these domains expand at the expense of others in a process
of competitive growth akin to Ostwald ripening [33], with
the entire system eventually converging to either CLSn or
SPOD states [top and bottom panels of Fig. 7(a), respectively].
The sizes of the basins of attraction for these two states can
be discerned from the asymptotic probability density of fosc,
viz., the fraction of nodes that belong to any of the domains
exhibiting oscillations, whose time evolution is shown in
Fig. 7(b). Figure 7(c) shows how, as the system approaches
the asymptotic state, the number of distinct domains ndomain

reduces over time through a process of coalescence. Similar
coarsening phenomena leading to any of the two fundamental
patterns are also seen for two-dimensional lattices of coupled
oscillators [Fig. 7(d)].

FIG. 7. Convergence of the collective dynamics of lattices of
FHN oscillators to one of the fundamental attractors can be under-
stood as a coarsening process. (a) Pseudocolor representation of the
spatiotemporal evolution of the activation variable u on a ring of N =
100 oscillators. For the same set of parameter values (b = 0.175,
Dv = 1.8 × 10−3), the system converges to either GS (top) or SPOD
(bottom), depending on the random initial state. (b) The coarsening
shown in panel (a) can be quantitatively represented in terms of the
evolution of the Probability density function (pdf P) for fosc, the
fraction of oscillating nodes at a given time. Note that asymptoti-
cally the distribution converges to an approximately bimodal form
comprising two peaks around fosc = 0 (corresponding to SPOD)
and fosc = 1 (corresponding to GS). The probabilities are estimated
from 103 realizations. (c) The process of coalescence of multiple
domains, each comprising either oscillating or nonoscillating nodes
exclusively, is quantitatively displayed in terms of the time evolution
of the pdf for the number of such domains, ndomain. (d) Snapshots
of u in a two dimensional array (with periodic boundary conditions)
comprising N × N (N = 60) relaxation oscillators. For the same set
of parameter values as above, the system converges to either SO
(top) or SPOD (middle), depending on the initial state. It is also
possible to see states where further coarsening to SPOD is arrested
by the presence of line defects, comprising oscillating cells that move
extremely slowly (bottom).

IV. CONCLUSION

To conclude, we have shown that a variety of simi-
lar patterns are exhibited by diverse systems having differ-
ent local dynamics and connection topologies. This can be
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explained by noting that all of these patterns are either par-
ticular manifestations, or arise through interactions between,
two fundamental classes of collective dynamical states. These
are characterized either by one or more synchronized clusters,
or temporally invariant inhomogeneous patterns. As we show,
in general, they will arise from the collective dynamics of
a system comprising relaxation oscillators that are coupled
through the inactivation components, a feature that is common
across the systems that we have considered here. While weak
interactions typically generate CLSn, stronger coupling yields
ISS. This mechanism of pattern formation, distinct from the
classic Turing paradigm, is sufficiently generic to have been
observed in experimentally realizable settings, such as in
coupled electronic circuits [34]. This opens up the possibility
of exploring applications for the dynamics reported here,
e.g., in the context of computation [35]. While we have
focused exclusively on spatially extended lattice systems, it is
intriguing to ask whether analogous results will be obtained
for the continuum counterparts of these systems, described
for instance by coupled partial differential equations of the
reaction-diffusion type. It will also be of interest to extend
the investigation beyond the systems of relaxation oscillators
(comprising components whose dynamical evolution involve
very different timescales) that have been considered here and
to study, for example, diffusively coupled Stuart-Landau os-
cillators. In the continuum limit, such a system is described by
the complex Ginzburg-Landau equation [36] that is known to
exhibit a wide range of complex spatiotemporal behavior [37].

Finally, as diffusion is not the only mechanism through which
the dynamical components of a spatially extended system
interact, it will be of interest to see how the introduction of
other processes, such as advection, will affect the nature of
the spatiotemporal patterns generated by such systems. This
will, for example, be relevant in the context of predator-prey
systems embedded in environments subject to hydrodynamic
flows [38] (e.g., oceanic plankton populations [39,40]).
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