Collective Behavior of Cells: Learning from Planar Cell Polarity

Biplab Bose, IIT Guwahati

Himakar

Nirupam

Kamleswar

Collective Behavior of Cells: Learning from Planar Cell Polarity

Biplab Bose, IIT Guwahati

Polarity Of Epithelial Cells

PCP: Coordinated polarization of thousands of epithelial cells along the plane orthogonal to apical-basal axis

Compass In A Cell

PCP In Fly Wing

Proximal \leftarrow Distal Vang, Pk Fz, Dsh, Dgo

The Molecular Regulations Of PCP

PMID: 20107923, 23672397, 15662015, 16258926

PCP As Phase Transition

Homogeneous/Disordered

Non-Homogeneous/Ordered

Key Features:

It is a collective phenomenon.

- involves both local and global

interactions

It is *like* phase transition.

- possibly has critical threshold

The PCP Model

- Spin -1 = Protein complex 1
- Spin +1 = Protein complex 2

The PCP Model

 $m_1 > 0 \quad m_2 < 0$

The PCP Model

Randomly pick a cell Randomly pick any two edges Swap the spins Calculate Δh Accept the swap with $P = min(e^{-\Delta h}, 1)$

Aligned Cells & Clusters

A, B & C: Aligned cells

A is a **Cluster** aligned cells of *s* =1

BC is a **Cluster** of *s* =2

Cooperativity in Alignment

$$f_U = \frac{m^b}{c^b + m^b}$$

Emergence of Clusters of Aligned Cells

Percolation of Cell Clusters

$$P = \frac{C}{L \times L}$$

P: Relative size of the largest cluster

Percolation of Cell Clusters

$$\chi = \frac{\sum_{s} n_{s} . s^{2}}{\sum_{s} n_{s} . s}$$

 χ : Avg. size of the other cluster

Universality: Getting Rid of the Clutter

Scaling in random percolation:

$$P \sim (p - p_c)^{\beta}$$

$$\chi \sim |p - p_c|^{-\gamma}$$

Finite-size scaling ansatz:

$$P = L^{-\beta/\nu} F[(p - p_c)L^{1/\nu}]$$

$$\chi = L^{\gamma/\nu} G[(p - p_c) L^{1/\nu}]$$

p: occupancy probability

Universality: Getting Rid of the Clutter

Finite-size scaling ansatz:

$$P = L^{-\beta/\nu} F[(p - p_c)L^{1/\nu}]$$
$$\chi = L^{\gamma/\nu} G[(p - p_c)L^{1/\nu}]$$

p: occupancy probability

$$P = L^{-\beta/\nu} F\left[(f_A - f_{Ac}) L^{1/\nu} \right]$$

$$\chi = L^{\gamma/\nu} G\left[(f_A - f_{Ac}) L^{1/\nu} \right]$$

 $f_{\rm A}$: fraction of cells aligned

Behavior w.r.t f_A

PCP Model ≅ 2D Random Percolation

Critical index	PCP Model	2D Percolation
1/v	0.75(8)	0.75
β/ν	0.125(15)	0.104
γ/ν	1.7208(5)	1.785

PhysRevE.100.032408

PCP Model \cong **2D Random Percolation**

The Case of Unequal m₁, m₂

The Molecular Cues of PCP

Fi

Directional model: External Field Specify Direction

arXiv:2308.10508

Directional model: External Field Specify Direction

Cell-Cell & within cell interactions

$$b = m_1 \sum_{\substack{\text{all n} \\ \text{pairs}}} S_{\alpha,p} \times S_{\beta,q} + m_2 \sum_{\alpha=1}^N \sum_{\substack{\text{all 6} \\ \text{pairs}}} S_{\alpha,a} \times S_{\alpha,b}$$

Interaction with external field

$$\Delta g = m_3 \left(d_a S_{\alpha,a} + d_b S_{\alpha,b} \right)$$

Total change in energy

$$\Delta \mathcal{E} = \Delta h + \Delta g$$

$$m_1 > 0$$
 $m_2, m_3 < 0$ $|d_a| = |d_b| = d$

arXiv:2308.10508

Alignment of Cells in Right Direction

 $|m_1| = |m_2| = m$

Emergence of Clusters of Aligned Cells

 $|m_1| = |m_2| = m = 0.5$

Percolation of Cell Clusters

 $|m_1| = |m_2| = m$

Alignment of Cells in Right Direction

 $|m_1| = |m_2| = m$

Power of Collective Against Mutations

Mutated cells can not sense global cue

Role of Percolation Transition

Percolation threshold in absence of any directional cue, $|m_1| = |m_2| = m = 2.1254$

Role of Percolation Transition

$$SSD_{m} = \sum_{|m_{3}|=0}^{10} \left(f_{U}^{WT,|m_{3}|} - f_{U}^{mut,|m_{3}|} \right)^{2}$$

Cases of Extreme Mutations

m

Robust With A Gradient Of Global Clue

Robust With A Gradient Of Global Clue

Transient Global Clue Is Sufficient

Thresholds in Other PCP Models

bioRxiv 2021.11.30.468750

PCP as a critical phenomenon: The toy model based only on elementary rules of fly wing PCP

shows that this PCP is possibly a Percolation transition.

Universality & Simplicity: Even though this model is energy-based and involves several rules,

it belongs to the class of simple 2D random percolation.

Percolation makes PCP robust: Local interactions beyond a critical threshold makes the system robust to failure.

Percolation allow weak global cue: Beyond the percolation threshold of local interactions, a

weak global cue (possibly too week to detect) is good enough for collective alignment.