From egg to embryo to organism...

Positional information

Size and shape of organs and tissues

Physiological connections

Improvised use of basic cellular mechanisms

Complex regulatory circuits controlling cell division

Spatio-temporal regulation of gene expression

Structure–Function relationship

Genetic variations cause structural changes.

Function emerges

New function is the substrate for natural selection.

Normal Human Beta Chain (first 7 codor

Met Val His Leu Thr Pro Glu TAC GTG CAC CTG ACT CCT GAG

Sickle cell hemoglobin (Hemoglobin S) results when, glutamic acid that is normally present in the 7th position on the beta globin chain is substituted with valine.

Sickle Cell Hemoglobin (first 7 codons)

Met Val His Leu Thr Pro Val TAC GTG CAC CTG ACT CCT GTG

• Sickle Cell Anemia vs Malaria

Generation of endless forms/most

Every time we pass on our genetic information to the next generation, some new variations are introduced. Depending on the environment, some will survive, some will not.

Diversity is key for survival

Sustenance of life on earth for the past 3.7 billion years has been possible due to the process, in which each individual becomes different from the rest.

This ensures that, at least, a group of individuals of a population survive in any given environment.

More the genetic diversity of a population, more is the chances of its survival and continuance.

Evolution of Developmental Mechanisms

Morphogen gradients – Signaling Pathways Master regulatory genes

Typical structure of a Eukaryotic gene

DNA has information not only to make a specific protein, but also when, where and how much

Several models linking gene evolution to changes in adult body plan

Changes in the number of genes (duplication and divergence) –

Changes in domain of gene expression

> Changes in gene that give the protein new properties

Changes in cofactors that interact and provide specificity to gene functions

>Changes in downstream-responsive elements

Regulation of gene expression

Fore Limb Vs Hind Limb

Fore Limb Vs Hind Limb

Phylum Arthropoda

Common brine shrimp (*Artemia*) *Class Crustacea*

Butterfly Class Insecta

Order lepidoptera

Drosophila Class Insecta Order Diptera

Evolution of C-terminal domain of the insect Ubx vis-àvis suppression of abdominal leg development

Evolution of C-terminal domain of the insect Ubx vis-àvis suppression of abdominal leg development

Galant R, Carroll SB.Nature. 2002 Feb 21;415(6874):910-3. Ronshaugen et al Nature. 2002 Feb 21;415(6874):914-7.

Several models linking Hox evolution to changes in adult body plan

- Changes in the number of Hox gene (duplication and divergence)
- Changes in domain of Hox gene expression
- Changes in Hox gene that gives the protein new properties
- Changes in cofactors that interact and provide specificity to Hox proteins

Changes in Hox-responsive elements of downstream genes

wing vs haltere in Drosophila

No *Ubx* in T3

Wildtype

Ubx in both T2 and T3

Ed Lewis, Antonio Garica-Bellido, Gines Morata, Ernesto Sanchez-Herrero and many others

Evolution of Insect wing number and morphology

Several models linking Hox evolution to changes in adult body plan

Changes in the number of Hox gene (duplication and divergence) – all insects have the same number of Hox genes and only one Ubx

Changes in domain of Hox gene expression

Changes in Hox gene that gives the protein new properties

Changes in cofactors that interact and provide specificity to Hox proteins

Changes in Hox-responsive elements of downstream genes

Ubx is expressed in the developing hindwing of all insects

Ubx-mutant

Ubx-mutant, rescued by *Drosophila* Ubx

Samir lab

Ubx-mutant, rescued by Tribolium Ubx

Ubx-mutant, rescued by Bombyx Ubx

Samir lab

Identification of direct targets of Ubx in *Drosophila, Apis,* and *Bombyx* by ChIP-chip or ChIP-seq method

Tribolium

Apis $\sqrt{1}$

Bombyx √√

Drosophila $\sqrt{1}$

A Differences in Ubx-binding motifs – Drosophila vs Apis

Soumen Khan

Assessing the importance of the TAAT vs TAAAT motifs in the regulation of a target of Ubx (Vg – negatively regulated in *Drosophila*

Apis vg-Q GFP in the wing discs Apis vg-Q GFP in the haltere discs

Prasad et. al, 2016

TAAAT and not TAAT motif is sufficient to suppress *Apis-vg* enhancer

Soumen Khan

Conserved spatio-temporal gene regulation, but divergence of downstream events

We now know so much about how eye develops and in exactly the same position in a species that

we can induce eye development on legs...

Eye development in *Drosophila*, mouse and human is regulated by a similar protein (Pax6)

Work from Walter Gehrig's laboratory

THANK YOU