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Cell state transitions are key to

embryonic development and regenerative medicine

https://www.youtube.com/watch?v=ahJjLzyioWM
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Gene regulatory network models (GRN) are commonly used to
study cell state transitions but they are highly dimensional
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Gene regulatory network models (GRN) are commonly used to
study cell state transitions but they are highly dimensional
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Waddington’s landscape: from a simple metaphor




Waddington's landscape: from a simple metaphor
to a mathematical formalism
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: from a simple metaphor

Waddington’s landscape

to a mathematical formalism
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Waddington’s landscape: from a simple metaphor

Francis Corson and Eric Dean Siggia'

Develof | signali ks are ¢ i of dozens of
components whose interactions are very difficult to quantify in
an embryo. ric re ing a discrete hierarchy
of ph ypi dels with a few composite variables whose para-

meters may be defined by in vivo data. Vulval development in
the nematode Caenorhabditis elegans is a classic model for the in-
tegration of two signaling pathways; induction by EGF and lateral
signaling through Notch. Existing data for the relative probabilities
of the three possible terminal cell types in diverse genetic back-
grounds as well as timed ablation of the inductive signal favor
one geometric model and suffice to fit most of its parameters. The
model is fully dy ic and enc both signaling and com-
mitment. It then predicts the correlated cell fate probabilities for a
cross between any two backgrounds/conditions. The two signaling
pathways are combined additively, without interactions, and epis-
tasis only arises from the nonlinear dynamical flow in the land-
scape defined by the geometric model. In this way, the model
quantitatively fits genetic experiments purporting to show mutual
pathway repression. The model quantifies the contributions of
extrinsic vs. intrinsic sources of noise in the penetrance of mutant
phenotypes in signaling hypomorphs and explains available
experiments with no additional parameters. Data for anchor cell

blation fix the p. S ded to define Notch autocrine
signaling.
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(5) shows that even differentiation can be reversed. Yet they have
provided a useful guide to experiments.

These concepts admit a natural geometric representation,
which can be formalized in the language of dynamical systems,
also called the geometric theory of differential equations (Fig. 1).
When the molecular details are not accessible, a system’s effec-
tive behavior may be represented in terms of a small number of
aggregate variables, and qualitatively different behaviors enum-
erated according to the geometrical structure of trajectories or
topology. The fates that are accessible to a cell are associated with
attractors—the valleys in Waddington’s “epigenetic landscape”
(6)—to which neighboring trajectories converge. The set of
points that tend to a given attractor forms its basin of attraction,
and the state of commitment of a cell can be defined by its posi-
tion relative to the basins of different fates. Along the boundaries
between basins of attraction are saddle points, where the flow
splits between two attractors, marking a “decision point” between
different outcomes. Certain fates become accessible only at a par-
ticular time during development, so one should think of a land-
scape that changes over time. The external signals to which cells
respond during competence transiently shift the boundaries be-
tween attractors, biasing trajectories toward one fate or other.

The appeal of this type of mathematics for developmental biol-
ogy was recognized long ago (7) because the description is phe-
notypic and the mathematical concepts are formulated without
reference to parameters. However, the applications never went
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Gene-free methodology for cell fate
dynamics during development

Francis Corson'*, Eric D Siggia®*

"Laboratoire de Physique Statistique, CNRS / Ecole Normale Supérieure, Paris,
France; ?Center for Studies in Physics and Biology, Rockefeller University, New

York, United States

Abstract Models of cell function that assign a variable to each gene frequently lead to systems
of equations with many parameters whose behavior is obscure. Geometric models reduce dynamics
to intuitive pictorial elements that provide compact representations for sparse in vivo data and
transparent descriptions of developmental transitions. To illustrate, a geometric model fit to vulval
development in Caenorhabditis elegans, implies a phase diagram where cell-fate choices are
displayed in a plane defined by EGF and Notch signaling levels. This diagram defines allowable and
forbidden cell-fate transitions as EGF or Notch levels change, and explains surprising observations
previously attributed to context-dependent action of these signals. The diagram also reveals the
existence of special points at which minor changes in signal levels lead to strong epistatic
interactions between EGF and Notch. Our model correctly predicts experiments near these points
and suggests specific timed perturbations in signals that can lead to additional unexpected

outcomes.
DOI: https://doi.org/10.7554/eLife.30743.001
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Self-organized Notch dynamics
generate stereotyped sensory organ
patterns in Drosophila

Francis Corson,* Lydie Couturier, Hervé Rouault,

Khalil Mazouni, Francois Schweisguth*

INTRODUCTION: Spatial patterning in devel-
oping multicellular organisms relies on posi-
tional cues and cell-cell interactions. Stereotyped
sensory organ arrangements in Drosophila are
commonly attributed to a prepattern that defines
regions of neural competence. Notch-mediated
interactions then isolate sensory organ precur-
sor (SOP) cells from among the competent cells.
In support of this view, prepattern factors direct
the expression of proneural factors in discrete
clusters and determine the location of large
bristles on the dorsal thorax. However, no such
prepattern is known to establish the proneural
stripes that give rise to finer-bristle rows.

RATIONALE: By analogy with reaction-diffusion
systems, we wondered whether Notch-mediated
cell-cell interactions might organize a pattern of
proneural stripes. To explore a possible role for
Notch in proneural patterning, we generated

fluorescent reporters for the proneural factors
Achaete and Scute, the ligand Delta, and the
Notch early-response factor E(spl)m3-HLH,
which antagonizes proneural activity. We ob-
served expression of these reporters in live and
fixed samples throughout early pupal devel-
opment. In parallel, we developed a mathe-
matical model for Notch-mediated patterning.
In this abstract model, the dynamics of a cell is
expressed in terms of just two variables, for the
state of the cell and the level of signal it re-
ceives. The model incorporates a series of
plausible assumptions that govern its pattern-
ing behavior: Cells, which adopt the SOP fate
in the absence of signal and the alternative,
epidermal fate under high enough signal, ex-
hibit a bistable response under intermediate
signal levels. Inhibitory signaling from a cell
varies nonlinearly with cell state and reaches
beyond immediate neighbors.



Open question: how to tailor a landscape to a process
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Catastrophe Theory (CT), a new approach

Christopher
Zeeman
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Catastrophe Theory (CT), a new approach

Thom's classification theorem

Typically an r-parameter family of smooth functions R — R, for any nand for all
r < o, is structurally stable, and is equivalent around any point to one of the following forms:
® Non critical: V() = ;4
® Nondegenerate critical, or Morse:  V(u) = uj + - +u’ —ujpq — - —u

® Cuspoid catastrophes

Fold: V(u,t)

Cusp: V(u,t) = £(uj + toui +tyuy) + (M)
Swallowtail:  V(u,t) = u} +t3u} + toui + tyuy + (M)
Butterfly: V(u,t) = £(ul + tqul + taud + tous + tyuy) + (M)

(u,t)

Wigwam: V(u,t) =ul + tsub + tgu + tsul + taud + tyug + (M)

® Umbilic Catastrophes

(M) Morse function of the form w3 + -+ +uf —w?l, — —u) , 2<i<n




Example: Fold catastrophe

V(z,y,c) =y’ /3+2°/2 + cy
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Method

1.- Characterise the cell types and signals present in the biological process,
and the transitions that can be observed in the data.

2.- Using Catastrophe and Dynamical Systems Theory, enumerate the landscapes
that contain the desired number of attractors and transitions.

3.- Build the landscapes by gluing elementary catastrophes.
4.- Write the control parameters as functions of the biological signals.

5.- Use a parameter fitting method to fit the models to the data. Discard the landscapes
that are not consistent with the data.

6.- Validate the model and make predictions.



An example of cell state transitions: C. elegans vulval development

VPC + EGF/ Notch
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signaling perturbations

VPC fates (% 1°, 2° 3°)

Experiment
P4.p P5.p P6.p
Wild-type outcomes under reduced signalling
(1)  Wild type 0,0, 100 0,100,0 100,0,0
(2) let-23 mosaic wild type
(no EGF receptors in P5/7.p)
(3)  Half dose of lin-3 wild type
(Half EGF ligand)
(4) Half dose of lin-12 wild type

(Half Notch receptor)

Available data consists of probability of patterns for different

P4p P5p P6.p



Model design: Three landscape topologies are possible for a
process involving three fates
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Camacho-Aguilar E, Warmflash A, Rand DA (2021) Quantifying cell transitions in C. elegans with data-fitted landscape models.
PLoS Comput Biol 17(6): e1009034. https://doi.org/10.1371/journal.pcbi.1009034
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Model construction: Using CT we can build the simplest landscape
with the desired features

‘A Fold
Ve(z,y) = y°/3 +2°/2 + cy

Camacho-Aguilar E, Warmflash A, Rand DA (2021) Quantifying cell transitions in C. elegans with data-fitted landscape models.
PLoS Comput Biol 17(6): e1009034. https://doi.org/10.1371/journal.pcbi.1009034



https://doi.org/10.1371/journal.pcbi.1009034

Model construction: Using CT we can build the simplest landscape
with the desired features

‘A Fold |
Ve(z,y) =94°/3+2%/2+ cy
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Camacho-Aguilar E, Warmflash A, Rand DA (2021) Quantifying cell transitions in C. elegans with data-fitted landscape models.
PLoS Comput Biol 17(6): e1009034. https://doi.org/10.1371/journal.pcbi.1009034
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Model construction: Piecing together the fold and the cusp
catastrophes we can construct the right flow

{X — H(_y)f;:mp(x7a7b)_(1_H(_y))x:fl(xayaaabacvM) H(y):O,lfy<O
)} = yﬁold(y_M7C) :.fé(xvyvaabvcaM)a H(y):LlfyZO

Control parameters: a, b, ¢

B

Heteroclinic flip

Camacho-Aguilar E, Warmflash A, Rand DA (2021) Quantifying cell transitions in C. elegans with data-fitted landscape models.
PLoS Comput Biol 17(6): e1009034. https://doi.org/10.1371/journal.pcbi.1009034
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Building the model using CT allows for a deep understanding of
the allowed transitions

B={(a,b,c) € R®:8a” + 27> =0} U {(a,b,0) : a,b € R}
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Camacho-Aguilar E, Warmflash A, Rand DA (2021) Quantifying cell transitions in C. elegans with data-fitted landscape models.
PLoS Comput Biol 17(6): e1009034. https://doi.org/10.1371/journal.pcbi.1009034
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Modelling the effect of biological signals through the control
parameters to control cell state transitions
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Camacho-Aguilar E, Warmflash A, Rand DA (2021) Quantifying cell transitions in C. elegans with data-fitted landscape models.
PLoS Comput Biol 17(6): e1009034. https://doi.org/10.1371/journal.pcbi.1009034
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Modelling the effect of biological signals through the control
parameters to control cell state transitions
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Camacho-Aguilar E, Warmflash A, Rand DA (2021) Quantifying cell transitions in C. elegans with data-fitted landscape models.
PLoS Comput Biol 17(6): e1009034. https://doi.org/10.1371/journal.pcbi.1009034
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Adding white noise, we can simulate experiments
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Camacho-Aguilar E, Warmflash A, Rand DA (2021) Quantifying cell transitions in C. elegans with data-fitted landscape models.
PLoS Comput Biol 17(6): €1009034. https://doi.org/10.1371/journal.pcbi.1009034
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Adding white noise, we can simulate experiments
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Camacho-Aguilar E, Warmflash A, Rand DA (2021) Quantifying cell transitions in C. elegans with data-fitted landscape models.
PLoS Comput Biol 17(6): €1009034. https://doi.org/10.1371/journal.pcbi.1009034
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Adding white noise, we can simulate experiments
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Camacho-Aguilar E, Warmflash A, Rand DA (2021) Quantifying cell transitions in C. elegans with data-fitted landscape models.
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Model fitting: We use approximate Bayesian computation (ABC) to
® fit a set of available data
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Camacho-Aguilar E, Warmflash A, Rand DA (2021) Quantifying cell transitions in C. elegans with data-fitted landscape models.
PLoS Comput Biol 17(6): e1009034. https://doi.org/10.1371/journal.pcbi.1009034



https://doi.org/10.1371/journal.pcbi.1009034

Model fitting: We use approximate Bayesian computation (ABC) to
® fit a set of available data
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Data Fitting (ABC)
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Model fitting: We use approximate Bayesian computation (ABC) to
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Model fitting: We use approximate Bayesian computation (ABC) to
® fit a set of available data
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Model fitting: We use approximate Bayesian computation (ABC) to
fit a set of available data

A Data Simulations
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Using fitted parameters we can validate the model with remaining
ac
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Using fitted parameters we can validate the model with remaining
ac

data and make new predictions
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New predictions can differentiate between the two proposed
landscape models
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Camacho-Aguilar E, Warmflash A, Rand DA (2021) Quantifying cell transitions in C. elegans with data-fitted landscape models.
PLoS Comput Biol 17(6): €1009034. https://doi.org/10.1371/journal.pcbi.1009034
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More research on landscape models...

Cell Systems

Statistically derived geometrical landscapes capture
principles of decision-making dynamics during cell

fate transitions
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Highlights
¢ Quantified effect of signaling on fate decisions in an in vitro
differentiation system

e Constructed a Waddingtonian-like dynamical landscape
model from the quantitative data
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In brief

Fate decisions in developing tissues
involve cells transitioning between
discrete cell states. We developed an
approach to construct a dynamical
landscape from quantitative gene
expression data, in which the
development of a cell is represented by a
trajectory through the landscape.
Applying it to pluripotent stem cells
exposed to different combinations of
signaling factors accurately predicted cell
fate outcomes. This revealed two distinct
architectures for the way cells make a
binary choice between one of two fates.

Cell Systems

Noise distorts the epigenetic landscape and shapes

cell-fate decisions
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Highlights
e Additive and multiplicative noise have distinct effects on the
epigenetic landscape

e Changes in the number of cell fate choices are altered by
multiplicative noise only
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In brief

Waddington’s epigenetic landscape
provides a conceptual tool and,
increasingly, analytical framework for the
study of cell differentiation. While the role
of noise in cell biology has been amply
documented, the repercussions of
stochasticity on the landscape and the
differentiation dynamics has received
only scant attention. Here, we show that
noise shapes the landscape profoundly
and is even capable of changing
qualitative features of the cell
differentiation dynamics. It also limits our
ability to learn regulatory processes from
single-cell data.



Cell fate transitions in murine trunk development

James Briscoe Robert Blassberg David A. Rand Meritxell Saez Eric D. Siggia
(Francis Crick Institute) (University of Warwick) (Rockefeller Univ.)
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Data is no longer cell fates but gene expression
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The experimental setting allowed for many signaling
combinations
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Statistical approach to classify cell fates
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Statistical approach to classify cell fates
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Cell differentiation is governed by two distinct binary cell fate

decisions
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Cell differentiation is governed by two distinct binary cell fate
decisions
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The final model merges the two binary fate decisions
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Fitted landscape captures cell fate decisions
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Refined model accurately recapitulates experimental data
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Quantitative predictions test the accuracy of the landscape
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