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Imaging experiments : 
Time-resolved

data

Quantification of 
experimental data 

Model

Quantification of experimental data: Building a model

To develop a general 
theoretical framework 
that applies to a large 
class of similar systems



Mesoscopic view of diffusion

Source: Wikipedia

m··r + γ ·r = ξ(t)
⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t′￼)⟩ = Γδijδ(t − t′￼)

In the over damped limit
·r = 2D ξ(t)

Diffusion equation
∂
∂t

P(r, t) = D
∂2

∂x2
P(r, t)

Transport by simple diffusion

Macroscopic view of diffusion

Source: ZME Science

P(r, t) =
1

4πdDt
exp[ −

(r − r0)2

4dDt ]

(2) Mean-square displacement: ⟨r2(t)⟩ = 2dDt
(1) Fluctuation-Dissipation relationship: Γ = 2dmγKBT



Master equation approach d
dt

P(n, t) = ∑
n′￼

[W(n |n′￼)P(n′￼, t) − W(n′￼|n)P(n, t)]

Example: 1D random walk

1.1. Some concepts in stochastic processes 3

�t ! 0 gives

F (t) = �dS(t)/dt, (1.1)

or, alternatively can be written as

S(t) =

Z 1

t

F (t0)dt0. (1.2)

1.1.2 Analytical ways to find survival probability S(t)

For the continuous time random walks [17], there are two standard approaches to find

the S(t). (a) One is by computing the occupational probability P (x, t) using the forward

Fokker-Planck equation [23]. (b) The other involves a direct derivation of S(t) by using

the backward Fokker-Planck equation. These are discussed below. All the derivations of

Fokker-Planck equations are based on the Markov assumption [23], which says that the

probability of a particle being at a state at time t just depends on the probability at the

previous state at time t � �t, and does not depend on all the previous history.
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(a)

(b)

= First passage time

<latexit sha1_base64="Knr7DchZJF6r3HILvQmihX41pY4=">AAAB7HicbVBNS8NAEJ34WetX1aOXYBHrpSRF1GPRi8cKpi20oWy2m3bpZhN2J2IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZekAiu0XG+rZXVtfWNzcJWcXtnd2+/dHDY1HGqKPNoLGLVDohmgkvmIUfB2oliJAoEawWj26nfemRK81g+4DhhfkQGkoecEjSS91TBs/NeqexUnRnsZeLmpAw5Gr3SV7cf0zRiEqkgWndcJ0E/Iwo5FWxS7KaaJYSOyIB1DJUkYtrPZsdO7FOj9O0wVqYk2jP190RGIq3HUWA6I4JDvehNxf+8TorhtZ9xmaTIJJ0vClNhY2xPP7f7XDGKYmwIoYqbW206JIpQNPkUTQju4svLpFmrupfV2v1FuX6Tx1GAYziBCrhwBXW4gwZ4QIHDM7zCmyWtF+vd+pi3rlj5zBH8gfX5A+VUjhc=</latexit>

x(t�)

<latexit sha1_base64="kghVpB4BZbxS8jAYVvGP4AfdUsk=">AAAB63icbVA9SwNBEJ3zM8avqKXNYiJahbsUahm0sYxgPiA5wt5mL1mye3fszgnhyF+wsVDE1j9k579xk1yhiQ8GHu/NMDMvSKQw6Lrfztr6xubWdmGnuLu3f3BYOjpumTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7GdzO//cS1EXH0iJOE+4oOIxEKRnEmVfCi0i+V3ao7B1klXk7KkKPRL331BjFLFY+QSWpM13MT9DOqUTDJp8VeanhC2ZgOedfSiCpu/Gx+65ScW2VAwljbipDM1d8TGVXGTFRgOxXFkVn2ZuJ/XjfF8MbPRJSkyCO2WBSmkmBMZo+TgdCcoZxYQpkW9lbCRlRThjaeog3BW355lbRqVe+qWnuoleu3eRwFOIUzuAQPrqEO99CAJjAYwTO8wpujnBfn3flYtK45+cwJ/IHz+QP6S42K</latexit>

t�
<latexit sha1_base64="FuTlftNgp3oufJSv+UX0VISzvpE=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFhPRKtylUBshaGMZwXxAcoS9zV6yZm/v2J0TQsh/sLFQxNb/Y+e/cZNcodEHA4/3ZpiZFyRSGHTdLye3srq2vpHfLGxt7+zuFfcPmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0c3Mbz1ybUSs7nGccD+iAyVCwShaqVnG0yss94olt+LOQf4SLyMlyFDvFT+7/ZilEVfIJDWm47kJ+hOqUTDJp4VuanhC2YgOeMdSRSNu/Mn82ik5sUqfhLG2pZDM1Z8TExoZM44C2xlRHJplbyb+53VSDC/9iVBJilyxxaIwlQRjMnud9IXmDOXYEsq0sLcSNqSaMrQBFWwI3vLLf0mzWvHOK9W7aql2ncWRhyM4hjPw4AJqcAt1aACDB3iCF3h1YufZeXPeF605J5s5hF9wPr4BUu+OTw==</latexit>

t� = t

<latexit sha1_base64="FJlA0f+vtpIzxJB/lBPuv8RIYjs=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4Irsc1CPRi0d88EhgQ2aHWZgwO7uZ6TUhhE/w4kFjvPpF3vwbB9iDgpV0UqnqTndXkEhh0HW/ndza+sbmVn67sLO7t39QPDxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGNzO/9cS1EbF6xHHC/YgOlAgFo2ilh/J9uVcsuRV3DrJKvIyUIEO9V/zq9mOWRlwhk9SYjucm6E+oRsEknxa6qeEJZSM64B1LFY248SfzU6fkzCp9EsbalkIyV39PTGhkzDgKbGdEcWiWvZn4n9dJMbzyJ0IlKXLFFovCVBKMyexv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5JmteJdVKp31VLtOosjDydwCufgwSXU4Bbq0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz9l3o03</latexit>

R

<latexit sha1_base64="HnV+Ne7+1PoA/Y89idI2OTWjz0k=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnpiYuIt6MVjAmaBZAg9nZ6kTc9Cd48YhnyBFw+KePWTvPk3dhZBRR8UPN6roqqeFwuuNMYfVmZldW19I7uZ29re2d3L7x+0VJRIypo0EpHseEQxwUPW1FwL1oklI4EnWNsbX8389h2TikfhjZ7EzA3IMOQ+p0QbqXHfzxewjc9LTtFB2C5jp1rEC3JROUOOjecowBL1fv69N4hoErBQU0GU6jo41m5KpOZUsGmulygWEzomQ9Y1NCQBU246P3SKTowyQH4kTYUazdXvEykJlJoEnukMiB6p395M/MvrJtqvuikP40SzkC4W+YlAOkKzr9GAS0a1mBhCqOTmVkRHRBKqTTY5E8LXp+h/0iraTtnGjVKhdrmMIwtHcAyn4EAFanANdWgCBQYP8ATP1q31aL1Yr4vWjLWcOYQfsN4+ATbSjTc=</latexit>x
<latexit sha1_base64="9agDSJhaiHqf6hRXxb4apwzpLaw=">AAAB8XicdVDLSgNBEOyNrxhfUY9eBoMgCMtsTEy8BfXgMYJ5YBLC7GSSDJmdXWZmJSHkL7x4UMSrf+PNv3HyEFS0oKGo6qa7y48E1wbjDyextLyyupZcT21sbm3vpHf3qjqMFWUVGopQ1X2imeCSVQw3gtUjxUjgC1bzB5dTv3bPlOahvDWjiLUC0pO8yykxVrobnjSvmDAEDdvpDHbxWc7Legi7eewVs3hOzgunyHPxDBlYoNxOvzc7IY0DJg0VROuGhyPTGhNlOBVskmrGmkWEDkiPNSyVJGC6NZ5dPEFHVumgbqhsSYNm6veJMQm0HgW+7QyI6evf3lT8y2vEpltsjbmMYsMknS/qxgKZEE3fRx2uGDViZAmhittbEe0TRaixIaVsCF+fov9JNet6eRff5DKli0UcSTiAQzgGDwpQgmsoQwUoSHiAJ3h2tPPovDiv89aEs5jZhx9w3j4BLK+Qmg==</latexit>

x + �x
<latexit sha1_base64="ye7VtJqV/n6E4k7IAsD3ocfzZyw=">AAAB8XicdVDLTgJBEOzFF+IL9ehlIjHx4mYWQfBG1INHTOQRgZDZYYAJs7ObmVkDIfyFFw8a49W/8ebfODxM1GglnVSqutPd5UeCa4Pxh5NYWl5ZXUuupzY2t7Z30rt7VR3GirIKDUWo6j7RTHDJKoYbweqRYiTwBav5g8upX7tnSvNQ3ppRxFoB6Une5ZQYK90NT5pXTBiChu10Brv4LOdlPYTdPPaKWTwn54VT5Ll4hgwsUG6n35udkMYBk4YKonXDw5FpjYkynAo2STVjzSJCB6THGpZKEjDdGs8unqAjq3RQN1S2pEEz9fvEmARajwLfdgbE9PVvbyr+5TVi0y22xlxGsWGSzhd1Y4FMiKbvow5XjBoxsoRQxe2tiPaJItTYkFI2hK9P0f+kmnW9vItvcpnSxSKOJBzAIRyDBwUowTWUoQIUJDzAEzw72nl0XpzXeWvCWczsww84b58vx5Cc</latexit>

x � �x

<latexit sha1_base64="DnJ2W24VO1PkX9jeb0ZM90aZjCA=">AAACAXicdVDLSgMxFM34tr6qbgQ3wVZwVZKCtt0VBXGpYB/QlpJJM21oJglJRimlbvwVNy4UcetfuPNvzGgFFT1w4XDOvdx7T6gFtw6ht2Bmdm5+YXFpObOyura+kd3cqluVGMpqVAllmiGxTHDJao47wZraMBKHgjXC4UnqN66YsVzJSzfSrBOTvuQRp8R5qZvdOVXmmpgeHCituexDQxyDeZ3vZnOogBDCGMOU4NIR8qRSKRdxGeLU8siBKc672dd2T9EkZtJRQaxtYaRdZ0yM41SwSaadWKYJHZI+a3kqScxsZ/zxwQTue6UHI2V8SQc/1O8TYxJbO4pD3xkTN7C/vVT8y2slLip3xlzqxDFJPxdFiYBOwTQO2OOGUSdGnhBquL8V0gExhDofWsaH8PUp/J/UiwV8WEAXxVz1eBrHEtgFe+AAYFACVXAGzkENUHAD7sADeAxug/vgKXj+bJ0JpjPb4AeCl3eqq5Zh</latexit>

Forward hopping rate p
<latexit sha1_base64="Ea1m1w9k94U0fBIvw62Ob6srP7k=">AAACAnicdVDLSgMxFM3UV62vUVfiJtgKrkpS0La7UjcuK9gHtEPJpGkbmsmMSUYppbjxV9y4UMStX+HOvzHTVlDRAxcO59zLvff4keDaIPThpJaWV1bX0uuZjc2t7R13d6+hw1hRVqehCFXLJ5oJLlndcCNYK1KMBL5gTX90nvjNG6Y0D+WVGUfMC8hA8j6nxFip6x5UCR3dEtWDwzCKuBxARQyDuetc182iPEIIYwwTgotnyJJyuVTAJYgTyyILFqh13fdOL6RxwKShgmjdxigy3oQow6lg00wn1iyy28iAtS2VJGDam8xemMJjq/RgP1S2pIEz9fvEhARajwPfdgbEDPVvLxH/8tqx6Ze8CZdRbJik80X9WEATwiQP2OOKUSPGlhCquL0V0iFRhBqbWsaG8PUp/J80Cnl8mkeXhWyluogjDQ7BETgBGBRBBVyAGqgDCu7AA3gCz8698+i8OK/z1pSzmNkHP+C8fQJImpa2</latexit>

Backward hopping rate q

Figure 1.2: A particle performing random walk in 1-dimension with forward hopping
rate p and backward hopping rate q.

1.1.2.1 Forward Fokker-Planck equation

Consider a particle performing random walk on an 1-dimensional lattice, where the par-

ticle can hop forward or backward with rates p and q respectively [see Fig. 1.2]. Using

the Markov assumption [23], one can write the di↵erential equation for the probability

P (x, t|x0, t
0) of the particle being at position x at time t+�t starting from initial position

x0 at time t
0 [23],

P (x, t+�t | x0, t
0) = q�t P (x+�x, t | x0, t

0) + p�t P (x � �x, t | x0, t
0)

+[1 � (p+ q)�t] P (x, t | x0, t
0).

(1.3)

Here the last term on the right hand side represents the probability that particle does not

move anywhere from x in between time t and t + �t. Expanding Eq. (1.3) into Taylor

n n + 1n − 1

1.1. Some concepts in stochastic processes 3

�t ! 0 gives

F (t) = �dS(t)/dt, (1.1)

or, alternatively can be written as

S(t) =

Z 1

t

F (t0)dt0. (1.2)

1.1.2 Analytical ways to find survival probability S(t)

For the continuous time random walks [17], there are two standard approaches to find

the S(t). (a) One is by computing the occupational probability P (x, t) using the forward

Fokker-Planck equation [23]. (b) The other involves a direct derivation of S(t) by using

the backward Fokker-Planck equation. These are discussed below. All the derivations of

Fokker-Planck equations are based on the Markov assumption [23], which says that the

probability of a particle being at a state at time t just depends on the probability at the

previous state at time t � �t, and does not depend on all the previous history.
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Forward hopping rate p
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Backward hopping rate q

Figure 1.2: A particle performing random walk in 1-dimension with forward hopping
rate p and backward hopping rate q.

1.1.2.1 Forward Fokker-Planck equation

Consider a particle performing random walk on an 1-dimensional lattice, where the par-

ticle can hop forward or backward with rates p and q respectively [see Fig. 1.2]. Using

the Markov assumption [23], one can write the di↵erential equation for the probability

P (x, t|x0, t
0) of the particle being at position x at time t+�t starting from initial position

x0 at time t
0 [23],

P (x, t+�t | x0, t
0) = q�t P (x+�x, t | x0, t

0) + p�t P (x � �x, t | x0, t
0)

+[1 � (p+ q)�t] P (x, t | x0, t
0).

(1.3)

Here the last term on the right hand side represents the probability that particle does not

move anywhere from x in between time t and t + �t. Expanding Eq. (1.3) into Taylor

1.1.Someconceptsinstochasticprocesses3

�t!0gives

F(t)=�dS(t)/dt,(1.1)

or,alternativelycanbewrittenas

S(t)=

Z1

t

F(t0)dt0.(1.2)

1.1.2AnalyticalwaystofindsurvivalprobabilityS(t)

Forthecontinuoustimerandomwalks[17],therearetwostandardapproachestofind

theS(t).(a)OneisbycomputingtheoccupationalprobabilityP(x,t)usingtheforward

Fokker-Planckequation[23].(b)TheotherinvolvesadirectderivationofS(t)byusing

thebackwardFokker-Planckequation.Thesearediscussedbelow.Allthederivationsof

Fokker-PlanckequationsarebasedontheMarkovassumption[23],whichsaysthatthe

probabilityofaparticlebeingatastateattimetjustdependsontheprobabilityatthe

previousstateattimet��t,anddoesnotdependonalltheprevioushistory.
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Backwardhoppingrateq

(a)

(b)

= First passage time
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Figure1.2:Aparticleperformingrandomwalkin1-dimensionwithforwardhopping
ratepandbackwardhoppingrateq.

1.1.2.1ForwardFokker-Planckequation

Consideraparticleperformingrandomwalkonan1-dimensionallattice,wherethepar-

ticlecanhopforwardorbackwardwithratespandqrespectively[seeFig.1.2].Using

theMarkovassumption[23],onecanwritethedi↵erentialequationfortheprobability

P(x,t|x0,t
0)oftheparticlebeingatpositionxattimet+�tstartingfrominitialposition

x0attimet
0[23],

P(x,t+�t|x0,t
0)=q�tP(x+�x,t|x0,t

0)+p�tP(x��x,t|x0,t
0)

+[1�(p+q)�t]P(x,t|x0,t
0).

(1.3)

Herethelasttermontherighthandsiderepresentstheprobabilitythatparticledoesnot

moveanywherefromxinbetweentimetandt+�t.ExpandingEq.(1.3)intoTaylor

n + 2n − 2

d
dt

P(n, t) = pP(n − 1,t) − pP(n, t) + qP(n + 1,t) − qP(n, t)

Let p = q
d
dt

P(n, t) = p[P(n − 1,t) + P(n + 1,t) − 2P(n, t)]

d
dt

P(nΔx, t) = p[P((n − 1)Δx, t) + P((n + 1)Δx, t) − 2P(nΔx, t)]

lim Δx → 0,
D = pΔx2

Let

d
dt

P(x, t) = D
∂2

∂x2
P(x, t)

What if p > q?
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FIG. 4. (a) Mean-square displacement ⟨!r2(t )⟩ of a particle in-
side the dense phase for different α. (b) ⟨!r2(t )⟩ plotted for α = 3
in the case when the system does not phase separate to form a single
large cluster. Here Pe = 150 and φ = 0.7.

particles, even with lesser overlap [10]. This feature is not
seen for α = 4 and 3 [Figs. 3(e) and 3(f)] since the larger
overlap between the particles destroys the hexatic order at
such high densities.

To understand how the emergence of phase ordering
changes with varying α, we plot ψ6(t ) versus time starting
from a homogeneous phase for different values of α. While a
more detailed approach to address this question will involve
the study of coarsening dynamics, the ψ6 dynamics can also
be used to investigate this transition. In Fig. 3(d), we plot
ψ6(t )

ψ6(∞) as a function of time, where ψ6(∞) is the average
steady state value for the phase separated system. We notice
that with a decrease in α, the system takes longer to phase
separate. To quantify this dependence on particle softness, we
apply a rescaling of the time axis, t → rλ

c t . We use rc instead
of α for rescaling [see Fig. 11(a) and Appendix E], since it
is an intrinsic length scale, which can be obtained in general
for any form of the potential used. This rescaling leads to a
data collapse for λ ≈ 8.5 [see Fig. 3(e)]. The large value of λ
is indicative of sensitive dependence of the transition time on
α. This dependence can also be of an exponential form [see
Fig. 11(b) and Appendix E].

Our study so far has revealed the dependence of the static
quantities, such as φcr , φl , P̃, and ψ6 on α, in a phase separated
system, through a system length scale, rc, defined for the
dense phase. Also, it shows that the time required for the
system to phase separate is sensitive to α. A natural question
arises as to whether the transport properties within the dense
phase also vary with α. To study this, we compute the mean-
square displacement (MSD) of one or a few tagged particles
inside the dense phase. In Fig. 4, we show the MSD of a tag
particle, inside the dense phase, as a function of lag time (t) for
4.0 ! α ! 6, Pe = 150, and φ = 0.7. We note that the MSD
for α = 6 shows good agreement with the reported results [5].
Interestingly, the MSD behavior did not show any noticeable
change as α is varied. This indicates that once the system
phase separates, unlike the static quantities, the particle dy-
namics is almost independent of α. This observation is further
strengthened by the MSD behavior for α = 3 and 2 at φ = 0.7
and Pe = 150, where there is no single large cluster but the
formation of many small local dynamic clusters. In this case,
for the same values of φ and Pe, we notice a deviation in the

MSD behavior [see Fig. 4(b)], qualitatively different from the
previous observations in both the dilute phase and dense phase
(see Fig. 12 in Appendix F), indicating a different collective
dynamics which needs to be studied in detail.

IV. CONCLUSION

Our study reveals that an increase in interaction softness
has an inhibiting effect on phase separation and strongly
influences the collective phase ordering: the critical density
above which the system phase separates shifts to higher val-
ues, while the waiting time for observing a phase separation,
above the critical density, also increases. The phase separa-
tion in the system is manifested by an intrinsic length scale,
which is the effective interparticle distance rc. The changes in
state properties with interaction softness in the dense phase
can be explained using rc. Using a mean-field theory [26],
we make an approximate estimate of rc which explains the
α dependence of the dense phase reasonably well. Using a
relation between the dense and dilute phase densities ob-
tained numerically, we show that the critical density at the
onset of phase ordering and the corresponding bulk pressure
can be scaled using the same rc with power-law corrections.
Before the phase separation, the rescaling can be achieved
reasonably by the Boltzmann diameter, rB. To characterize
the temporal efficiency as a function of α, we also studied
the time evolution of the global hexatic order for different
α. We found that an increase in particle softness (or decrease
in α) significantly slows down the approach to transition and
scales as ∼r8.5

c . However, the transport properties within the
dense phase show no variation with α. This indicates that
once the system phase separates, the dynamic behavior in-
side the dense phase is weakly dependant on the microscopic
interaction parameters. Note that the disappearance of phase
separation has been observed in inertial systems, with an
increase in Pe to ε ratio [16,39]. It would be interesting to
explore how an increase in interaction softness modifies this
behavior.

The dependence of phase separation on interaction softness
has relevance beyond simple models of active matter. The
mutual interactions in many active biological systems are not
hard core in nature and may vary across systems. Our study
thus may provide a physical basis for phase ordering in such
systems. This behavior need not be specific to the particular
form of interaction we have used, and we expect to observe
similar behavior with other forms of short-ranged repulsive
interactions.
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model: a random motion with Gaussian velocity fluctuations,
the correlation function of which is given. We discuss results
for this model for two specific choices of the correlation
function: (i) uncorrelated velocity noise, corresponding to an
overdamped Brownian motion and (ii) a negative exponentially
decaying correlation [antipersistent motion (AP)] similar to
that found in experiments on intracellular motion. We derive
and compare approximation formulas for the case of two
MSD points to numerical simulations. We also explore using
numerical simulations, the more involved case of more than
two MSD points and discuss our results in comparison to
the exact MSD obtained by a long-time average. The paper
concludes with a summary and discussion of our findings.
Details of the analytical derivations are discussed in the
Appendix.

II. LOCAL MSD ALGORITHM

The conventional method of analyzing experimentally
recorded trajectories is based on estimates of the MSD. For a
trajectory of time length T , the MSD is approximately given
by

!R2
t (τ ) = 1

T − τ

∫ T −τ

0
ds[R(t + s + τ ) − R(t + s)]2. (2)

For the case of Brownian motion, the time average shown in
Eq. (2) can be replaced by an ensemble average taken over
a large number of trajectories (this is not necessarily true for
subdiffusive motion as has been observed in a number of recent
papers [8–10]). More important for the current paper is that, for
a finite time window, the resulting estimate of the MSD is still
noisy. How these finite-size fluctuations affect the fluctuations
of the motion parameters is the topic of our paper.

For a discretized trajectory xl
i = xl(t + i !t) with i =

0, . . . ,M (sampling step !t) and l = 1, . . . ,d (where d is
the number of spatial dimensions), this average of overlapping
segments reads

!R2
t (τ = k !t) = 1

M − k + 1

M−k+1∑

i=1

d∑

l=1

(
xl

i+k−1 − xl
i−1

)2
.

(3)

A local MSD is the same as Eq. (2), but the average is taken
over a small local time window T for different values of the
time increment τ . The resulting data are then reduced to pure
numbers by dividing distances by a length scale ℓ, e.g., simply
the length unit ℓ = 1 µm [for our choice of ℓ in our numerical
examples, see below after Eq. (5)], and time by a reference
time τ0. The local MSD at mτ different values (number of
MSD points) of τ is then fitted to a power law,

!R2
t (τ )

ℓ2
= A

(
τ

τ0

)α

. (4)

The exponent α carries information about the motion type [5]:
α < 1 implies subdiffusion, α ≈ 1 implies normal diffusion
(Brownian motion), α > 1 implies superdiffusion, and α ≈
2 implies ballistic motion. The prefactor A has no physical
dimension. The diffusion coefficient is directly proportional
to the prefactor A. More specifically, if we set the time lag τ
equal to the reference time τ0, we obtain

D = !R2
t (τ0)

2 dτ0
= Aℓ2

2 dτ0
= AD0, (5)

where d is the number of spatial dimensions and D0 =
ℓ2/(2 dτ0) is a parameter that carries the physical dimension
of a diffusion coefficient and is set by our time and length
scales. In the examples inspected below, we work with
nondimensional units and set ℓ and !t such that the numerical
value of D0 = 1. We also set the reference time τ0 equal to the
maximal lag time (i.e., τ0 = mτ!t , where mτ is the number
of MSD points). For general applicability of our formulas,
however, we keep D0, ℓ, τ0, and !t in all formulas as free
parameters.

The fit to the power law is performed by linear regression
in a double logarithmic plot of the data. To this end, the mτ

pairs,
[

ln(k/mτ ), ln
(
!R2

t (k !t)/ℓ2)], k = 1, . . . ,mτ (6)

are fitted to

f (ln(k/mτ )) = ln A + α ln(k/mτ ), (7)

by the well-known formulas of linear regression [11] yielding
the slope α and the prefactor ln A related to the diffusion
coefficient by A = D/D0 according to Eq. (5),

α =
∑

k ln
(
!R2

t (k !t)/ℓ2
)

ln(k/mτ ) − 1
mτ

∑
k,j ln

(
!R2

t (j !t)/ℓ2
)

ln(k/mτ )
∑

k(ln(k/mτ ))2 − 1
mτ

( ∑
k ln(k/mτ )

)2 , (8)

ln A = 1
mτ

∑

k

[
ln

(
!R2

t (k !t)/ℓ2) − α ln
(

k

mτ

)]
. (9)

Here, the index k (and also j ) runs from k = 1, . . . ,mτ . Sliding
the time window T = M !t over the entire trajectory [cf.
Fig. 1(a)], the motion parameters D(t) and α(t) can be
extracted as functions of time. Because one uses a small time

window T in order to obtain temporally local information, the
resulting finite-size noise is not small, and consequently, D(t)
and α(t) will be stochastic processes, i.e., random functions of
the time t as illustrated in Figs. 1(b) and 1(c).

021926-2

⟨ΔR2
t (τ = kΔt)⟩ = A(kΔt)α

For α = 1, Diffusion coefficient D = A/2d

What is the meaning of D for α < 1?
⟨ΔR2

t (τ)⟩ = A( τ
τ0

)α D = A/2dτ0

Extracting the transport coefficients from MSD
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The cellular cytoskeleton is a fascinating active network, in which Brownian motion is intercepted by

distinct phases of active transport. We present a time-resolved statistical analysis dissecting phases of

directed motion out of otherwise diffusive motion of tracer particles in living cells. The distribution of

active lifetimes is found to decay exponentially with a characteristic time !!A ¼ 0:65 s. The velocity

distribution of active events exhibits several peaks, in agreement with a discrete number of motor proteins

acting collectively.
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Living matter exhibits exceptional dynamical properties,
caused by the presence of ATP-driven motion. In particu-
lar, the intracellular transport of cargos proceeds by an
intricate stochastic interplay between diffusion and active
movement along microtubules by means of kinesin and
dynein motor proteins [1,2]. The presence of several motor
types interacting with cytoskeleton filaments and their
balance of binding affinities is pivotal to many physiologi-
cal processes such as axonal transport in neurons [3] or
targeted vesicle transport in eukaryotic cells [4,5].
Dysfunction of the motor mechanical activity has been
identified as a key factor in several lethal neurodegener-
ative diseases [6]. While passive Brownian motion allows
intracellular transport of small molecules, it becomes in-
efficient for large proteins, vesicles and organelles on the
scale of a whole cell. Hence the three-dimensional trans-
port of vesicles is supported by motor proteins that move
along cytoskeleton filaments, allowing fast physiological
responses to external stimuli [7]. Recent theoretical works
indeed show that a superposition of free diffusion and
phases of active transport that occur randomly and itera-
tively on a subsecond time scale, results in enhanced
reaction kinetics [8,9].

In experimental studies, tracking of single particles is
increasingly used for passive in situ microrheology
[10,11]. The mean square displacement (MSD) functions
exhibit distinct regimes on different time scales. Short time
scales are dominated by thermal diffusion, while the foot-
print of active motion appears at longer time scales (t >
1 s). However, such approaches reach their limit when
typical residence times within a network mesh and typical
transport times along filaments are of the same order of
magnitude. A temporal analysis of single particle transport
has been carried out on trajectories of labeled vesicles
[12,13] or viruses [14] in single cells, revealing successive
phases of diffusion and active transport. However, in most
of these studies, path dissection is performed manually.

Apart from the subjectiveness of using visible criteria,
these approaches are very time-consuming. Therefore, an
automated and reliable time-resolved identification of mo-
tility state signatures is experimentally challenging and of
fundamental interest for our understanding of biological
transport processes.
In this Letter, we investigate the motion of micron-sized

beads in the amoeba Dictyostelium Discoideum (DD). DD
is a suitable model cell because of its cytoskeleton sim-
plicity. Unlike most eukaryotic cells, it has no intermediate
filaments, nor actin stress fibers. It exhibits a thin actin
cortex close to the membrane and is mainly interspersed
with asterlike microtubules ranging from the centrosome to
the cortex, where they are anchored [15]. In addition, the
cytoplasm is highly crowded, consisting of organelles,
fixed compartments and freely moving vesicles. Micro-
beads are readily phagocytosed by DD cells and remain
trapped in endosomes [16], thus resembling endogenous
vesicles. They can bind to and be dragged along micro-
tubules by dynein and kinesin motors. Here we present a
rolling-average algorithm able to reliably separate the
active and passive motion of particles in cells. Our ap-
proach is based on the analysis of the tracer MSD and
directional persistence. We analyze the particle motion in
terms of a two-state motility model: this yields the distri-
bution of active and passive state durations as well as the
distribution of the state parameters, i.e., the velocity during
active phases and the diffusion coefficient of the passive
motion. The velocity distribution of active events shows a
sequence of equally spaced peaks, revealing the signature
of a finite number of molecular motors working collec-
tively. In contrast, after depolymerization of microtubules,
the analyzed paths exhibit no significant active event,
proving that active states are due to tracer transport along
the microtubules exclusively.
Experiments were performed using 1:4 "m ferromag-

netic beads as tracer particles, internalized by DD amoebas

PRL 101, 248103 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

12 DECEMBER 2008

0031-9007=08=101(24)=248103(4) 248103-1 ! 2008 The American Physical Society

Temporal Analysis of Active and Passive Transport in Living Cells

Delphine Arcizet,1,2,* Börn Meier,1 Erich Sackmann,3 Joachim O. Rädler,1 and Doris Heinrich1
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cal processes such as axonal transport in neurons [3] or
targeted vesicle transport in eukaryotic cells [4,5].
Dysfunction of the motor mechanical activity has been
identified as a key factor in several lethal neurodegener-
ative diseases [6]. While passive Brownian motion allows
intracellular transport of small molecules, it becomes in-
efficient for large proteins, vesicles and organelles on the
scale of a whole cell. Hence the three-dimensional trans-
port of vesicles is supported by motor proteins that move
along cytoskeleton filaments, allowing fast physiological
responses to external stimuli [7]. Recent theoretical works
indeed show that a superposition of free diffusion and
phases of active transport that occur randomly and itera-
tively on a subsecond time scale, results in enhanced
reaction kinetics [8,9].

In experimental studies, tracking of single particles is
increasingly used for passive in situ microrheology
[10,11]. The mean square displacement (MSD) functions
exhibit distinct regimes on different time scales. Short time
scales are dominated by thermal diffusion, while the foot-
print of active motion appears at longer time scales (t >
1 s). However, such approaches reach their limit when
typical residence times within a network mesh and typical
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has been carried out on trajectories of labeled vesicles
[12,13] or viruses [14] in single cells, revealing successive
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beads are readily phagocytosed by DD cells and remain
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terms of a two-state motility model: this yields the distri-
bution of active and passive state durations as well as the
distribution of the state parameters, i.e., the velocity during
active phases and the diffusion coefficient of the passive
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along microtubules, which is verified by fluorescent im-
ages of the microtubule network during the bead experi-
ments (data not shown). A closer look at the velocity
distribution [Fig. 3(b)] reveals several regularly spaced
peaks at vn ’ nv1 (with v1 ¼ 0:225 !ms"1). The fact
that we observe discrete maxima could indicate that the
action of a small number of motors, either dynein or
kinesin, collectively dragging the bead, is detected.
Several maxima in the velocity distribution have already
been observed experimentally for small labeled vesicles
carried along microtubules [2], but had never been reported
in bead microrheology experiments. Recent models predict
them within the so-called ‘‘tug-of-war’’ mechanism, as a
signature of the counteracting or cooperative action of
molecular motors [20]. The peaks in the active velocity
distribution are expected to be regularly spaced for cargos
with a high friction coefficient [4], which is likely to
correspond to the situation here, considering the bead
size. In order to further prove that the active events are

related to microtubule-assisted motor proteins, we treated
cells with 10 !M Benomyl, a drug known to cause micro-
tubule depolymerization [21]. As shown in Fig. 4, only two
very short events of active transport are found after this
drug treatment ("A < 100 ms).

FIG. 3 (color). Analysis of active and passive noise spectra in a
living DD cell: PDF of (a) velocity of all events Vinst (gray) and
of A states VA (red), (b) A state velocity (superposition of
5 Gaussians, of means vn ¼ nv1, v1 ¼ 0:225 !m # s"1, n ¼ 1
to 5), (c) P state diffusion coefficientD (log-normal fit of median
!D ¼ 6:1$ 10"3 !m2 s"1), (d) A state durations "A (exponential
decay fit with !"B ¼ 0:65 s), and (e) P state durations "P (log-
normal fit of median !"P ¼ 0:45 s). N is the number of data
points per histogram. Fits are performed on the cumulative
probabilities, shown in insets.

FIG. 4 (color online). Bead motion analysis: RðtÞ (top) and
PAðtÞ (bottom), (a) in a normal cell and (b) in a cell whose
microtubule network is disrupted by Benomyl: almost no active
transport event is found in this case.

FIG. 2 (color). Living DD cell experiment: (a) transmission
image, with the internalized bead 2D path superimposed in
white. (b) Bead motion characteristics, from the top to the
bottom: displacement RðtÞ with passive (blue) and active (red)
states, standard deviation "# of the angle correlation function,
diffusion coefficient DðtÞ retrieved during the P states, instanta-
neous velocity (light gray) and algorithm-retrieved velocity
during the A states (red), and active motion probability pA.
The shaded part of the frame highlights an A state, of duration
"A. (c) Examples of power-law fits on local MSD functions (thin
lines, color-coded for time), with trends for $ ¼ 1 (blue dashed
line) and 2 (red dash-dotted line).
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in the vegetative state, when they exhibit a quasispherical
shape and no aggregation behavior [16]. Bright-field imag-
ing was performed using an Axiovert 200 microscope
(Zeiss, Germany) and a CCD camera (C 4880-80
Hamamatsu, Germany). The tracer positions were tracked
by a homemade real-time image processing software [17].
Microfluidic stop-flow experiments were carried out using
1 !m latex beads suspended in water, inside a !-Slide
chamber (Ibidi,Germany). The beads were actively moved
with a suction control pressure pump (Nanion, Germany).
Pressure steps of equal amplitude and duration (T0 ¼ 3 s)
with random time intervals (from 5 to 30 s) were assigned
numerically (Labview, NI, USA), as depicted in Fig. 1.

Time-resolved MSD analysis is performed as follows:
for each time point t of the particle path, the local MSD
function overM frames [corresponding to a time window T
cf. Fig. 1(a)] is calculated according to:

!R2
t ð"tÞ ¼ hðRðt0 þ "tÞ %Rðt0ÞÞ2i%ðT=2Þ<t0<ðT=2Þ (1)

and fitted by a power law !R2
t ð"tÞ ¼ A"t#. # carries

information about the local motion type: for # ¼ 1, the
particle undergoes Brownian-type diffusion, while for # ¼
2 it is actively transported. The directional persistence of
the bead motion is measured in an analogous way, by the
standard deviation of the angle correlation function:

!$tð"tÞ ¼ hð$ðt0 þ "tÞ %$ðt0ÞÞ2i1=2%ðT=2Þ<t0<ðT=2Þ; (2)

which is equal to zero for a unidirectional motion. We use
here !$ð"t ¼ T=4Þ, with T=4, smaller than the total roll-
ing window T, chosen to take into account microtubule
bending during a motor-driven event. We name a state

‘‘active’’ if both criteria are fulfilled: # close to 2 and
!$ close to 0. We define a binary state variable pA:

pA ¼
!
1 if # ¼ 2& %# ^ !$ ¼ 0& %$

0 otherwise
(3)

pA ¼ 1 indicates an active state (A state), pA ¼ 0 a passive
state (P state). During each A state (respectively, P state),
we retrieve the local velocity V ¼

ffiffiffiffi
A

p
(respectively, diffu-

sion coefficient D ¼ A=4) and the total state duration &A
respectively, &P). We set %# ¼ 0:3 and %$ ¼ 0:6 in order
to achieve sufficient discrimination of motility states.
In order to validate the trajectory analysis, microfluidic

test experiments were performed as shown in Fig. 1. The
algorithm precisely extracts the A states [see Fig. 1(a) with
M ¼ 40]. The probability distribution function (PDF) of
active state durations is peaked at the predicted value T0 ¼
3 s [Fig. 1(c)]. The algorithm performance is tested by
varying the ratio between step duration T0 and window
size T. Choosing the optimal window size is a trade-off
between resolution and accuracy. For the following experi-
ments on living cells, the time window was chosen as
200 ms, leading to a minimum time resolution for the
extraction of A states of the same order. Above this thresh-
old, the accuracy in the evaluation of A state durations is
estimated as '100 ms (half a window size).
Figures 2(a) and 2(b) show an example of bead path

inside a living DD cell, and demonstrate the outcome of the
algorithm, based on both the local MSD exponent value
and path persistence. From the frame superimposed on the
data in Fig. 2(b), the local MSD curves retrieved at each
time point are shown in Fig. 2(c). They exhibit clear power-
law behaviors, with exponents clustered around 1 or 2. The
sequence in this frame shows a transition from a diffusive
state (blue curve) to an active state (red curve, shaded
window): the coincidence of # approaching 2 and !$
falling to zero assigns our state variable for active motion
pA to 1. It should be noted that we do find exponents close
to 2 during the A states, higher than the maximal value of
3=2 usually observed in cells [5]. This indicates that by
looking at small enough time scales, we have access to the
actual transport phases, that are responsible for the en-
hanced diffusion observed on longer time scales. Also,
the MSD exponent during P states is close to 1 [Fig. 2(c)],
significantly larger than non integer exponents of 3=4 or
smaller reported on other cell types [5,18], where the
cytoskeleton viscoelasticity, due to the cross linked and
bundled actin network, is important.
The binary dissection of the bead tracks leads to inter-

esting findings: first, the probability distribution of the
velocity V retrieved during the A states is narrower than
the log-normal PDF of the instantaneous velocity Vinst

before extraction of the active motions [Fig. 3(a)]. The
mean velocity of A states "VA ¼ 0:39 !ms%1 is in good
agreement with values reported for cargo displacements
along microtubules [19]. This indicates that we are able to
isolate single active transport tracks of the tracer bead

FIG. 1 (color online). Microfluidic test experiment: (a) bead
displacement analysis during a stop-flow random sequence: RðtÞ
(top), and pAðtÞ for increasing window sizes (bottom), with
applied steps shown in light gray; (b) scheme of the microfluidic
setup; (c) PDF of active state durations, as extracted from the test
sequence of equally long events (M ¼ 40).
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in the vegetative state, when they exhibit a quasispherical
shape and no aggregation behavior [16]. Bright-field imag-
ing was performed using an Axiovert 200 microscope
(Zeiss, Germany) and a CCD camera (C 4880-80
Hamamatsu, Germany). The tracer positions were tracked
by a homemade real-time image processing software [17].
Microfluidic stop-flow experiments were carried out using
1 !m latex beads suspended in water, inside a !-Slide
chamber (Ibidi,Germany). The beads were actively moved
with a suction control pressure pump (Nanion, Germany).
Pressure steps of equal amplitude and duration (T0 ¼ 3 s)
with random time intervals (from 5 to 30 s) were assigned
numerically (Labview, NI, USA), as depicted in Fig. 1.

Time-resolved MSD analysis is performed as follows:
for each time point t of the particle path, the local MSD
function overM frames [corresponding to a time window T
cf. Fig. 1(a)] is calculated according to:
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M ¼ 40]. The probability distribution function (PDF) of
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3 s [Fig. 1(c)]. The algorithm performance is tested by
varying the ratio between step duration T0 and window
size T. Choosing the optimal window size is a trade-off
between resolution and accuracy. For the following experi-
ments on living cells, the time window was chosen as
200 ms, leading to a minimum time resolution for the
extraction of A states of the same order. Above this thresh-
old, the accuracy in the evaluation of A state durations is
estimated as '100 ms (half a window size).
Figures 2(a) and 2(b) show an example of bead path

inside a living DD cell, and demonstrate the outcome of the
algorithm, based on both the local MSD exponent value
and path persistence. From the frame superimposed on the
data in Fig. 2(b), the local MSD curves retrieved at each
time point are shown in Fig. 2(c). They exhibit clear power-
law behaviors, with exponents clustered around 1 or 2. The
sequence in this frame shows a transition from a diffusive
state (blue curve) to an active state (red curve, shaded
window): the coincidence of # approaching 2 and !$
falling to zero assigns our state variable for active motion
pA to 1. It should be noted that we do find exponents close
to 2 during the A states, higher than the maximal value of
3=2 usually observed in cells [5]. This indicates that by
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actual transport phases, that are responsible for the en-
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mean velocity of A states "VA ¼ 0:39 !ms%1 is in good
agreement with values reported for cargo displacements
along microtubules [19]. This indicates that we are able to
isolate single active transport tracks of the tracer bead

FIG. 1 (color online). Microfluidic test experiment: (a) bead
displacement analysis during a stop-flow random sequence: RðtÞ
(top), and pAðtÞ for increasing window sizes (bottom), with
applied steps shown in light gray; (b) scheme of the microfluidic
setup; (c) PDF of active state durations, as extracted from the test
sequence of equally long events (M ¼ 40).
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varying the ratio between step duration T0 and window
size T. Choosing the optimal window size is a trade-off
between resolution and accuracy. For the following experi-
ments on living cells, the time window was chosen as
200 ms, leading to a minimum time resolution for the
extraction of A states of the same order. Above this thresh-
old, the accuracy in the evaluation of A state durations is
estimated as '100 ms (half a window size).
Figures 2(a) and 2(b) show an example of bead path

inside a living DD cell, and demonstrate the outcome of the
algorithm, based on both the local MSD exponent value
and path persistence. From the frame superimposed on the
data in Fig. 2(b), the local MSD curves retrieved at each
time point are shown in Fig. 2(c). They exhibit clear power-
law behaviors, with exponents clustered around 1 or 2. The
sequence in this frame shows a transition from a diffusive
state (blue curve) to an active state (red curve, shaded
window): the coincidence of # approaching 2 and !$
falling to zero assigns our state variable for active motion
pA to 1. It should be noted that we do find exponents close
to 2 during the A states, higher than the maximal value of
3=2 usually observed in cells [5]. This indicates that by
looking at small enough time scales, we have access to the
actual transport phases, that are responsible for the en-
hanced diffusion observed on longer time scales. Also,
the MSD exponent during P states is close to 1 [Fig. 2(c)],
significantly larger than non integer exponents of 3=4 or
smaller reported on other cell types [5,18], where the
cytoskeleton viscoelasticity, due to the cross linked and
bundled actin network, is important.
The binary dissection of the bead tracks leads to inter-

esting findings: first, the probability distribution of the
velocity V retrieved during the A states is narrower than
the log-normal PDF of the instantaneous velocity Vinst

before extraction of the active motions [Fig. 3(a)]. The
mean velocity of A states "VA ¼ 0:39 !ms%1 is in good
agreement with values reported for cargo displacements
along microtubules [19]. This indicates that we are able to
isolate single active transport tracks of the tracer bead

FIG. 1 (color online). Microfluidic test experiment: (a) bead
displacement analysis during a stop-flow random sequence: RðtÞ
(top), and pAðtÞ for increasing window sizes (bottom), with
applied steps shown in light gray; (b) scheme of the microfluidic
setup; (c) PDF of active state durations, as extracted from the test
sequence of equally long events (M ¼ 40).
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along microtubules, which is verified by fluorescent im-
ages of the microtubule network during the bead experi-
ments (data not shown). A closer look at the velocity
distribution [Fig. 3(b)] reveals several regularly spaced
peaks at vn ’ nv1 (with v1 ¼ 0:225 !ms"1). The fact
that we observe discrete maxima could indicate that the
action of a small number of motors, either dynein or
kinesin, collectively dragging the bead, is detected.
Several maxima in the velocity distribution have already
been observed experimentally for small labeled vesicles
carried along microtubules [2], but had never been reported
in bead microrheology experiments. Recent models predict
them within the so-called ‘‘tug-of-war’’ mechanism, as a
signature of the counteracting or cooperative action of
molecular motors [20]. The peaks in the active velocity
distribution are expected to be regularly spaced for cargos
with a high friction coefficient [4], which is likely to
correspond to the situation here, considering the bead
size. In order to further prove that the active events are

related to microtubule-assisted motor proteins, we treated
cells with 10 !M Benomyl, a drug known to cause micro-
tubule depolymerization [21]. As shown in Fig. 4, only two
very short events of active transport are found after this
drug treatment ("A < 100 ms).

FIG. 3 (color). Analysis of active and passive noise spectra in a
living DD cell: PDF of (a) velocity of all events Vinst (gray) and
of A states VA (red), (b) A state velocity (superposition of
5 Gaussians, of means vn ¼ nv1, v1 ¼ 0:225 !m # s"1, n ¼ 1
to 5), (c) P state diffusion coefficientD (log-normal fit of median
!D ¼ 6:1$ 10"3 !m2 s"1), (d) A state durations "A (exponential
decay fit with !"B ¼ 0:65 s), and (e) P state durations "P (log-
normal fit of median !"P ¼ 0:45 s). N is the number of data
points per histogram. Fits are performed on the cumulative
probabilities, shown in insets.

FIG. 4 (color online). Bead motion analysis: RðtÞ (top) and
PAðtÞ (bottom), (a) in a normal cell and (b) in a cell whose
microtubule network is disrupted by Benomyl: almost no active
transport event is found in this case.

FIG. 2 (color). Living DD cell experiment: (a) transmission
image, with the internalized bead 2D path superimposed in
white. (b) Bead motion characteristics, from the top to the
bottom: displacement RðtÞ with passive (blue) and active (red)
states, standard deviation "# of the angle correlation function,
diffusion coefficient DðtÞ retrieved during the P states, instanta-
neous velocity (light gray) and algorithm-retrieved velocity
during the A states (red), and active motion probability pA.
The shaded part of the frame highlights an A state, of duration
"A. (c) Examples of power-law fits on local MSD functions (thin
lines, color-coded for time), with trends for $ ¼ 1 (blue dashed
line) and 2 (red dash-dotted line).
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peaks at vn ’ nv1 (with v1 ¼ 0:225 !ms"1). The fact
that we observe discrete maxima could indicate that the
action of a small number of motors, either dynein or
kinesin, collectively dragging the bead, is detected.
Several maxima in the velocity distribution have already
been observed experimentally for small labeled vesicles
carried along microtubules [2], but had never been reported
in bead microrheology experiments. Recent models predict
them within the so-called ‘‘tug-of-war’’ mechanism, as a
signature of the counteracting or cooperative action of
molecular motors [20]. The peaks in the active velocity
distribution are expected to be regularly spaced for cargos
with a high friction coefficient [4], which is likely to
correspond to the situation here, considering the bead
size. In order to further prove that the active events are

related to microtubule-assisted motor proteins, we treated
cells with 10 !M Benomyl, a drug known to cause micro-
tubule depolymerization [21]. As shown in Fig. 4, only two
very short events of active transport are found after this
drug treatment ("A < 100 ms).

FIG. 3 (color). Analysis of active and passive noise spectra in a
living DD cell: PDF of (a) velocity of all events Vinst (gray) and
of A states VA (red), (b) A state velocity (superposition of
5 Gaussians, of means vn ¼ nv1, v1 ¼ 0:225 !m # s"1, n ¼ 1
to 5), (c) P state diffusion coefficientD (log-normal fit of median
!D ¼ 6:1$ 10"3 !m2 s"1), (d) A state durations "A (exponential
decay fit with !"B ¼ 0:65 s), and (e) P state durations "P (log-
normal fit of median !"P ¼ 0:45 s). N is the number of data
points per histogram. Fits are performed on the cumulative
probabilities, shown in insets.

FIG. 4 (color online). Bead motion analysis: RðtÞ (top) and
PAðtÞ (bottom), (a) in a normal cell and (b) in a cell whose
microtubule network is disrupted by Benomyl: almost no active
transport event is found in this case.

FIG. 2 (color). Living DD cell experiment: (a) transmission
image, with the internalized bead 2D path superimposed in
white. (b) Bead motion characteristics, from the top to the
bottom: displacement RðtÞ with passive (blue) and active (red)
states, standard deviation "# of the angle correlation function,
diffusion coefficient DðtÞ retrieved during the P states, instanta-
neous velocity (light gray) and algorithm-retrieved velocity
during the A states (red), and active motion probability pA.
The shaded part of the frame highlights an A state, of duration
"A. (c) Examples of power-law fits on local MSD functions (thin
lines, color-coded for time), with trends for $ ¼ 1 (blue dashed
line) and 2 (red dash-dotted line).

PRL 101, 248103 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

12 DECEMBER 2008

248103-3

along microtubules, which is verified by fluorescent im-
ages of the microtubule network during the bead experi-
ments (data not shown). A closer look at the velocity
distribution [Fig. 3(b)] reveals several regularly spaced
peaks at vn ’ nv1 (with v1 ¼ 0:225 !ms"1). The fact
that we observe discrete maxima could indicate that the
action of a small number of motors, either dynein or
kinesin, collectively dragging the bead, is detected.
Several maxima in the velocity distribution have already
been observed experimentally for small labeled vesicles
carried along microtubules [2], but had never been reported
in bead microrheology experiments. Recent models predict
them within the so-called ‘‘tug-of-war’’ mechanism, as a
signature of the counteracting or cooperative action of
molecular motors [20]. The peaks in the active velocity
distribution are expected to be regularly spaced for cargos
with a high friction coefficient [4], which is likely to
correspond to the situation here, considering the bead
size. In order to further prove that the active events are

related to microtubule-assisted motor proteins, we treated
cells with 10 !M Benomyl, a drug known to cause micro-
tubule depolymerization [21]. As shown in Fig. 4, only two
very short events of active transport are found after this
drug treatment ("A < 100 ms).

FIG. 3 (color). Analysis of active and passive noise spectra in a
living DD cell: PDF of (a) velocity of all events Vinst (gray) and
of A states VA (red), (b) A state velocity (superposition of
5 Gaussians, of means vn ¼ nv1, v1 ¼ 0:225 !m # s"1, n ¼ 1
to 5), (c) P state diffusion coefficientD (log-normal fit of median
!D ¼ 6:1$ 10"3 !m2 s"1), (d) A state durations "A (exponential
decay fit with !"B ¼ 0:65 s), and (e) P state durations "P (log-
normal fit of median !"P ¼ 0:45 s). N is the number of data
points per histogram. Fits are performed on the cumulative
probabilities, shown in insets.

FIG. 4 (color online). Bead motion analysis: RðtÞ (top) and
PAðtÞ (bottom), (a) in a normal cell and (b) in a cell whose
microtubule network is disrupted by Benomyl: almost no active
transport event is found in this case.

FIG. 2 (color). Living DD cell experiment: (a) transmission
image, with the internalized bead 2D path superimposed in
white. (b) Bead motion characteristics, from the top to the
bottom: displacement RðtÞ with passive (blue) and active (red)
states, standard deviation "# of the angle correlation function,
diffusion coefficient DðtÞ retrieved during the P states, instanta-
neous velocity (light gray) and algorithm-retrieved velocity
during the A states (red), and active motion probability pA.
The shaded part of the frame highlights an A state, of duration
"A. (c) Examples of power-law fits on local MSD functions (thin
lines, color-coded for time), with trends for $ ¼ 1 (blue dashed
line) and 2 (red dash-dotted line).
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along microtubules, which is verified by fluorescent im-
ages of the microtubule network during the bead experi-
ments (data not shown). A closer look at the velocity
distribution [Fig. 3(b)] reveals several regularly spaced
peaks at vn ’ nv1 (with v1 ¼ 0:225 !ms"1). The fact
that we observe discrete maxima could indicate that the
action of a small number of motors, either dynein or
kinesin, collectively dragging the bead, is detected.
Several maxima in the velocity distribution have already
been observed experimentally for small labeled vesicles
carried along microtubules [2], but had never been reported
in bead microrheology experiments. Recent models predict
them within the so-called ‘‘tug-of-war’’ mechanism, as a
signature of the counteracting or cooperative action of
molecular motors [20]. The peaks in the active velocity
distribution are expected to be regularly spaced for cargos
with a high friction coefficient [4], which is likely to
correspond to the situation here, considering the bead
size. In order to further prove that the active events are

related to microtubule-assisted motor proteins, we treated
cells with 10 !M Benomyl, a drug known to cause micro-
tubule depolymerization [21]. As shown in Fig. 4, only two
very short events of active transport are found after this
drug treatment ("A < 100 ms).

FIG. 3 (color). Analysis of active and passive noise spectra in a
living DD cell: PDF of (a) velocity of all events Vinst (gray) and
of A states VA (red), (b) A state velocity (superposition of
5 Gaussians, of means vn ¼ nv1, v1 ¼ 0:225 !m # s"1, n ¼ 1
to 5), (c) P state diffusion coefficientD (log-normal fit of median
!D ¼ 6:1$ 10"3 !m2 s"1), (d) A state durations "A (exponential
decay fit with !"B ¼ 0:65 s), and (e) P state durations "P (log-
normal fit of median !"P ¼ 0:45 s). N is the number of data
points per histogram. Fits are performed on the cumulative
probabilities, shown in insets.

FIG. 4 (color online). Bead motion analysis: RðtÞ (top) and
PAðtÞ (bottom), (a) in a normal cell and (b) in a cell whose
microtubule network is disrupted by Benomyl: almost no active
transport event is found in this case.

FIG. 2 (color). Living DD cell experiment: (a) transmission
image, with the internalized bead 2D path superimposed in
white. (b) Bead motion characteristics, from the top to the
bottom: displacement RðtÞ with passive (blue) and active (red)
states, standard deviation "# of the angle correlation function,
diffusion coefficient DðtÞ retrieved during the P states, instanta-
neous velocity (light gray) and algorithm-retrieved velocity
during the A states (red), and active motion probability pA.
The shaded part of the frame highlights an A state, of duration
"A. (c) Examples of power-law fits on local MSD functions (thin
lines, color-coded for time), with trends for $ ¼ 1 (blue dashed
line) and 2 (red dash-dotted line).
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very short events of active transport are found after this
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FIG. 3 (color). Analysis of active and passive noise spectra in a
living DD cell: PDF of (a) velocity of all events Vinst (gray) and
of A states VA (red), (b) A state velocity (superposition of
5 Gaussians, of means vn ¼ nv1, v1 ¼ 0:225 !m # s"1, n ¼ 1
to 5), (c) P state diffusion coefficientD (log-normal fit of median
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normal fit of median !"P ¼ 0:45 s). N is the number of data
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PAðtÞ (bottom), (a) in a normal cell and (b) in a cell whose
microtubule network is disrupted by Benomyl: almost no active
transport event is found in this case.
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image, with the internalized bead 2D path superimposed in
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states, standard deviation "# of the angle correlation function,
diffusion coefficient DðtÞ retrieved during the P states, instanta-
neous velocity (light gray) and algorithm-retrieved velocity
during the A states (red), and active motion probability pA.
The shaded part of the frame highlights an A state, of duration
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Is the sub-diffusive 
behavior related to the 
velocity auto-correlation?

Statistics of the trajectory’s increments

We analyze the trajectory in terms of the increments in x and y between
consecutive frames (time steps) Dxi ¼ xiþ1 # xi and Dyi ¼ yiþ1 # yi. We
estimate probability densities of these increments by standard methods
and also calculate their correlation coefficient, e.g., the one for increments
in x:

rxxk ¼ hðDxiþk # hDxiþkiÞðDxi # hDxiiÞi!
ðDxi # hDxiiÞ2

" ; (1)

where h.i indicates the average that is taken over the index i. We also
measure the correlations ryyk of the increments in y and those r

xy
k between

the increments in x and y. The serial correlation coefficient in Eq. 1 is
a measure for the randomization of subsequent steps: vanishing autocorre-
lation indicates complete independence, whereas unit autocorrelation indi-
cates unchanged increment values from one frame to the next. A negative
increment correlation indicates antipersistent behavior and results in
a reduced randomness on longer timescales because in the sum of the incre-
ments, i.e., in the particle’s trajectory, anticorrelated terms partially cancel.
This reduced long-term variability may become manifest by an apparent
subdiffusive behavior on timescales over which the increment correlations
extend.

To estimate the error bar of the correlation coefficient, we use the
following equation for the variance of the correlation coefficient (28):

VarðrkÞz
1þ 2

Pn

j¼ 1

#
1# j

n

$
r2j

ðn# kÞð1þ 2n=n# n2=n2Þ
; (2)

where n is the total number of increments and n is the maximal lag taken
into account, which we set to n ¼ 20. The error bar for one measurement
is then the square root of the variance.

Local MSD algorithm

The algorithm

A conventional method of analyzing intracellular transport is based on the
MSD:

!
DR2ðtÞ

"
¼

!
½Rðt þ tÞ # RðtÞ'2

"
t

¼
!
½xðt þ tÞ # xðtÞ'2þ½yðt þ tÞ # yðtÞ'2

"
t
: (3)

Local MSD analysis has been introduced previously (29), yielding time-
resolved motion type information: For each point along the recorded
trajectory a local MSD is computed, considering only the neighboring 60
trajectory points. This local MSD is then fitted by a power law (linear
regression in a double-logarithmic MSD plot)

!
DR2ðtÞ

"
¼

!
ðRðt0 þ tÞ-Rðt0ÞÞ2

"
t-T=2<t0<tþT=2-t

¼ A (
#
t

t0

$a

; (4)

yielding the same characteristics as the global MSD, but in a local, time-
resolved manner and with additional noise because of the smaller sample.
Here t0 is a reference time and A has dimensions of the square of a length.
The exponent a is a dimensionless number between 0 and 2, indicating
different types of motion: a < 1 being subdiffusive, a z 1 Brownian-
like, a > 1 superdiffusive and a z 2 ballistic. The prefactor contains an
effective diffusion coefficient (see below) or in the case of ballistic motion

the velocity. This analysis and fit are repeated for each point along the
trajectory resulting in time series for the parameters a and A. In this
work, we study long phases of nonballistic transport (typically subdiffusive
behavior) in terms of the statistical distributions of the exponent a and the
effective diffusion coefficient D, which is proportional to the parameter A.

Parameter settings

The timescale at which the sample is probed depends on the frame rate and
the window size. The window size determines the number of points taken
into account for the computation of the local MSD, but does not equal
the lag time range over which the power law is fitted to the data. For large
lag times of t z Mw ( Dt, only a few MSD data points exist within each
window, and the statistics risk to be unreliable. Therefore, the fit data range
is chosen to be 0 < t < 1/4 ( Mw ( Dt. Thus, the timescale probed by the
local MSD is of the order 1/4 (Mw ( Dt. We have chosen the values to be
Mw ¼ 60 and Dt ¼ 49 ms, which corresponds to 15 MSD points and
a probing at 0.735 s. Experimental and simulational data of bead motion
in glycerol were collected at Dt ¼ 55 ms and analyzed accordingly at
Mw ¼ 60. For the analysis of mean motion parameters as functions of lag
time, the window size was varied fromMw ¼ 8 frames to Mw ¼ 200 frames
in 4-frame steps, including the 60-frame window as a special case. The
4-frame increases in window size and the MSD fit data range of 1/4 (
Mw ( Dt amount to a lag time resolution of 49 ms. The power law fit yields
reliable results for all investigated window sizes, which was checked using
the chi-square measure, which equals c2 ¼ 0.013 (Mw ¼ 60) and c2 ¼ 0.05
(Mw ¼ 200).

For Brownian diffusion, the MSD scales linearly with time:
hDR2i2 ¼ A( t=t0 and the prefactor A determines the diffusion coeffi-
cient: A ¼ 2d t0 D (d is the number of spatial dimensions), which corre-
sponds to D ¼ hDR2i/(2dt). For MSD power laws with other exponents,
a s 1, an effective diffusion coefficient (with proper dimension mm2/s)
is directly proportional to the prefactor A if we choose the reference time
as the time lag, i.e., for t ¼ t0 we obtain D ¼ A/(2d t0)—otherwise the
diffusion coefficient will depend explicitly on a. This definition permits
a volume-explored interpretation of this effective diffusion coefficient,
for a characteristic volume measure can be obtained from projecting the
two-dimensional MSD into the third dimension.

Models

Langevin models of intracellular motion

The standard overdamped Brownian motion in a viscous medium is
described by the Langevin equation:

dx

dt
¼ xxðtÞ; dy

dt
¼ xyðtÞ;

!
xaðtÞxbðt0Þ

"
¼ 2Dda;bdðt # t0Þ;

(5)

with D being the spatial diffusion coefficient; xðtÞ is a white Gaussian noise
that models the velocity. A numerical simulation of this model at time step
Dt is realized by the simple map:

xi ¼ xi#1 þ xxi ; yi ¼ yi#1 þ xxi ;
D
xai x

b
j

E
¼ 2DDtda;bdi;j;

(6)

The numbers xxi ; x
y
i are independent Gaussian numbers with zero mean

and variance 2DDt. The differences in the trajectory between adjacent
time instances, i.e., the increments are thus statistically independent and,
in particular, uncorrelated. We used the previous scheme to simulate the
tracer particle’s diffusion in glycerol.

In this work, we also consider a generalization of the previous equation,
in which we replace the white (uncorrelated) Gaussian velocity noise by
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CHAPTER1.INTRODUCTION

Figure1.8.Adultzebrafish(Daniorerio).[ImagecourtesyofChristopherDooley.]

1.3ContentsofthisThesis

Inthisthesis,westudytheoreticalmodelsofgeneticoscillatorsystemsfrom

thesingleoscillatorscaletothecomplexpatternformingsystemoperatingduring

vertebratesegmentation.Moreover,wequantifyexperimentaldataobtainedbyour

collaboratorstocomparethemwiththeoreticalpredictions.

InChapter2,wepresentgenericMarkovchainmodelsofcoupledgeneticoscilla-

tors,inwhichboththeintracellularoscillatorandtheintercellularcouplingbetween

oscillatorsareinherentlystochastic.Westudyhowpropertiesofthecouplingpro-

cessaffecttheprecisionandsynchronizationofoscillators(seealsoSec.1.1.2)and

investigatetheeffectsofstochasticityonthecollectivedynamicsoftheoscillators.

Furthermore,wepresentaphaseoscillatorapproximationofthecoupledsystemand

compareitwithourstochasticmodel.

InChapter3,weintroduceacontinuumtheoryofcoupledphaseoscillatorsto

studytheinterplayoftissuedynamics,oscillatorcoupling,andpatternformation

duringvertebratesegmentation(seealsoSec.1.2.5).Wefirstintroducethebasic

mechanismofpatternformationwithoscillatorsinthepresenceofafrequencygra-

dientusingthetheoryinitssimplestform.Wethensequentiallyextendthetheory

bybiologicallyrelevantfactorssuchascouplingdelaysduetocomplexsignalingbe-

tweencells,localgrowthofthetissue,anddecreasingtissuelength.Westudythe

effectsofthesefactorsontheformationofkinematicwavepatternsinthepresomitic

mesodermandonthetimingofmorphologicalsegmentformation.Moreover,we

presentahypotheticmechanismbasedoninteractingmorphogensandoscillators

thatdescribesself-organizedsegmentationanddynamicallyaccountsforthelength

decreaseofthetissueandtheterminationofthesegmentationprocessafterafinite

numberofsegments.

InChapter4,weintroduceandapplyquantificationmethodsforexperimen-

taldataonvertebratesegmentation.Weobtaindynamicalpropertiesoftheunseg-

mentedtissuesuchasvelocityfieldsandlengthchanges,whichweusetoparametrize

ourtheory.Moreover,wedevelopandapplyatechniquetoquantifythespatio-
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Fig. 1 (Legend to Fig. 1 appears on page 259) 
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Fig. 1. Camera lucida sketches of the embryo at selected stages. The 
animal pole is to the top for the early stages, and anterior is to the top 
later, except for the two animal polar (AP) views shown below their side 
view counterparts for germ-ring and shield gastrulas. Face views are 
shown during cleavage and blastula stages. After shield stage, the views 
are of the embryo's left side, but before the shield arises one cannot 
reliably ascertain which side is which. Pigmentation is omitted. Arrow- 
heads indicate the early appearance of some key diagnostic features at 

pec fin 
60 h 

protruding 
mouth 
72 h 

the following stages: 1 k-cell: YSL nuclei. Dome: the doming yolk syncy- 
tium. Germ ring: germ ring. Shield: embryonic shield. 75Oh-epiboly: Bra- 
chet's cleft. 90%-epiboly: blastoderm margin closing over the yolk plug. 
Bud: polster. 3-somite: third somite. 6-somite: eye primordium (upper 
arrow), Kupffer's vesicle (lower). 10-somite: otic placode. 21-somite: lens 
primordium. Prim-6: primordium of the posterior lateral line (on the dorsal 
side), hatching gland (on the yolk ball). Prim-16: heart. High-pec: pectoral 
fin bud. Scale bar = 250 pn. 

yolk mass, and differential shrinkage during fixation 
distorts the normal relationship. Nevertheless, if pres- 
ervation is good enough, one can fairly reliably stage 
fixed and whole-mounted embryos (e.g., immunola- 
beled ones) using other criteria. One cannot easily 
stage an embryo after it is sectioned. 

Photographs 
The accompanying photographs are of living em- 

bryos, anesthetized for the later stages. The original 
photographs were made as color slides (Kodak Ektach- 
rome 160T DX), and the black and whites plates are 
reproduced from internegatives. Sets of copies of the 
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Matlab:
1. Delaunay Triangulation: Create a meshwork of triangles

2. pdegrad3: calculates the velocity gradient at the cell centres

3. pdeprtni3: interpolates the value at the vertices
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a spherical volume with density decreasing from border to centre
as a power law. The sphere is then mapped into an ellipsoid having
approximately the flock’s proportions. The exponent of the distri-
bution has been tuned to reproduce the function r1(d) of the real
flock (see inset in Fig. 4). Then, the function C(r) has been com-
puted for the synthetic samples. It corresponds to the continuous
lines in Fig. 4. The simulated line is consistent with the empirical
data, confirming that the border-to-centre density gradient is at
the same time responsible of the increasing behaviour r1(d) as well
as for the anomalous decrease of C(r).

Therefore, the density gradient between centre and border in
starling flocks can be so large to suppress the homogeneity scale.
When this happens, the ‘naı̈ve’ density (total number of individuals
over total volume) is only a very coarse estimate, whereas the full
curve of the conditional density provides a more coherent descrip-
tion of the flock.

3.6. The pair distribution function

The conditional density gives important information on the
homogeneity of the system and, as we have discussed, is influ-
enced at short scales by the presence of correlations between indi-
viduals. There is however another two-point function, intimately
related to C(r), which is generally more appropriate to investigate
the structure of an aggregation. This is the so-called pair distribu-
tion function g(r) and it is typically used in liquid theory [13] to
quantitatively characterize the degree of spatial order (gas/liquid/
solid) in a system of particles. As we have seen the function C(r)
measures the average global density up to a distance r around a gi-
ven reference point/individual (the centre of the sphere). The func-
tion g(r) is defined similarly, but instead of looking at the density
up to scale r focuses on the density exactly at distance r. Formally
we have,

gðrÞ ¼ 1
4pr2

1
nc

Xnc

i

X

j 6¼i

dðr $ rijÞ;

where rij is the absolute distance between the centre i and a neigh-
bour j. Note that g(r) is a distribution function (it contains a Dirac
delta), meaning that to obtain a true density one needs to multiply
for an appropriate spatial increment dr. Operationally, to compute
g(r) we proceed similarly to the integrated conditional density:
we choose an individual i and a sphere of radius r around it. The
sphere is acceptable only if it is completely contained within the
border of the group. We then look in a small spherical shell of thick-
ness dr at the surface of the sphere and count how many birds are
found within this shell. We finally divide this number by the vol-
ume of the shell 4pr2dr. Note that to fix reasonably the ‘binning’
parameter dr we need to make a trade off: if too small the resolution
is high, but noise is too large (few points within the shells); if too
large noise is small, but resolution is too low.

The functions g(r) and C(r) are directly related one to the other
in the following way:

CðrÞ ¼ 1
4=3pr3

Z r

0
gðsÞ4ps2ds:

The function g(r) is more sensitive than C(r) to the detailed spa-
tial structure of the aggregation. In a crystalline solid it exhibits
very sharp peaks corresponding to the fixed distances among par-
ticles. These peaks do not decay at large values of r. Liquids on the
other hand, unlike crystals have no long-range order. Yet, statisti-
cal correlations are still very strong: in liquids the pair correlation
function has a clearly oscillating shape, with well defined peaks
that flatten around the average density value for large r. It is zero
at small scales (due to short-range repulsion between particles)
and it exhibits a first very pronounced peak at the scale of the first

shell of neighbours, with a few subsequent smaller peaks at the
location of farther neighbours shells, whose amplitude decreases
as r increases. On the other hand, in a gas-like system with hard-
core, only the first peak is visible, and the function decays to the
density without further oscillations after this. In a Poisson point
process (randomly distributed particles with no correlations –
not even the hard-core) the g(r) and the C(r) are completely flat
and constant. Since C(r) is related to the integral of g(r), the peak
structure, if not too pronounced, can be smoothed by the integra-
tion. For this reason it is useful to look directly at the pair correla-
tion function. On the other hand, being a differential quantity, the
statistics used to compute g(r) is smaller and the effect of noise is
more pronounced.

In Fig. 5 we report the behaviour of g(r) for various flocks at sev-
eral densities (low densities in the inset). Despite the fluctuations,
a structure with at least two peaks is visible. This is true also at low
densities, where however the peaks are much broader. The first
thing to note is that this kind of pair correlation function is totally
incompatible with any bona fide crystalline structure. The ‘crystal
hypothesis’ put forward for fish schools in [14] has thus to be dis-
carded for starling flocks. In fact, given the sparseness of the flocks,
as quantified by the very low packing fraction of even the densest
aggregations, one may have expected to find no structure at all, as
in a gas. On the other hand, we know there are strong correlations,
giving rise to a sharp anisotropy, and this does not fit the gas par-
adigm. The pair distribution function shows an intermediate
behaviour: unlike a gas, it is not completely structureless, even
though it does not show a clearly periodic liquid structure either.
We believe that this is due to the fact that the interaction ruling
starling flocks has a topological nature, which is completely differ-
ent from the metric interaction ruling physical systems, like gas or
liquids. A topological interaction is independent of the metric dis-
tance between birds, and it therefore introduces some effective
long-range correlations. Whenever the density becomes very low,
distant birds may still interact with a bond as strong as when they
are closer. Therefore, unlike most physical systems, flocks can sus-
tain structure and correlation in spite of very small densities and pack-
ing fractions. However, the structure is not as simple as that of a
liquid, since the pair correlation function shows only two, rather
weak peaks. Again, this is probably due to the topological interac-
tion: birds have well defined mutual orientations (compared to the
direction of motion), irrespective of their metric distance, so that
the structure in shells, which shows off so clearly in liquids, is
somewhat blurred in flocks.
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Fig. 5. Pair correlation function g(r) for several flocking events. Each curve
corresponds to a flock at a single instant of time. Flocks with low density are
shown in the Inset. Two peaks are clearly visible in all the curves.
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a spherical volume with density decreasing from border to centre
as a power law. The sphere is then mapped into an ellipsoid having
approximately the flock’s proportions. The exponent of the distri-
bution has been tuned to reproduce the function r1(d) of the real
flock (see inset in Fig. 4). Then, the function C(r) has been com-
puted for the synthetic samples. It corresponds to the continuous
lines in Fig. 4. The simulated line is consistent with the empirical
data, confirming that the border-to-centre density gradient is at
the same time responsible of the increasing behaviour r1(d) as well
as for the anomalous decrease of C(r).

Therefore, the density gradient between centre and border in
starling flocks can be so large to suppress the homogeneity scale.
When this happens, the ‘naı̈ve’ density (total number of individuals
over total volume) is only a very coarse estimate, whereas the full
curve of the conditional density provides a more coherent descrip-
tion of the flock.
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homogeneity of the system and, as we have discussed, is influ-
enced at short scales by the presence of correlations between indi-
viduals. There is however another two-point function, intimately
related to C(r), which is generally more appropriate to investigate
the structure of an aggregation. This is the so-called pair distribu-
tion function g(r) and it is typically used in liquid theory [13] to
quantitatively characterize the degree of spatial order (gas/liquid/
solid) in a system of particles. As we have seen the function C(r)
measures the average global density up to a distance r around a gi-
ven reference point/individual (the centre of the sphere). The func-
tion g(r) is defined similarly, but instead of looking at the density
up to scale r focuses on the density exactly at distance r. Formally
we have,
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where rij is the absolute distance between the centre i and a neigh-
bour j. Note that g(r) is a distribution function (it contains a Dirac
delta), meaning that to obtain a true density one needs to multiply
for an appropriate spatial increment dr. Operationally, to compute
g(r) we proceed similarly to the integrated conditional density:
we choose an individual i and a sphere of radius r around it. The
sphere is acceptable only if it is completely contained within the
border of the group. We then look in a small spherical shell of thick-
ness dr at the surface of the sphere and count how many birds are
found within this shell. We finally divide this number by the vol-
ume of the shell 4pr2dr. Note that to fix reasonably the ‘binning’
parameter dr we need to make a trade off: if too small the resolution
is high, but noise is too large (few points within the shells); if too
large noise is small, but resolution is too low.

The functions g(r) and C(r) are directly related one to the other
in the following way:
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tial structure of the aggregation. In a crystalline solid it exhibits
very sharp peaks corresponding to the fixed distances among par-
ticles. These peaks do not decay at large values of r. Liquids on the
other hand, unlike crystals have no long-range order. Yet, statisti-
cal correlations are still very strong: in liquids the pair correlation
function has a clearly oscillating shape, with well defined peaks
that flatten around the average density value for large r. It is zero
at small scales (due to short-range repulsion between particles)
and it exhibits a first very pronounced peak at the scale of the first

shell of neighbours, with a few subsequent smaller peaks at the
location of farther neighbours shells, whose amplitude decreases
as r increases. On the other hand, in a gas-like system with hard-
core, only the first peak is visible, and the function decays to the
density without further oscillations after this. In a Poisson point
process (randomly distributed particles with no correlations –
not even the hard-core) the g(r) and the C(r) are completely flat
and constant. Since C(r) is related to the integral of g(r), the peak
structure, if not too pronounced, can be smoothed by the integra-
tion. For this reason it is useful to look directly at the pair correla-
tion function. On the other hand, being a differential quantity, the
statistics used to compute g(r) is smaller and the effect of noise is
more pronounced.

In Fig. 5 we report the behaviour of g(r) for various flocks at sev-
eral densities (low densities in the inset). Despite the fluctuations,
a structure with at least two peaks is visible. This is true also at low
densities, where however the peaks are much broader. The first
thing to note is that this kind of pair correlation function is totally
incompatible with any bona fide crystalline structure. The ‘crystal
hypothesis’ put forward for fish schools in [14] has thus to be dis-
carded for starling flocks. In fact, given the sparseness of the flocks,
as quantified by the very low packing fraction of even the densest
aggregations, one may have expected to find no structure at all, as
in a gas. On the other hand, we know there are strong correlations,
giving rise to a sharp anisotropy, and this does not fit the gas par-
adigm. The pair distribution function shows an intermediate
behaviour: unlike a gas, it is not completely structureless, even
though it does not show a clearly periodic liquid structure either.
We believe that this is due to the fact that the interaction ruling
starling flocks has a topological nature, which is completely differ-
ent from the metric interaction ruling physical systems, like gas or
liquids. A topological interaction is independent of the metric dis-
tance between birds, and it therefore introduces some effective
long-range correlations. Whenever the density becomes very low,
distant birds may still interact with a bond as strong as when they
are closer. Therefore, unlike most physical systems, flocks can sus-
tain structure and correlation in spite of very small densities and pack-
ing fractions. However, the structure is not as simple as that of a
liquid, since the pair correlation function shows only two, rather
weak peaks. Again, this is probably due to the topological interac-
tion: birds have well defined mutual orientations (compared to the
direction of motion), irrespective of their metric distance, so that
the structure in shells, which shows off so clearly in liquids, is
somewhat blurred in flocks.
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PZ: rapid uncoordinated 
cell movement, mixing

PSM: diminishing 
cell movement

DM: rapid coordinated and 
directed cell movement
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number of Canonical Wnt inhibitors!!
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Wnt inhibition: notum over-expression

Lawton et. al., Development (2013)



 

 

PZ

PSM

DM

 Neighbor Similarity

Pe
rc

en
t

30

20

10

10

10

-0.6  0.0  0.6

A

B

C

1.7

1.3

0.9

M
SD

 A

DM DM DM PSMPSMPSM PZPZPZ

C
or

r. 
le

ng
th

(μ
m

)

180

100

  20

Po
la

riz
at

io
n

&

0.7

0.4

0.1

Lawton et al.,  Figure 3

wild type notum1a SU5402

ce
ll 

ve
lo

ci
tie

s
lo

ca
l a

ve
ra

ge
 (1

5 
Mm

 ra
di

us
)

lo
ca

l v
ar

ia
tio

n 
= 

A-
B

D

F

E

H

I

J N

M

L

G K O

-0.6  0.0  0.6-0.6  0.0  0.6

PZ

PSM

DM

 Neighbor Similarity

P
er

ce
nt

30

20

10

10

10

-0.6  0.0  0.6

A

B

C

1.7

1.3

0.9

M
S

D
 A

DM DM DM PSMPSMPSM PZPZPZ

C
or

r. 
le

ng
th

(μ
m

)

180

100

  20

P
ol

ar
iz

at
io

n
&

0.7

0.4

0.1

Lawton et al.,  Figure 3

wild type notum1a SU5402

ce
ll 

ve
lo

ci
tie

s
lo

ca
l a

ve
ra

ge
 (1

5 
Mm

 ra
di

us
)

lo
ca

l v
ar

ia
tio

n 
= 

A
-B

D

F

E

H

I

J N

M

L

G K O

-0.6  0.0  0.6-0.6  0.0  0.6

Lawton, Nandi,.......,Holley, Development (2013)



How vesicles are transported during endocytosis?

Drift 
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Intensity 
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Endocytosis: Transport of clathrin coated vesicles 
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Endocytosis: Transport of clathrin coated vesicles 
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