Role of intercellular adhesion in cell migration : A cellular potts model perspective

May 13, 2024

Chandrashekar Kuyyamudi Postdoctoral fellow, Extavour lab OEB and MCB , Harvard University

Tools that shape the embryo

Drawn by Shakti Menon

Ways to pattern an embryo

Symmetry breaking is at the heart of all patt break spatial symmetry.

Symmetry breaking is at the heart of all pattern formation. Biology employs various ways to

Drawn by Shakti Menon

Cell adhesion - morphogenesis

Source : Gumbiner Nat Rev Mol Cell Biol 2005

Cadherin regulation during morphogenesis.

Differential adhesion - Cellular Potts Model

- Can different cell types sort into homogenous domains due to differential adhesion between cell types ?
- Graner and Glazier in 1992 tested the differential adhesion driven cell sorting hypothesis computationally
- Inspired by Potts Model, a generalization of Ising model in statistical mechanics

Graner and Glazier, PRL 1992

https://artistoo.net/

Pixelflip

- Cells are spatially contiguous collection of pixels
- The background in which the cells exist is refer as the medium. Medium is treated as a cell wh isn't constraint by the spatial contiguity require
- Pick a pixel that has at least one neighbor whi belongs to a different cell
- Compute the energy difference if the pixel wei flip to its neighbor's state
- If the energy difference is negative flip or else with a probability p_{flip}
- The pixel flip is accepted iff it doesn't violate the spatial contiguity of a cell

rred to	0 0 2 2 2 2 0
nich	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0
ement	0 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ich	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2
	0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
re to	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
flip	0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2
	0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 cells and the medium

Energy function $E = \sum_{i,j} J(\tau(\sigma_i), \tau(\sigma_j))(1 - \delta(\sigma_i, \sigma_j)) + \delta(\sigma_j, \sigma_j) + \delta(\sigma_$

- There is an energy cost associated with pairwise interaction between pixels belong to different cells ($\sigma_i \& \sigma_j$)
- The cost is dependent on the cell type $(\tau(\sigma_i) \ \& \ \tau(\sigma_j))$
- The energy cost is given by the symmetric matrix J of dimension k x k where k is the number of cell types (including the mediur

+ $\lambda_V \sum_{\sigma_i}$	$(V(\sigma_i - V_0(\sigma_i))^2$	
ging	0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
/	0 0 0 0 0 0 0 2	2 0

Schematic illustrating the interaction between different

0000 0000) 0 0 0) 0 0 0 000 0000) 0 0 0) 0 0 0) 0 0 0 0000 0000 000 100 100 100 100 000 0 0000 000 0000 0000000) 0 0 0 0000 0000000 $) \cap \cap$ 0000 0000 0 0 0 0 0000 0 0 0 0 $0 \ 0 \ 0 \ 0$ 0 0 0 0

Volume constraint

 $\lambda_V = 0.01$

 $\lambda_V \sum_{\sigma_i} (V(\sigma_i - V_0(\sigma_i))^2 \sigma_i)^2$

 $\lambda_V = 1.0$

Temperature

T= 10

 $p_{flip} < \exp(-\Delta E_{total}/T)$

T = 100

Other constraints - more terms in equation for ${\it E}$

- Surface area constraint (S)
- Length constraint (l)
- Length along x-axis (l_x)
- Anything you like as long as it makes sense !

$$\lambda_{S} \sum_{\sigma_{i}} (S(\sigma_{i} - S_{0}(\sigma_{i}))^{2}$$

$$\lambda_l \sum_{\sigma_i} (l(\sigma_i - l_0(\sigma_i))^2$$

$$\lambda_{l_x} \sum_{\sigma_i} (l_x(\sigma_i - l_x^0(\sigma_i))^2 \sigma_i)^2$$

Cell growth and Cell death

- $V_0 \rightarrow V_0(t)$
- $V_0(t+1) = V_0(t) + \Delta V$
- $\Delta V > 0 \rightarrow \text{cell growth}$
- $\Delta V < 0 \rightarrow$ cell death

dV = 1

dV = -10

Cell division

- When a cell volume crosses a threshold volume divide into two daughter cells along the axis of division
- The daughter cells need not share the volume equally between them i.e.
 asymmetric cell division

Division along random axis

Division along minor axis

Cell migration - chemotaxis

Biased pixel flips during chemotaxis

Savill and Hogeweg, JTB 1997

Radial chemical field

$$\Delta E^{\dagger} = \mu (C_{ij} - C_{i'j})$$

Migrating cell

Cell sorting - differential adhesive affinity

- Cell type A (green)
- Cell type B (blue)

 $J_{AA} = J_{BB} = J_{BA} = 10$

 $J_{AB} = 10$; $J_{AA} = J_{BB} = 2$

Thank you for listening

Thanks to Prof. Cassandra Extavour and to all the members of the Extavour lab

Thanks to James Glazier and his team of people who created and maintain **CompucelI3D**

https://compucell3d.org/

HARVARDOIO

Howard Hughes Medical Institute

Questions please