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Morphogen gradients through gene regulatory network specify cell fates
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The GRN acts as an information decoder that specifies target pattern
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Zagorski et al., Science, 2017
Petkova et al., Cell, 2019
Tkacik & Gregor, Development, 2021



Neural tissue in spinal cord undergoes changes in size and shape over time
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Morphogen signaling gradients establish a striped pattern of neural progenitors
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The striped pattern of gene expression domains is formed progressively

Zagorski et al., Science, 2017



Research questions

 How are morphogens interpreted to result in precise and reproducible patterns?

 How is pattern formation affected by tissue mechanical properties, cellular 
dynamics, and growth?

 What are conditions for emergence of stable patterns in tissues?

 How is morphogen source formed in a growing tissue?
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The morphogen signaling profiles do not scale with the embryo size
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The initial morphogen positional error corresponds to the boundary 
imprecision at later stages
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Optimal decoder contains all the information that any cellular or 
computational mechanism could extract from input signals

Tkacik et al., Genetics, 2015: formalism
Zagorski et al., Science, 2017: mouse spinal cord, K = 2
Petkova et al., Cell, 2019: fruit fly, K = 4
Tkacik & Gregor, Development 2021: review
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Optimal decoder from
Bayes’ rule
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Cells interpret the opposing morphogen signals using an optimal decoding 
strategy
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Zagorski et al., Science, 2017



The decoding map predicts the correct shifts of gene expression domains 
in mutant with reduced Shh
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Decoding map predicts bimodal posterior distribution of cell fates for high 
morphogen concentrations
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The predicted bimodal distribution of cell fates is consistent with explant 
experiments
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The morphogens activate gene regulatory network to specify cell fate

d D
dt

= α𝐷𝐷
κ𝐷𝐷 + c𝐵𝐵→𝐷𝐷κ𝐷𝐷 BMP

1 + K𝑉𝑉→𝐷𝐷 V 𝑚𝑚𝑉𝑉→𝐷𝐷 1 + K𝐼𝐼→𝐷𝐷 I 𝑚𝑚𝐼𝐼→𝐷𝐷 + κ𝐷𝐷 + c𝐵𝐵→𝐷𝐷κ𝐷𝐷 BMP
− γ𝐷𝐷 D

d V
dt

= α𝑉𝑉
κ𝑉𝑉 + c𝑆𝑆→𝑉𝑉κ𝑉𝑉 Shh

1 + K𝐷𝐷→𝑉𝑉 D 𝑚𝑚𝐷𝐷→𝑉𝑉 1 + K𝐼𝐼→𝑉𝑉 I 𝑚𝑚𝐼𝐼→𝑉𝑉 + κ𝑉𝑉 + c𝑆𝑆→𝑉𝑉κ𝑉𝑉 Shh
− γ𝑉𝑉 V

d[I]
dt

= α𝐼𝐼
κ𝐼𝐼 + c𝑆𝑆→𝐼𝐼κ𝐼𝐼 [Shh] + c𝐵𝐵→𝐼𝐼κ𝐼𝐼 [BMP]

(1 + K𝐷𝐷→𝐼𝐼[D])𝑚𝑚𝐷𝐷→𝐼𝐼(1 + K𝑉𝑉→𝐼𝐼[I])𝑚𝑚𝑉𝑉→𝐼𝐼+κ𝐼𝐼 + c𝑆𝑆→𝐼𝐼κ𝐼𝐼 [Shh] + c𝐵𝐵→𝐼𝐼κ𝐼𝐼 [BMP]
− γ𝐼𝐼[I]

D: Pax3
I: Dbx2
V: Nkx6.1

Zagorski et al., Science, 2017



Computational screen resulted in a set of successful GRNs consistent with 
experimental observations

Zagorski et al., Science, 2017



The target gene pattern established by GRNs resulted in a wide range of 
boundary imprecision

Zagorski et al., Science, 2017



Research questions

 How are morphogens interpreted to result in precise and reproducible patterns?

 How is pattern formation affected by tissue mechanical properties, cellular 
dynamics, and growth?

 What are conditions for emergence of stable patterns in tissues?

 How is morphogen source formed in growing tissue?



Clonal cell populations disperse differently at different developmental stages

Bocanegra-Moreno et al., Nature Physics, 2023

Hippenmeyer et al., Neuron 2010

Green and red cells – single clone



The number of clone fragments is higher at early developmental stages 
than at later stages

E8.5

E10.5

Bocanegra-Moreno et al., Nature Physics, 2023
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Vertex model: movement of each cell is governed by movement of its 
vertices

Farhadifar et al., Current Biology, 2007
Guerrero et al., Development 2019
Bocanegra-Moreno et al., Nature Physics, 2023
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Vertex model ground state changes from fluid-like to solid-like with 
increasing tension and contractility

Farhadifar et al., Current Biology, 2007
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The classic formulation of vertex model could not reproduce experimental 
fragmentation
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Bocanegra-Moreno et al., Nature Physics, 2023



Including noise in the line tension and interkinetic nuclear movement 
(IKNM) increased fragmentation

Fragmentation

+ noise in Λ𝑖𝑖𝑖𝑖
+ cell area kinetics by 𝐴𝐴𝛼𝛼0 (𝑡𝑡)

Bocanegra-Moreno et al., Nature Physics, 2023



Different levels of clone fragmentation were associated with different levels 
of cellular rearrangements (T1 transitions)

Fragmentation T1 transition

+ noise in Λ𝑖𝑖𝑖𝑖
+ cell area kinetics by 𝐴𝐴𝛼𝛼0 (𝑡𝑡)

Bocanegra-Moreno et al., Nature Physics, 2023



Sub-region C is a novel region characterized by high levels of cell 
rearrangements

Fragmentation T1 transition

+ noise in Λ𝑖𝑖𝑖𝑖
+ cell area kinetics by 𝐴𝐴𝛼𝛼0 (𝑡𝑡)

Bocanegra-Moreno et al., Nature Physics, 2023



Vertex model simulation of tissue in sub-region B

Bocanegra-Moreno et al., Nature Physics, 2023


Created with the Wolfram Language : www.wolfram.com





Vertex model simulation of tissue in sub-region C

Bocanegra-Moreno et al., Nature Physics, 2023


Created with the Wolfram Language : www.wolfram.com





Vertex model simulation of tissue in sub-region A

Bocanegra-Moreno et al., Nature Physics, 2023


Created with the Wolfram Language : www.wolfram.com





Cell area variability is high only in sub-region C

Sub-region A Sub-region B Sub-region C

Bocanegra-Moreno et al., Nature Physics, 2023



CV of cell area

Cell area variability is high only in sub-region C

Bocanegra-Moreno et al., Nature Physics, 2023



Tissue simulated in sub-region C resembles the neural epithelium at E8.5
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n= 6929 cells, 4 embryos

Cumulative difference*

Bocanegra-Moreno et al., Nature Physics, 2023



Dynamics of cell area affects the rate of cellular rearrangements and 
cellular heterogeneity in sub-region C

T1 rate (cell-1h-1) CV area

𝜎𝜎 = magnitude of
noise in Λ𝑖𝑖𝑖𝑖

Bocanegra-Moreno et al., Nature Physics, 2023



Bocanegra-Moreno et al., Nature Physics, 2023

Implementation of interkinetic nuclear movement (IKNM) in the vertex 
model

IKN IKNM in the model
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Guerrero et al., Development 2019



Apical cell area rapidly increases before mitosis in vivo

Bocanegra-Moreno et al., Nature Physics, 2023
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Kinetics of apical cell area growth induces T1 transitions in sub-region C
T1 rate (cell-1h-1) CV area

𝜎𝜎 = magnitude of
noise in Λ𝑖𝑖𝑖𝑖

Exp 4𝜆𝜆

Bocanegra-Moreno et al., Nature Physics, 2023



The number of clone fragments is higher at early developmental stages 
than at later stages

Bocanegra-Moreno et al., Nature Physics, 2023



The growth rate of neural epithelium goes down at later developmental 
stages

Kicheva et al., Science, 2014
Bocanegra-Moreno et al., Nature Physics, 2023



Lowering proliferation rate decreased fragmentation in vertex model 
simulation

High proliferation rate Low proliferation rate

Bocanegra-Moreno et al., Nature Physics, 2023



The decrease in the proliferation rate decreased fragmentation in E8.5 
embryos

φ = 0.52, CI (0.47, 056)
φ = 0.36, CI (0.34,0.39)

L-mimosine
Control

Control L-mimosine
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L-mimosine – cell cycle inhibitor

Bocanegra-Moreno et al., Nature Physics, 2023



Research questions

 How are morphogens interpreted to result in precise and reproducible patterns?

 How is pattern formation affected by tissue mechanical properties, cellular 
dynamics, and growth?

 What are conditions for emergence of stable patterns in tissues?

 How is morphogen source formed in a growing tissue?



The GRN acts as an information decoder that specifies target pattern
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The GRN acts as an information decoder that specifies target pattern
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Thermodynamical model coupled with reaction-diffusion equation

𝜕𝜕 𝐹𝐹
𝜕𝜕𝜕𝜕

= 𝛼𝛼𝐹𝐹
𝜅𝜅𝐹𝐹 + 𝑐𝑐𝑆𝑆→𝐹𝐹𝜅𝜅𝐹𝐹[𝑆𝑆𝑆𝑆]

1 + 𝐾𝐾𝑁𝑁→𝐹𝐹 𝑁𝑁 𝑚𝑚𝑁𝑁→𝐹𝐹 + 𝜅𝜅𝐹𝐹 + 𝑐𝑐𝑆𝑆→𝐹𝐹𝜅𝜅𝐹𝐹[𝑆𝑆𝑆𝑆]
− 𝛾𝛾𝐹𝐹 𝐹𝐹

𝜕𝜕 𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕 = 𝐷𝐷𝑆𝑆

𝜕𝜕2[𝑆𝑆𝑆𝑆]
𝜕𝜕𝑥𝑥2 + 𝛼𝛼𝑆𝑆

𝜅𝜅𝐹𝐹→𝑆𝑆[𝐹𝐹]
1 + 𝜅𝜅𝐹𝐹→𝑆𝑆[𝐹𝐹] − 𝛾𝛾𝑆𝑆 𝑆𝑆𝑆𝑆

𝜕𝜕 𝑁𝑁
𝜕𝜕𝜕𝜕 = 𝛼𝛼𝑁𝑁

𝜅𝜅𝑁𝑁 + 𝑐𝑐𝑆𝑆→𝑁𝑁𝜅𝜅𝑁𝑁 𝑆𝑆𝑆𝑆
1 + 𝐾𝐾𝐹𝐹→𝑁𝑁 𝐹𝐹 𝑚𝑚𝐹𝐹→𝑁𝑁 + 𝜅𝜅𝑁𝑁 + 𝑐𝑐𝑆𝑆→𝑁𝑁𝜅𝜅𝑁𝑁 𝑆𝑆𝑆𝑆 − 𝛾𝛾𝑁𝑁 𝑁𝑁

Ho et al., bioRxiv, 2024.03.01.582751



Spinal cord grows as pattern is established

Kicheva et al., Science 2014
Zagorski et al., Science 2019
Bocanegra-Moreno et al., Nature Physics 2023



Computational screen: 169 979 successful solutions out of 400 000 visited

• two domains, FP ventrally located
• FP size from 5% to 25% tissue length
• formed between 2.5 and 20h

Success criteria:

Ho et al., bioRxiv, 2024.03.01.582751



Lack of clear dependence of FP size on parameter values

Ho et al., bioRxiv, 2024.03.01.582751



Perturbing most of the parameters strongly affects FP size
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Ho et al., bioRxiv, 2024.03.01.582751



FP formation can occur by different mechanisms, dependent or 
independent of FP-derived Shh

F N

lFP

𝑥𝑥
0 L

lFP

𝑥𝑥
0 L

Shh insensitive, ΔlFP = 0

lFP

𝑥𝑥
0 L

Shh sensitive, ΔlFP = lFP

Ho et al., bioRxiv, 2024.03.01.582751



Distribution of parameters for ShhFP-sensitive and insensitive classes of 
solutions

Ho et al., bioRxiv, 2024.03.01.582751



After formation the FP is scaling in size following tissue growth

Ho et al., bioRxiv, 2024.03.01.582751



After formation the FP is scaling in size following tissue growth

Ho et al., bioRxiv, 2024.03.01.582751



Removing Shh production by FP results in distinct solutions

Ho et al., bioRxiv, 2024.03.01.582751



Two time scales of FP formation: establishment and scaling

Ho et al., bioRxiv, 2024.03.01.582751



Initial flux regulates the size of FPs

Ho et al., bioRxiv, 2024.03.01.582751



The increase in Shh amplitude over time depends on floor plate growth

Ho et al., bioRxiv, 2024.03.01.582751



Removing Shh flux reduces Shh amplitude in the extent depending on 
the magnitude of flux

jShh = 1 (a.u./s) jShh = 0.1 (a.u./s)

Ho et al., bioRxiv, 2024.03.01.582751



FP-derived Shh is not required for the formation of the floor plate

WT ShhFP deleted

WT ShhFP deleted

Ho et al., bioRxiv, 2024.03.01.582751



Early deletion of Shh results in a severe reduction of 85% of FP size

WT
ShhFP deleted
Shhnoto deleted

WT ShhFP deleted
Shhnoto deleted

Ho et al., bioRxiv, 2024.03.01.582751



Late deletion of Shh does not alter FP size

WT
ShhFP deleted
Shhnoto deleted

WT ShhFP deleted
Shhnoto deleted

Ho et al., bioRxiv, 2024.03.01.582751



Research questions

 How are morphogens interpreted to result in precise and reproducible patterns?

 How is pattern formation affected by tissue mechanical properties, cellular 
dynamics, and growth?

 What are conditions for emergence of stable patterns in tissues?

 How is morphogen source formed in a growing tissue?



We explain the principles of gene expression pattern stabilization in systems of 
interacting, diffusible morphogens, with dynamically established source regions

Majka et al., Physical Review Letters, 2023



Under specific conditions stable gene expression patterns (GEPs) are formed

Majka et al., Physical Review Letters, 2023



Indetermined GEP vs   Travelling GEP vs   Stable GEP

Majka et al., Physical Review Letters, 2023



GEP exhibit broad plateu of low-velocity drift

Majka et al., Physical Review Letters, 2023



Gap gene expression pattern exhibits shifts in the posterior part

Verd et al., PLOS Comp Bio, 2017

Estimated velocity of Kni-Gt is 17.5 μm over 44 minutes, that corresponds to v = 24 μm/h.



Stability conditions for two-gene network motifs encountered in developmental 
GRNs

Majka et al., Physical Review Letters, 2023



Stable developmental patterns of gene expression without morphogen 
gradients in Drosophila-like system

M Majka, NB Becker, PR ten Wolde, M Zagorski, TR Sokolowski,, arXiv: 2306.00537



 Morphogens are interpreted close to optimal limit of processing of noisy signals

Zagorski et al., Science, 2017

Insignal decoder

Bocanegra-Moreno et al., Nature Physics, 2023

 Patterning is affected by growth, cellular dynamics, and tissue properties

Summary (part 1)

BMP
act.

Shh
act.



 Initial FP size is determined by GRN strengths, and later on it scales with the tissue size

Majka et al., PRL, 2023

 Stable patterns of interacting domains emerge under specific conditions

Summary (part 2)

Ho et al., bioRxiv, 2024.03.01.582751
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