Formation of gene expression patterns
In growing tissues
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Development of mouse embryo




Morphogen gradients through gene regulatory network specify cell fates

Mo

Distance

i e a2

Morphogen—> R
AN
:5»0

Gene expression pattern

____HEEEE

Morphogen




The GRN acts as an information decoder that specifies target pattern
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Neural tissue in spinal cord undergoes changes in size and shape over time
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Morphogen signaling gradients establish a striped pattern of neural progenitors
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The striped pattern of gene expression domains is formed progressively
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Research questions

» How are morphogens interpreted to result in precise and reproducible patterns?

» How is pattern formation affected by tissue mechanical properties, cellular
dynamics, and growth?

» How is morphogen source formed in a growing tissue?

» What are conditions for emergence of stable patterns in tissues?
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Research questions

» How are morphogens interpreted to result in precise and reproducible patterns?
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The morphogen signaling profiles do not scale with the embryo size
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The initial morphogen positional error corresponds to the boundary
imprecision at later stages
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Optimal decoder contains all the information that any cellular or

computational mechanism could extract from input signals
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Cells interpret the opposing morphogen signals using an optimal decoding
strategy
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The decoding map predicts the correct shifts of gene expression domains
in mutant with reduced Shh
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Decoding map predicts bimodal posterior distribution of cell fates for high
morphogen concentrations
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The predicted bimodal distribution of cell fates is consistent with explant
experiments
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The morphogens activate gene regulatory network to specify cell fate
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Computational screen resulted in a set of successful GRNs consistent with
experimental observations
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The target gene pattern established by GRNs resulted in a wide range of
boundary imprecision
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Research questions

» How are morphogens interpreted to result in precise and reproducible patterns?

» How is pattern formation affected by tissue mechanical properties, cellular
dynamics, and growth?
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Clonal cell populations disperse differently at different developmental stages

GFP /tdT/

Green and red cells — single clone



The number of clone fragments is higher at early developmental stages
than at later stages
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Vertex model: movement of each cell is governed by movement of its
vertices
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Vertex model ground state changes from fluid-like to solid-like with
increasing tension and contractility
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The classic formulation of vertex model could not reproduce experimental

fragmentation
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Including noise in the line tension and interkinetic nuclear movement

(IKNM) increased fragmentation
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Bocanegra-Moreno et al., Nature Physics, 2023



Different levels of clone fragmentation were associated with different levels
of cellular rearrangements (T1 transitions)
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Sub-region Cis a novel region characterized by high levels of cell

rearrangements
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Vertex model simulation of tissue in sub-region B




Created with the Wolfram Language : www.wolfram.com




Vertex model simulation of tissue in sub-region C




Created with the Wolfram Language : www.wolfram.com




Vertex model simulation of tissue in sub-region A




Created with the Wolfram Language : www.wolfram.com




Cell area variability is high only in sub-region C

Sub-region A Sub-region B Sub-region C




Cell area variability is high only in sub-region C

CV of cell area
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Tissue simulated in sub-region C resembles the neural epithelium at E&.5
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Dynamics of cell area affects the rate of cellular rearrangements and

cellular heterogeneity in sub-region C
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Implementation of interkinetic nuclear movement (IKNM) in the vertex
model

IKNM in the model
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Apical cell area rapidly increases before mitosis in vivo
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Kinetics of apical cell area growth induces T1 transitions in sub-region C
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The number of clone fragments is higher at early developmental stages
than at later stages

| | | | | | | |
8 o E8.5 ¢=0.61(0.55, 0.68) |
" ® E95 ¢=011(0.08,0.15)
= ® E10.5 ¢=0.25 (0.21, 0.30)
2 or ° -
© . !
‘S 4} o -
2
= ,{..«-"I'
g 21 e -""'i'_'# -
.;T—:%T-:i" - °
OL4




The growth rate of neural epithelium goes down at later developmental
stages
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Lowering proliferation rate decreased fragmentation in vertex model

simulation
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The decrease in the proliferation rate decreased fragmentation in E&.5
embryos
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Research questions

» How are morphogens interpreted to result in precise and reproducible patterns?

» How is pattern formation affected by tissue mechanical properties, cellular
dynamics, and growth?

» How is morphogen source formed in a growing tissue?

400 um _ Dorsal

5'h Time asn  Ventral



The GRN acts as an information decoder that specifies target pattern
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The GRN acts as an information decoder that specifies target pattern
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Thermodynamical model coupled with reaction-diffusion equation
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Spinal cord grows as pattern is established
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Computational screen: 169 979 successful solutions out of 400 000 visited
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Lack of clear dependence of FP size on parameter values
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Perturbing most of the parameters strongly affects FP size
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FP formation can occur by different mechanisms, dependent or
independent of FP-derived Shh

F N x
| | —
0 lep L
"Shh insensitive, Al_,=0 A
X
| | | "
Y lep L
"Shh sensitive, Alp=1cp
X
| | | "
O e L

Ho et al., bioRxiv, 2024.03.01.582751



Distribution of parameters for Shhf"-sensitive and insensitive classes of
solutions
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After formation the FP is scaling in size following tissue growth
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After formation the FP is scaling in size following tissue growth
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Removing Shh production by FP results in distinct solutions
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Two time scales of FP formation: establishment and scaling
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Initial flux regulates the size of FPs
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The increase in Shh amplitude over time depends on floor plate growth
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Removing Shh flux reduces Shh amplitude in the extent depending on
the magnitude of flux
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FP-derived Shh is not required for the formation of the floor plate
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Early deletion of Shh results in a severe reduction of 85% of FP size
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Late deletion of Shh does not alter FP size
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Research questions

» How are morphogens interpreted to result in precise and reproducible patterns?

» How is pattern formation affected by tissue mechanical properties, cellular
dynamics, and growth?

» How is morphogen source formed in a growing tissue?

» What are conditions for emergence of stable patterns in tissues?
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We explain the principles of gene expression pattern stabilization in systems of
interacting, diffusible morphogens, with dynamically established source regions

PHYSICAL REVIEW LETTERS 130, 098402 (2023)

Stability of Pattern Formation in Systems with Dynamic Source Regions

. * + "
M. Majka®, R.D.J. G. Ho®," and M. Zagorski®*
Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University,
Ltojasiewicza 11, 30-348 Krakow, Poland
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Under specific conditions stable gene expression patterns (GEPs) are formed
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Indetermined GEP vs Travelling GEP vs Stable GEP
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GEP exhibit broad plateu of low-velocity drift

v [um/h]
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Gap gene expression pattern exhibits shifts in the posterior part
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Estimated velocity of Kni-Gt is 17.5 um over 44 minutes, that corresponds to v = 24 um/h.
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Stability conditions for two-gene network motifs encountered in developmental
GRNs
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Stable developmental patterns of gene expression without morphogen

gradients in Drosophila-like system
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Summary (part 1)

» Morphogens are interpreted close to optimal limit of processing of noisy signals
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» Patterning is affected by growth, cellular dynamics, and tissue properties
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Summary (part 2)

» Initial FP size is determined by GRN strengths, and later on it scales with the tissue size

Input signal
Source Target tissue 400F ‘ ‘ d
- T 300F -
Information :gn = 200F -
o x .
decoder 5 100+ -
= T
0 I I | |
Distance 0 20 4 60

Time (h)
Ho et al., bioRxiv, 2024.03.01.582751
» Stable patterns of interacting domains emerge under specific conditions

Output signal
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