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Early stage mouse embryo with coloured daughter cells




10.5-day mouse embryo with organs and body parts emerging




Morphogen gradients provide positional information establishing
coordinate system for the developing tissue
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Morphogen gradients provide positional information establishing
coordinate system for the developing tissue

Morphogen

. [ Distance
AR

(OO N O NC O KO O C o Of K Of NC L O N Of K O € O N ) NE i Of NC @)

wisrphogen —> (R)
AN

Gene expression pattern




The gene regulatory network acts as an information decoder that
specifies target pattern
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The gene regulatory network acts as an information decoder that
specifies target pattern
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Optimal processing of information allows for pattern prediction
without gene regulatory network
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Bicoid proteins form a concentration gradient
providing coordinate system for developing embryo
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Optimal decoder contains all the information that any cellular or
computational mechanism could extract from input signals
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Decoding positional information in the early fruit fly embryo
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Optimal decoder contains all the information that any cellular or
computational mechanism could extract from input signals

kr  hb gt kni
Input signal {9:(0)} ={g1(x), 92(x), g3(x), g2 (x)}, K =4

Signal distribution at every x

1 1 v .
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Optimal decoder contains all the information that any cellular or
computational mechanism could extract from input signals

kr hb gt kni
Input signal {9:(0)} ={g:(x), 9:(x), g5(x), g4 (x)}, K =4

Signal distribution at every x

Plgillx) = 1 exp ]~ i (9: = i CN(C )i (g5 — F; ()
V(2m)Xdet[C (x)] 2i,j=1 jNIj— Y
Optimal decoder from 1
P * i = P i * P *
Bayes’ rule (x*{g:}) ) ({gi}x")Px (x™)

Decoding map Prap(x*[x) = P(x*|{g;}) (0=(0:(5)



Good positional code has most likely position X sharply peaked

P(x*|g)
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GRN can be viewed as an input/output device that encodes
physical location x in the embryo using concentrations g;
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Coding and decoding of position from a single input signal
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Coding and decoding of position from a single input signal
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Coding and decoding of position from a single input signal
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Coding and decoding of position from a single input signal
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High accuracy of pattern specification requires decoding of
signals from all 4 gap genes
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In fruit fly decoding of input signals results in pattern
specification with 1% positional error
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The decoding map correctly predicts shifts, disappearance and
duplications in different mutation backgrounds

o
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The average decoding maps for mutation backgrounds with one
maternal system perturbed
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WT embryo axis (x*/L)

The average decoding maps for mutation backgrounds with two
maternal systems perturbed
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Deleting all three maternal inputs removes AP positional
information completely
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The decoding map correctly predicts shifts, disappearance and
duplications in 70 pair-rule stripes in mutant embryos
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What is positional information?

Positional information (PI) measures any kind of statistical dependence
between position x and morphogen concentrations {g;}.

When a change in random variable, X, leads with some probability to a
change in another random variable, Y, we say that X ‘has information’

about Y. This information would allow us to infer (or predict) the value of Y
if we knew the value of X, and vice versa.

Claude Shannon identified mutual information, /(X;Y), as the unique

measure that mathematically captures such a statistical dependence
between X and Y.



What is positional information?

Mutual information is derived from a more basic quantity, the ‘entropy’
S(X) = —X P(X)log, P(X), where the summation extends over all values
of X that happen with probability P(X).

Entropy measures the dynamic range of the distribution, and is conceptually
related to its variance.

Mutual informationis I(X;Y) = S(X) + S(Y) - S(X,Y), or the difference in
entropy of X and Y taken separately and jointly.

For independent X and Y, S(X,Y) =S(X) +S(Y), hence I(X;Y) =0



Mutual information captures any statistical dependence
between X and Y
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Positional information encoded by a single gene can be
guantified in bits

0 0.5 1 X 0 0.5 1

1(g;x) =1 bit 1 < 1(g;x) < logy(1/0y) 1(9;X) = log,(1/0g)
» Step-function specifies up to 2 gene states: “on” and “off”.

» Widening the boundary results in more distinguishable gene states
possible 21(&X)



Pl measures the average reduction in uncertainty about

position due to morphogen signal observation
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Positional information encoded by a single gene can be
guantified in bits

Mutual information [1({g1 ] [S[P ({gl})]] [(S P({gl}lx)])x]

Entropy S[p(x)] = f dx p(x) log, p(x)

1({g;}; x) useful part (the mutual information) that describes systematic
modulation of g with position x

S[Pg({gi})] ,total entropy” measures the range of gene expression availabl
across the whole embryo.

(S[P({g;}|x)]), Pure noise that carries no information about position, quantifies
variability in g that remains even at constant position x




Is positional information conveyed in the input signal sufficient
to specify the output pattern?
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Pl is an upper bound to the information between true and
implied positions

Data Processing Inequality (DPI)

Pl is always greater or equal to the mutual information between the
true locations and the best estimates of position.

Relating positional error to Pl
Dependency chain: x - {g;} - x*

From DPI: [({g;}; x) = I(x*; x)

I(c%3x) = S[Px(x*)] ~ (SP

x)]>Px(x)



Positional error determines the lower bound on information
between true and implied positions

Relating positional error to Pl 1({g;}; x) = I(x*; x)

I(x*;x) = S[Pc(x¥)] = (S[PGe*])] )
Py (x)

S[P.(x™)] entropy of uniform distribution P.(x*) = 1/L

We do not know exact P, (x*|x), but we know its variance o (x)

The entropy of P, (x*|x) must be < to the entropy of the Gaussian
distribution of the same variance

S[B.(x [)] = log, [2mea(x)

I(x*;x) = — <log2 \/Zneaf(x)/L2>

X



Precise decoding from four Drosophila morphogens: equivalence
between the decoding map and positional error
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The information conveyed in the input signal is sufficient to
specify output pattern
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» Input: | =4.1+0.2 bits, Output: | = 4.3 bits.



Binary encoding of information is not sufficient to explain
output pattern

=
- =00
_ k() —
—~— 200
=
-0 =0
OO = =
) — o
(= I Y
oO—+00
—~— 200
— 00O
coococo

10
1 1
I(All:x)=2.92 bits 00
1 1

oo =0

KniF 1(Kni;x)=0.76 bit
KriF 1(Kr;x)=0.7 bit
GtF 1(Gt;x)=0.82 bit

HblF 1(Hb;x)=0.89 bit




Morphogen signaling gradients establish a striped pattern of

neural progenitors




The striped pattern of gene expression domains is established
progressively
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The morphogen signaling profiles do not scale with
the embryo size
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The morphogen signaling profiles do not scale
with the embryo size

Mophogen signal
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The gene expression boundaries are formed and shift as embryo
0 grows
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Positional error quantifies uncertainty in cell fate specification
at a given position
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Both morphogen signals are needed to provide positional
information across the DV axis
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Boundary imprecision of gene expression domains remains low
also at latter stages
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The initial morphogen positional error corresponds to the

o, (cell diam)

boundary imprecision at later stages
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Optimal decoder contains all the information that any cellular or
computational mechanism could extract from input signals

BMP Shh
Input signal i)} ={91(x), g2(x)}, K =2

Signal distribution at every x

K
1 1 A
P(1giilx) = -5 i — Ji Cr ()95 — gj
({g:}1x) R0 exp{ > E (9i = gi () (C™"(x))i5(g; g](x))}

ij=1

Optimal decoder from
Bayes’ rule

P(x*|{g:}) = P({g;}|x*)Px(x™)

1
Z(1gi})

Tkacik et al., Genetics, 2015: formalism
Zagorski et al., Science, 2017: mouse spinal cord, K =2
Petkova et al., Cell, 2019: fruit fly, K=4



Cells interpret the opposing morphogen signals using an
optimal decoding strategy

P(x*|{gs, gs)): 1
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Cells interpret the opposing morphogen signals using an
optimal decoding strategy
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The decoding map predicts the correct shifts of gene
expression domains in mutant with reduced Shh

D prediction
1 1 1 1 1 1 0 __I: O
= a2
5 27 g 02--- | &
£ S
5 O 0.4 ---
g 27
rs 0.6 ----
7)) 2—6
0.8 -
98
- 1.0----

28 26 2% 22 1
BMP activity



The measured gene expression boundaries are shifted ventrally
relative to the wild type
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Cells interpret the opposing morphogen signals using an
optimal decoding strategy

P(x*|{gs, gs)): 1

Shh activity
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Decoding map predicts bimodal posterior distribution of cell fates for
high morphogen concentrations and unimodal elsewhere
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Decoding map predicts bimodal posterior distribution of cell fates for
high morphogen concentrations

N
b N —
1 I

Shh activity
N

N
(o))

N
[o2]

2% 2% 2% 2% 1 [ i ii
BMP activity

Probability

DV cell fate



The predicted bimodal distribution of cell fates is consistent with the
explant experiments

Shh activity
N
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BMP activity
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Decoding map reconstructed from explant experiment is consistent
with maximum likelihood predictions

Olig2+Pax7+Nkx2.2
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The morphogens activate gene regulatory network (GRN) to

specify cell fate

Shh + BMP
activity =9 A’actlwty

N

\ v

d[D] Kp + Cgpikp [BMP]
dt =% (1 + KVA)D [V])mv_’D(l + KIA)D [I])ml_’D + Kp + CepKp [BMP]

— vp([D]

dfv] Ky + Cs_yKy [Shh]
dt - (1 + KDA)V [D])mD_’V(l + KIA)V [I])m1—>V + Ky + Csy Ky [Shh]

—yvlV]

d[l] _ Ky + Cs1Ky [Shh] + Cp1Ky [BMP]
dt =% (1 + KDA,I [D])mD_’I(l + KVA,I [I])mV—>I+K1 + Cs1Ky [Shh] + Cpo1Ky [BMP]

= v:[1]

Pax3
Dbx2
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3-node regulatory network model

[ dMsd Kutsx *+ CpopKisx [BMP] o asg )
dt Msx (1 + KN—>M [ka])mN_’M(l + KD—>M [Dbx])mD—»M + Kpsx + CpoMKpsx [BMP] Visx

d[Nkx] Knkx T CsonKnkx [Shh]
dt (1 + Ky [Msx])™M-N (1 + Ky [DbX])™P-N + Ky + €5 nKyix [Shh]
d[Dbx] Kppx + Cs-pKppx [Shh] + cppKppy [BMP]
dt - anx

(1 + Ky p [Msx])™mM-D (1 + Ky, p [DbX])™N-D+Kppy + Cs,pKppx [Shh] + cg_,pKpp, [BMP]

\__ — Yos:[Dbx] J

Exhaustive and/or random screen for 3+6+4=13 parameters

Karsxr KNkxr KDbax uniform activation, range [0, 5] A
Kyon Koy, Koo Kooy Kysp, Kpoy repressor binding affinity, range [0, 100]
\CB_,M, C-p» CsosN» Cssp morphogen activation, range [0, 20]

Fixed during screen

Oprsx = Oygx = Oppy = 1 (h_l) production rate
Ymse = Ynkx = Yopx = 0.2 (A™1) degradation rate

Myoy = Mysy = Mysp = Mpoy = Myp = Mpoy = 2 Hill coefficients




Computational screen resulted in a set of successful GRNs consistent

screen.
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Successful GRNs formed a single cluster in the parameter space
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The target gene pattern established by GRNs resulted in a wide
range of boundary imprecision
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Summary of positional information decoding scheme in
developmental systems (part |)

(1) Encoding (2) Plin I(Bcd;x) (3) Recoding
Mechanisms of Bcd Mechanisms of Hb
gradient establishment regulation by Bcd (can

involve multiple steps)
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Summary of positional information decoding scheme in

developmental systems (part Il)
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Open questions and future directions

How far did evolution drive patterning systems towards theoretically
optimal patterns that maximize PI?

Is Pl encoded by temporal dynamics of developmental genes?
Is Pl ‘produced’ during development?

Why is Pl transformed and how are the different representations related to
developmental networks?

How is Pl related to robustness?
Can Pl be related to cell fate and canalization?

Is the optimal decoding a fundamental principle characterizing the pattern
specification in developmental systems?
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