Processing of biological information in developmental systems

Marcin Zagórski

Ministry of Science and Higher Education Republic of Poland

@wikipedia.org

Early stage mouse embryo with coloured daughter cells

@Recher, Goolam, Zernicka-Goetz, University of Cambridge

10.5-day mouse embryo with organs and body parts emerging

@Petersen, Miller. Marine Biological Laboratory in Woods Hole

Morphogen gradients provide positional information establishing coordinate system for the developing tissue

Morphogen gradients provide positional information establishing coordinate system for the developing tissue

The gene regulatory network acts as an information decoder that specifies target pattern

The gene regulatory network acts as an information decoder that specifies target pattern

Optimal processing of information allows for pattern prediction without gene regulatory network

Output signal

Bicoid proteins form a concentration gradient providing coordinate system for developing embryo

as.nyu.edu/faculty/stephen-small.html

www.sciencebuzz.com

Driever & Nüsslein-Volhard, Cell, 1988 Grimm et al., Development, 2010 Optimal decoder contains all the information that any cellular or computational mechanism could extract from input signals

Decoding positional information in the early fruit fly embryo

Optimal decoder contains all the information that any cellular or computational mechanism could extract from input signals

Input signal
$$\{g_i(x)\} = \{g_1(x), g_2(x), g_3(x), g_4(x)\}, K = 4$$

Signal distribution at every x

$$P(\{g_i\}|x) = \frac{1}{\sqrt{(2\pi)^K \det[\hat{\mathcal{C}}(x)]}} \exp\left\{-\frac{1}{2} \sum_{i,j=1}^K (g_i - \bar{g}_i(x))(\hat{\mathcal{C}}^{-1}(x))_{ij}(g_j - \bar{g}_j(x))\right\}$$

Tkacik et al., Genetics, 2015:formalismZagorski et al., Science, 2017:spinal cord, K = 2Petkova et al., Cell, 2019:fruit fly, K = 4Tkacik & Gregor, Development 2021:review

Optimal decoder contains all the information that any cellular or computational mechanism could extract from input signals

Input signal $\{g_i(x)\} = \{g_1(x), g_2(x), g_3(x), g_4(x)\}, K = 4$

Signal distribution at every x

$$P(\{g_i\}|x) = \frac{1}{\sqrt{(2\pi)^K \det[\hat{\mathcal{L}}(x)]}} \exp\left\{-\frac{1}{2} \sum_{i,j=1}^K (g_i - \bar{g}_i(x))(\hat{\mathcal{L}}^{-1}(x))_{ij}(g_j - \bar{g}_j(x))\right\}$$

Optimal decoder from	
Bayes' rule	

$$P(x^*|\{g_i\}) = \frac{1}{Z(\{g_i\})} P(\{g_i\}|x^*) P_X(x^*)$$

Decoding map

$$P_{map}(x^*|x) = P(x^*|\{g_i\})\Big|_{\{g_i\}=\{g_i(x)\}}$$

Tkacik et al., Genetics, 2015:formalismZagorski et al., Science, 2017:spinal cord, K = 2Petkova et al., Cell, 2019:fruit fly, K = 4Tkacik & Gregor, Development 2021:review

Good positional code has most likely position X^* sharply peaked

$$\sigma_x^2(x) = \int dx^* (x^* - X^*(x))^2 P(x^*|x)$$
$$X^*(x) = \int dx^* x^* P(x^*|x)$$

Tkacik et al., Genetics, 2015 Petkova et al., Cell, 2019 Tkacik & Gregor, Development, 2021

GRN can be viewed as an input/output device that encodes physical location x in the embryo using concentrations g_i

Petkova et al., Cell, 2019

High accuracy of pattern specification requires decoding of signals from all 4 gap genes

In fruit fly decoding of input signals results in pattern specification with 1% positional error

The decoding map correctly predicts shifts, disappearance and duplications in different mutation backgrounds

The average decoding maps for mutation backgrounds with one maternal system perturbed

The average decoding maps for mutation backgrounds with two maternal systems perturbed

Deleting all three maternal inputs removes AP positional information completely

The decoding map correctly predicts shifts, disappearance and duplications in 70 pair-rule stripes in mutant embryos

Petkova et al., Cell, 2019

What is positional information?

Positional information (PI) measures any kind of statistical dependence between position x and morphogen concentrations $\{g_i\}$.

When a change in random variable, X, leads with some probability to a change in another random variable, Y, we say that X 'has information' about Y. This information would allow us to infer (or predict) the value of Y if we knew the value of X, and vice versa.

Claude Shannon identified mutual information, I(X; Y), as the unique measure that mathematically captures such a statistical dependence between X and Y.

What is positional information?

Mutual information is derived from a more basic quantity, the 'entropy' $S(X) = -\Sigma P(X)\log_2 P(X)$, where the summation extends over all values of X that happen with probability P(X).

Entropy measures the dynamic range of the distribution, and is conceptually related to its variance.

Mutual information is I(X;Y) = S(X) + S(Y) - S(X,Y), or the difference in entropy of X and Y taken separately and jointly.

For independent X and Y, S(X, Y) = S(X) + S(Y), hence I(X; Y) = 0

Tkacik & Gregor, Development, 2021

Mutual information captures any statistical dependence between X and Y

C is linear Pearson correlation coefficient

I mutual information (in bits) between x and y.

Tkacik & Gregor, Development, 2021

Positional information encoded by a single gene can be quantified in bits

- Step-function specifies up to 2 gene states: "on" and "off".
- Widening the boundary results in more distinguishable gene states possible 2^{I(g;x)}

Tkacik et al., Genetics, 2015

PI measures the average reduction in uncertainty about position due to morphogen signal observation

Tkacik et al., Genetics, 2015

Positional information encoded by a single gene can be quantified in bits

Mutual information
$$I(\{g_i\}; x) = S[P_g(\{g_i\})] - \langle S[P(\{g_i\}|x)] \rangle_x$$

Entropy
$$S[p(x)] = -\int dx \ p(x) \log_2 p(x)$$

Mutual

useful part (the mutual information) that describes systematic $I(\{g_i\}; x)$ modulation of g with position x

 $S[P_g(\lbrace g_i \rbrace)]$ ",total entropy" measures the range of gene expression available across the whole embryo.

 $\langle S[P(\{\mathbf{g}_i\}|\mathbf{x})]\rangle_{\mathbf{x}}$ **pure noise** that carries no information about position, quantifies variability in g that remains even at constant position x

Is positional information conveyed in the input signal sufficient to specify the output pattern?

x/L

Dubuis et al., PNAS, 2011

PI is an upper bound to the information between true and implied positions

Data Processing Inequality (DPI)

PI is always greater or equal to the mutual information between the true locations and the best estimates of position.

Brunel & Nadal, Neural Comp, 1998

Relating positional error to PI

Dependency chain:

From DPI:

$$x \to \{g_i\} \to x^*$$
$$I(\{g_i\}; x) \ge I(x^*; x)$$

$$I(x^*;x) = S[P_x(x^*)] - \left\langle S[P(x^*|x)] \right\rangle_{P_x(x)}$$

Positional error determines the lower bound on information between true and implied positions

Relating positional error to PI

 $I(\{g_i\}; x) \ge I(x^*; x)$

$$I(x^*;x) = S[P_x(x^*)] - \left\langle S[P(x^*|x)] \right\rangle_{P_x(x)}$$

 $S[P_x(x^*)]$ entropy of uniform distribution $P_x(x^*) = 1/L$

We do not know exact $P_x(x^*|x)$, but we know its variance $\sigma_x^2(x)$

The entropy of $P_x(x^*|x)$ must be \leq to the entropy of the Gaussian distribution of the same variance

$$S[P_x(x^*|x)] = \log_2 \sqrt{2\pi e \sigma_x^2(x)}$$
$$I(x^*;x) = -\left(\log_2 \sqrt{2\pi e \sigma_x^2(x)/L^2}\right)_x$$

Precise decoding from four Drosophila morphogens: equivalence between the decoding map and positional error

Petkova et al., Cell, 2019 Tkacik & Gregor, Development, 2021

The information conveyed in the input signal is sufficient to specify output pattern

Input: I = 4.1 ±0.2 bits, Output: I = 4.3 bits.

Binary encoding of information is not sufficient to explain output pattern

Morphogen signaling gradients establish a striped pattern of neural progenitors

The striped pattern of gene expression domains is established progressively

The morphogen signaling profiles do not scale with the embryo size

The gene expression boundaries are formed and shift as embryo

Positional error quantifies uncertainty in cell fate specification at a given position

Both morphogen signals are needed to provide positional information across the DV axis

Boundary imprecision of gene expression domains remains low also at latter stages

The initial morphogen positional error corresponds to the boundary imprecision at later stages

Optimal decoder contains all the information that any cellular or computational mechanism could extract from input signals

Input signal $\{g_i(x)\} = \{g_1(x), g_2(x)\}, K = 2$

Signal distribution at every x

$$P(\{g_i\}|x) = \frac{1}{\sqrt{(2\pi)^K \det[\hat{\mathcal{L}}(x)]}} \exp\left\{-\frac{1}{2} \sum_{i,j=1}^K (g_i - \bar{g}_i(x))(\hat{\mathcal{L}}^{-1}(x))_{ij}(g_j - \bar{g}_j(x))\right\}$$

Optimal decoder from Bayes' rule

$$P(x^*|\{g_i\}) = \frac{1}{Z(\{g_i\})} P(\{g_i\}|x^*) P_X(x^*)$$

Tkacik et al., Genetics, 2015: Zagorski et al., Science, 2017: Petkova et al., Cell, 2019: formalism mouse spinal cord, K = 2 fruit fly, K = 4

Cells interpret the opposing morphogen signals using an optimal decoding strategy

Zagorski et al., Science, 2017

Cells interpret the opposing morphogen signals using an optimal decoding strategy

 $x^*(g_B, g_S) = \operatorname{argmax}_x P(\{g_B, g_S\}|x)$

The decoding map predicts the correct shifts of gene expression domains in mutant with reduced Shh

The measured gene expression boundaries are shifted ventrally relative to the wild type

Cells interpret the opposing morphogen signals using an optimal decoding strategy

Zagorski et al., Science, 2017

Decoding map predicts bimodal *posterior* distribution of cell fates for high morphogen concentrations and unimodal elsewhere

Zagorski et al., Science, 2017

Decoding map predicts bimodal *posterior* distribution of cell fates for high morphogen concentrations

The predicted bimodal distribution of cell fates is consistent with the explant experiments

Decoding map reconstructed from explant experiment is consistent with maximum likelihood predictions

The morphogens activate gene regulatory network (GRN) to specify cell fate

 $\frac{d[I]}{dt} = \alpha_I \frac{\kappa_I + c_{S \to I} \kappa_I \text{ [Shh]} + c_{B \to I} \kappa_I \text{ [BMP]}}{(1 + K_{D \to I} \text{ [D]})^{m_{D \to I}} (1 + K_{V \to I} \text{ [I]})^{m_{V \to I}} + \kappa_I + c_{S \to I} \kappa_I \text{ [Shh]} + c_{B \to I} \kappa_I \text{ [BMP]}} - \gamma_I \text{ [I]}}$

3-node regulatory network model

Exhaustive and/or random screen for 3+6+4=13 parameters

$\kappa_{Msx}, \kappa_{Nkx}, \kappa_{Dbx}$	uniform activation, range [0, 5]
$\mathbf{K}_{N \to M}, \mathbf{K}_{M \to N}, \mathbf{K}_{N \to D}, \mathbf{K}_{D \to N}, \mathbf{K}_{M \to D}, \mathbf{K}_{D \to M}$	repressor binding affinity, range [0, 100]
$c_{B \to M}, c_{B \to D}, c_{S \to N}, c_{S \to D}$	morphogen activation, range [0, 20]

Fixed during screen

$\alpha_{MSX} = \alpha_{NkX} = \alpha_{DbX} = 1 \ (h^{-1})$	production rate
$\gamma_{Msx} = \gamma_{Nkx} = \gamma_{Dbx} = 0.2 \ (h^{-1})$	degradation rate
$m_{N \to M} = m_{M \to N} = m_{N \to D} = m_{D \to N} = m_{M \to D} = m_{D \to M} = 2$	Hill coefficients

Computational screen resulted in a set of successful GRNs consistent with experimental observations

Successful GRNs formed a single cluster in the parameter space

The target gene pattern established by GRNs resulted in a wide range of boundary imprecision

Summary of positional information decoding scheme in developmental systems (part I)

Tkacik & Gregor, Development, 2021

Summary of positional information decoding scheme in developmental systems (part II)

Tkacik & Gregor, Development, 2021

Open questions and future directions

- How far did evolution drive patterning systems towards theoretically optimal patterns that maximize PI?
- Is PI encoded by temporal dynamics of developmental genes?
- Is PI 'produced' during development?
- Why is PI transformed and how are the different representations related to developmental networks?
- How is PI related to robustness?
- Can PI be related to cell fate and canalization?
- Is the optimal decoding a fundamental principle characterizing the pattern specification in developmental systems?

IST Austria

Laura Bocanegra Edouard Hannezo Anna Kicheva Kasumi Kishi Amrita Singh Gašper Tkačik

University of Cologne Tobias Bollenbach

Francis Crick Institute James Briscoe

FIAS, Germany Thomas Sokolowski

Group members (current and past)

Richard Ho Maciej Majka Adela Staszowska Tomasz Kuliński Hélder Larraguível Salar Ghasemi Nasab Joanna Doliwa

Funding National Science Centre Pelard

The project is financed by the National Science Centre, Poland, no. 2021/42/E/NZ2/00188

The project is financed by the Polish National Agency for Academic Exchange

Ministry of Science and Higher Education

@zagorskigroup.com

Republic of Poland

PhD research scholarship

EXCELLENCE INITIATIVE

http://zagorskigroup.com/