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Cellular decision-making
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Cells receive diverse biophysical/chemical signals varying in (x, t).

Cells in a population can respond differently to the same signals.

Cellular decision-making is driven by interconnected complex networks.

Hanahan & Weinberg, Cell 2011



How do we understand cellular decision-making?

Physiological and environmental signals What information does it lack?

« Timescale(s)

« Strength of regulation
 Direct/indirect

« Spatial scale(s)

* Nonlinearity of interaction
« Combinatorial effects

\ {) F Assumptions are implicit or hidden
Gene E""ess““ in a “black box” and can have
differentiation, proliferation, apoptosis and survival unknown Ioglcal consequences

Wang et al. Comm Integr Biol 2012



Outline for today

« Dynamics of simplest 2-node decision-making network motifs

« Dynamics of 3-node, 4-node networks, and its implications in
T-cell differentiation

* Impact of embedding 2-node, 3-node network motifs in larger
networks



Simplest two-gene circuits

Consider two transcription factors A and B that regulate each other:

a)—(8) [aAJ—=[s) [a)i—l[&]

Double negative Double positive Negative-positive
feedback loop feedback loop feedback loop

Let us first understand the basic ‘design principles’
of a negative and a positive feedback loop:

* How does the system work?
« Why is the system designed the way it is?

“Nothing in biology makes sense except in the light of evolution”



Positive-negative feedback loop: body temperature
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Positive-negative feedback loop: blood pressure

2. Blood Pressure =

* Blood volume is regulated by the
hormone aldosterone

* Aldosterone affects the rate of
sodium ion reabsorption, which in
turn affects the rate of water
reabsorption

* Increased aldosterone = increased
water reabsorption => higher blood
pressure

* Decreased aldosterone = decreased
water reabsorption = lower blood
pressure




Positive-negative feedback loop: glucose levels

Insulin — Body cells

take up more
/ glucose
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Why are vital signs mostly regulated by negative feedback loops?



(Broken) Negative feedback loops in cancer
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Amplification of response: Biological examples

Hypothalamus v \

o Step 3: The hypothalamus
. : ¢ signals the posterior
Posterior pituitary / : pituitary to release OT.

\

Step 2: In response to
the stretching, nerve
impulses are sent to
the hypothalamus.

/

Step 1: The head of the
baby stretches the cervix
of the mother's uterus.

Step 4: The posterior
pituitary releases OT, which
travels in the blood to
muscles of the uterus.

LStep 5: The uterus responds to

QT by contracting more
vigorously,

Step 6: Uterine contractions
increase dilation of the
cervix, which stimulates
further release of OT, which
stimulates even more
frequent and vigorous
contractions.

At birth, stretching of the

cervix lessens and the

Bositive feedback cycle is
roken,

http://schoolbag.info/biology/humans/12.html



Amplification of response: Biological examples

Positve Feedback Mechanisms

@ Break or tear in
blood vessel
wall

- Feedback cycle
( initiated

® Released
chemicals
attract more
platelets

@ Clotting proceeds
until break is
sealed by newly
formed clot

Copynight © 2004 Paarson Educaton, Inc.. publishing as Benjamin Cummings

@ Clotting occurs
as platelets
adhere to site
and release
chemicals

Examples:
- Blood clotting:

Blood clotting is a normal
response to a break in the
lining of a blood vessel

1. Once vessel damaged
has occurred

2. Blood elements called
platelets immediately
begin to cling to the
injured site

3. Platelets release
chemical that attract more
platelets

4. This rapidly growing
pileup of platelets initiates
the sequence of events
that finally forms a clot

But can over-amplification be dangerous?
Unwanted clots — cause of heart attacks



Simplest two-gene circuits

Consider two transcription factors A and B that regulate each other:

a)—(8) [aAJ—=[s) [a)i—l[&]

Double negative Double positive Negative-positive
feedback loop feedback loop feedback loop

Let us first understand the basic ‘design principles’
of a negative and a positive feedback loop:

* How does the system work?
« Why is the system designed the way it is?

“Nothing in biology makes sense except in the light of evolution”



Transcription factors: Activators and inhibitors

Cell processes
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Transcriptional regulation
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how strongly A affects B
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Transcriptional regulation

@ —_ gene expression = f(|TF])
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Transcriptional regulation
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Transcriptional regulation

Fraction of Bound DNA
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Construction of a genetic toggle
switch in Escherichia coli

Timothy S. Gardner*f, Charles R. Cantor* & James J. Collins* 1



Inducer 2

1

Promoter 1 J_

Repressor 2 ' l Repressor 1 Reporter

T Promoter 2
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Figure 1 Toggle switch design. Repressor 1 inhibits transcription from Promoter 1 and is
induced by Inducer 1. Repressor 2 inhibits transcription from Promoter 2 and is induced
by Inducer 2.

The behaviour of the toggle switch and the conditions for bistability can
be understood using the following dimensionless model for the network:

dU (04
o "1 (12)
dV (04))
a - 1+a "V (1b)

where u is the concentration of repressor 1, v is the concentration of
repressor 2, ay is the effective rate of synthesis of repressor 1, a, is the
effective rate of synthesis of repressor 2, 8 is the cooperativity of
repression of promoter 2 and vy is the cooperativity of repression of
promoter 1. The above model is derived from a biochemical rate equation
formulation of gene expression®~2’. The final form of the toggle equations
preserves the two most fundamental aspects of the network: cooperative
repression of constitutively transcribed promoters (the first term in each
equation), and degradation/dilution of the repressors (the second term in
each equation).



The parameters a4 and o, are lumped parameters that describe the
net effect of RNA polymerase binding, open-complex formation,
transcript elongation, transcript termination, repressor binding, ribosome
binding and polypeptide elongation. The cooperativity described by 8
and vy can arise from the multimerization of the repressor proteins and the
cooperative binding of repressor multimers to multiple operator sites in
the promoter. An additional modification to equation (1) is needed to
describe induction of the repressors (Fig. 5).
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[\~ State 1
(high state)
duf/dt =0 . 'Separatrix
v dv/dt =0 .’
I State 2 du/dt =0
. (low state) /
.* Unstable dv/dt=0  State 2
) < steady-state (low state)
u
C
Mono-
stable .
Bistable
state 2
S
o
o)

Monostable
statel

log(erp) log(o)



Normalized GFP Expression g Normalized GFP expression g

GFP expression g

1r  IPTG 42°C 4 pTAK117
0 pTAK130
- + pTAK131
m pTAK132
0 N X - — - —8

1r o pTAK102
(control)
0 . - - _ o

(o]

—
T

o pTAK106
(control)

0 5 10 15 20
Hours

1 IPTG u pIKE107
o pIKE105
0 o . 0

1 o pTAK102
(control)
0 - o0—— )

o plKE108
(control)

0 A O- i i i

0 5 10 15 20

Hours

1,600t

800¢t

No IPTG
0 - —— —= -
0 10 20 30



Bistability: Digital vs. analog response
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Figure 6 pTAK117 switching time. a, b, The fraction of cells in the high state is plotted as
a function of the induction time. Cells were divided between high and low states as in Fig.
5¢. ¢, Switching of pTAK117 cells from the low to the high state by IPTG induction. The cell
population is illustrated at four time points. Cells begin switching between 3 and 4 h as
shown by the appearance of a bimodal distribution. The switching is complete by 6 h.



Consequences of bistability in drug resistance
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a Repressilator
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origin
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Reporter

P tet01

Deterministic, continuous approximation

Three repressor-protein concentrations, p;, and their corresponding
mMRNA concentrations, m; (where i is lacl, tetR or cl) were treated as
continuous dynamical variables. Each of these six molecular species
participates in transcription, translation and degradation reactions. Here
we consider only the symmetrical case in which all three repressors are
identical except for their DNA-binding specificities. The kinetics of the
system are determined by six coupled first-order differential equations:

i (0
e = M e .
at ET (| =/ac/,tetR,c/)
, j=cl,lacl,tetR
%= _B(pi—mi)

where the number of protein copies per cell produced from a given
promoter type during continuous growth is ag in the presence of
saturating amounts of repressor (owing to the ‘leakiness’ of the
promoter), and a + « in its absence; B denotes the ratio of the protein
decay rate to the mRNA decay rate; and n is a Hill coefficient. Time is
rescaled in units of the mRNA lifetime; protein concentrations are written
in units of Ky, the number of repressors necessary to half-maximally
repress a promoter; and mRBNA concentrations are rescaled by their
translation efficiency, the average number of proteins produced per
mMRNA molecule. The numerical solution of the model shown in Fig. 1c
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Figure 2 Repressilation in living bacteria. a, b, The growth and timecourse of GFP
expression for a single cell of E. coli host strain MC4100 containing the repressilator
plasmids (Fig. 1a). Snapshots of a growing microcolony were taken periodically both in
fluorescence (@) and bright-field (b). ¢, The pictures in @ and b correspond to peaks and
troughs in the timecourse of GFP fluorescence density of the selected cell. Scale bar,
4 wm. Bars at the bottom of ¢ indicate the timing of septation events, as estimated from

bright-field images.



What | cannot create,

| do not understand

- Richard Feynman

Beginning of synthetic biology: two Nature papers in 2000

Construction of a genetic toggle A synthetic oscillatory network
switch in Escherichia coli of transcriptional regulators

Timothy S. Gardner*t, Charles R. Cantor* & James J. Collins*t Michael B. Elowitz & Stanislas Leibler




Toggle switch: a ubiquitous network motif

(a) (b) Xi>> X2 X< X2
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or stem cell
X1°x2
()
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Zhou & Huang, Trends Genet 2012
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Toggle switch allows for multiple
mutually exclusive cell-states



Toggle switch

(A —[B]

Bistability A
(A, B) = (high, low)
(A, B) = (low, high)

Huang, PloS Biology 2013

Gardner et al. Nature 2000 B
dA _ ¢ (B)™ 4 Production /+ Hallmark of cell-fate
dt " (B)"+B"™ | decision making during
B (A )" Pegradation embryonic development
— =g, . —— kB Regulation .
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\ designed /
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Is a toggle switch always bistable?

dA B,)"

— =84 %) —k,A dU= a16_u
dt (B,)"™ + B™ a  1+v

dB (A,)™ L B ::: av @
PEL B dat  1+ur

dt % (A" +A™

At steady-state, du/dt = dv/dt =0

What happensat =y =17

log(e1)

A quadratic equation in u or v =>
At most two real distinct solutions

log(aro)

Gardner et al. Nature 2000



Summary (Part 1)
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Gardner et al. Nature 2000



The ‘bifurcating’ cell-state tree
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Cell-state changes: bidirectional, reversible

Pluripotent
= = 2
s@ :; -; : %6
S - —
Q g’ - i) 3 %%
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Transdifferentiation
Granados et al. Int J Mol Sci 2020

2012 Nobel Prize in Physiology or Medicine
e . ~

Shinya Yamanaka
University of Kyoto, Japan Gurdon Institute in Cambridge, UK

Cells can also reversibly change their identity => “Controlled enthusiasm”



What rules/principles cells follow in decision-making?

CD4+ T-cell differentiation Epithelial-Mesenchymal Transition

Smad2/3 J
Epithelial Early hybrid Hybrid Late hybrid Mesenchymal
tumor cells EMT state EMT state EMT state tumor cells
Proliferation +++++ ++++ +++ ++ +
Invasion + ++ +++ ++++ +++++
Plasticity ~ + ++ +++ ++++ ++
Stemness + +++ +++ +++ +++
Metastasis + ++++ ++++ ++ +

Kishore Hari

Hari et al. eLife 2022
Hari*, Rashid* et al. PLoS Comp Biol 2022
Hari et al. bioRxiv 2023

Duddu et al. J R Soc Interface 2020
Duddu et al. Mol Biol Cell 2022
Duddu et al. bioRxiv 2024



Toggle switch: a motif for bifurcating cell-states

X1>> X2 Xl<< X2

‘ Lineage 1 . ITineage 2
Progenitor v

or stem cell
X1 X2
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Somite Pax3 Foxc2 My;grsnlc Derpc:\:gn;riatt:rme Vascular cells

Zhou & Huang, Trends Genet 2011



OK, so we
understand a
toggle switch
(2 cell-states)!

What if a
progenitor cell
can give rise to
more than 2 cell-
states together?

What | cannot create,
| do not understand

You know, when | was a liHe stem cel
| didnt know what | wanted to be either

hHp/biocemicds blogSpoked

i



Differentiation of naive CD4+ T cells into > 2 subsets

IL-12,IFN-y

IL-4

Naive
CD4*T cell

TCR | TGF-B,IL-6
stimulation R

TGF-B,IL-2 e
Treg

IL-6,IL-211

IL-6,IL-21 Teu O

Magombedze et al. Front Physiol 2013




Network governing Th1, Th2, Th17 cell-states

Th1 | { T-bet high, GATA3 low, RORyT low } {@}

Th2 | { T-bet low, GATA3 high, RORyT low }

/ T-bet \
RORyt —

Can this toggle triad explain ORy GATA3

T-cell differentiation? {@} {@}

Th17 | { T-bet low, GATA3 low, RORyT high }

Atchuta

Duddu et al. J R Soc Interface 2020



ODEs governing the dynamics

i LY Here,

x and gy are the production rates of A and B
k s and ky are the degradation rates of A and B
Ayy and Ay y is the fold change in interaction
d 72y is the hill's coefficient in interaction
d[Y] 1+ Ay [X /Ty ] Tlxy and Tlyx
= ( o ) — kylY] T vy and T'yy is threshold value of the interaction

d[X] 1+ Ayy [V /Ty x]
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Dynamics over a kinetic parameter set ensemble

RACIPE - RAndomized Clrcuit PErturbation

Topology of network

Link Strength

User defined parametric space

Ensemble of kinetic models

z-scores calculated over solutions
across parameter sets * initial conditions

Huang et al. PloS Comp Biol 2017



Toggle triad enables tristability

frequency (x 1071

Abc | { A high, B low, C low }
aBc | { Alow, B high, C low }
ABc | { Alow, B low, C high }

ABc | { A high, B high, C low }
AbC | { A high, B low, C high }
aBC | { A low, B high, C high }




These three states can co-exist
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What are the defining traits of the topology? Are the traits unique?

Duddu et al. J R Soc Interface 2020



Dynamical traits of Toggle Triad

Negligible frequency of ‘all-high’
or ‘all-low’ monostable states

Similar frequency of three ‘single-
positive’ states

Similar frequency of three ‘double-
positive’ states

‘Single-positive’ states are more
frequent than ‘double-positive’ states

frequency (x 1071)

%

1

@}

* T-bet

N\
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II @} (@)
III-_

Th7 - Th1/Th2 Th2/ThT ThTT/ThT

Duddu et al. J R Soc Interface 2020



Dynamical traits of Toggle Triad
are unique to this topology

A 5 \ 5 5 . ., Negligible frequency of ‘all-high' or
SN /N N s 7 s /N dl-low monostable states
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the case of all POSItIVGl StateS

activations

Similar frequency of three ‘double-
positive states

A A a A A A A
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C:\,B C—3 C:\,B C—p (=B (=3 C:\ﬂ% Single-positive' states are more

Circuit C8  Circuit C9  Circuit C10 Circuit C11  Circuit C12  Circuit C13 Circuit C14 frequent than 'doub|e—positive' states

Duddu et al. J R Soc Interface 2020



Stochastic switching among multiple T cell-states
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How is frustration resolved in toggle triad?
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Toggle triad in CD4+ T-cell differentiation

Model predictions

Experimental validations

Existence of three ‘single-positive
states

ThT (T-bet high, GATAS low, RORy T low)

Th2 (T-bet low, GATAS high, RORyT low)

ThTT (T-bet low, GATA3 low, RORyT high)

The three states have been well established

Existence of three 'double-positive
states

Th1/2 (T-bet high, GATA3 high, RORyT low)

Antebi ef a/, PLoS Biol. 2013

Th1/17 (T-bet high, GATAS low, RORy T high)

Chatterjee ef a/, Cell Metab. 2018

Th2/17 (T-bet low, GATAS high, RORy T high)

Tortola e a, Immunity 2020
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RNA-seq data validates our model predictions
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Treg
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Toggle tetrahedron => Predominant ‘hybrid’ states
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None of the 4 node network structures allows for (1,0,0,0) states as prevalent.
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Link strength analysis for toggle tetrahedron
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Stochastic state-switching in toggle tetrahedron
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Two-step decision-making in toggle tetrahedron

Th1 (T-bet)

z"j\
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differentiating to

sssssss

Could this possibly explain why often
binary/ternary branches are seen in
e developmental decision-making?
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Extending toggle
switch and toggle
tetrahedron results
to larger n-node
mutually
repressive
networks

A Network B Adjacency (C Steady State Freq.
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A Network B Adjacency (C Steady State Freq.
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Summary (Part 2)

« Toggle triad explains the co-
existence and switching among
differentiated (Th1, Th2, Th17)
and hybrid (Th1/Th2, Th2/Th17,
Th1/Th17) T-cell states.

« Toggle tetrahedron reveals 6
hybrid states (Th1/Th2, Th2/
Th17, Th1/Th17, Th1/Treq,
Th2/Treg, Th17/Treg)
as the most frequent states,
suggesting a two-step decision.

« Beyond toggle triad, no mutually
repressive network allows for
single-step decision-making.




