WFLS2024 WORKSHOP

<u>A Study on</u>

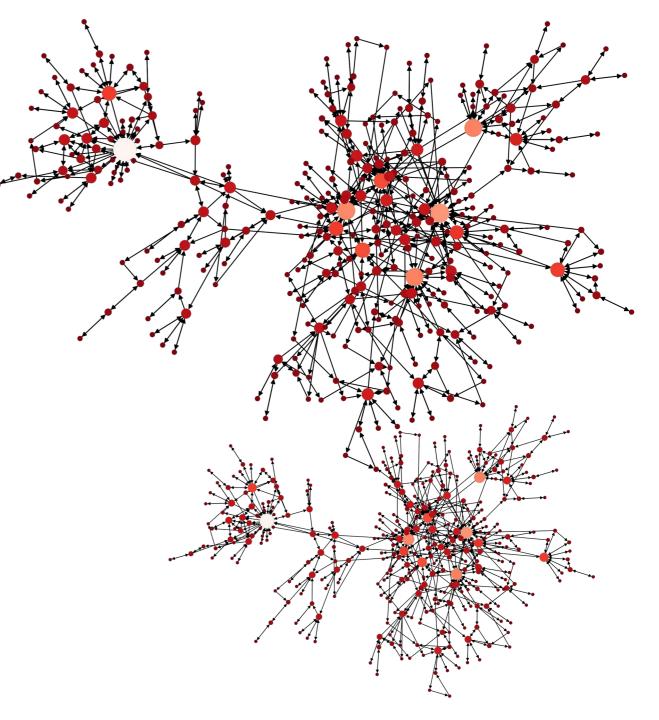
Three Node Motifs Yielding Pattern Formation

Group Members:

- -Roni Saiba
- -Vaishnavi Mugade
- -Archana Naik

Contents:

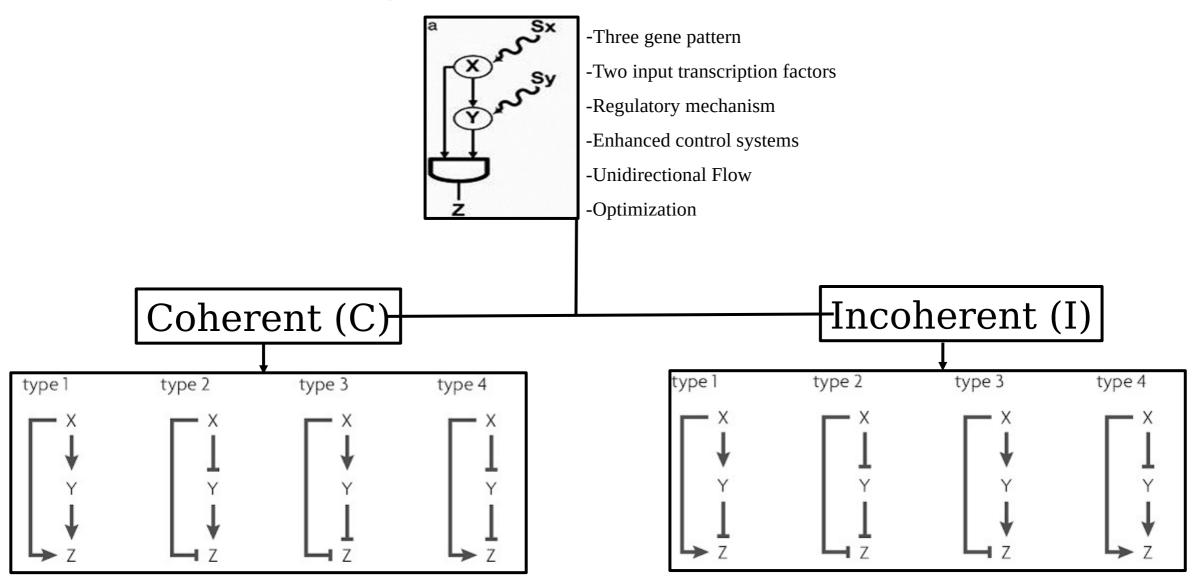
- Motivation/ objectives
- Background/introduction
- Methodology
- Analysis
- Results and Conclusions
- Future aspects

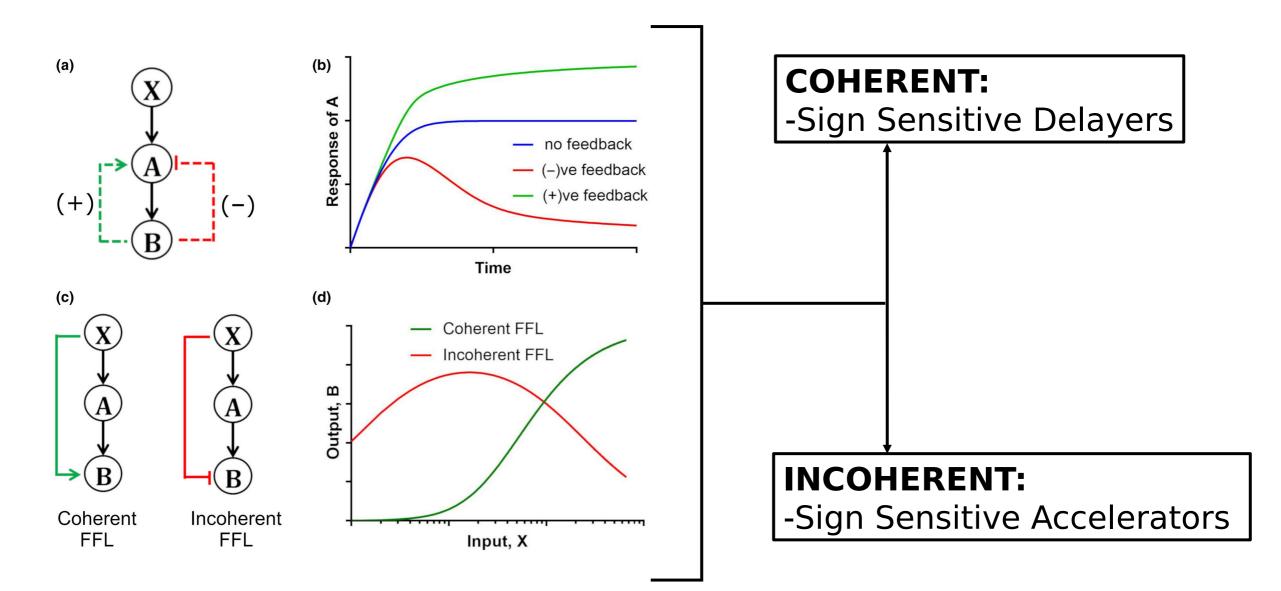


Objectives:

- FFLs confer to one of the most *robust systems.*
- Associating them to pattern formation (symmetry breaking) would lead to *spatiotemporally stable patterns*(crucial to development).
- Examining a *hypothesis*: In a three-node motif (FFL with some alteration), enabling the output(Z) to diffuse spatially, may lead to pattern formation
- *Expected observation*: some systematic heterogeneity to be observed at some scaling w.r.t. time and space(2D).

Feed-Forward Loops:





Methodology:

1.Considering all possible 3-node networks.(Including the scope of NAR and PAR).

5.

- Visualizations
- Selection and eliminations

4.

- Assigning sets of random initial conditions
- periodic boundary condition
- Tuning parameters

2.Hill's function to model the differential equations(rate equations) for the Factors at the three nodes.

3.An ODE model with:

input: 2 D lattice of initial concentrations output: Pattern formation (expected) parameters:

- Degradation rates (b_x, b_y, b_z)
- Scaling factor in Hills' function (k_x, k_y, k_z)
- Maximum rate of production (v_x , v_y , v_z)
- Hill's Coefficient (h_x , h_y , h_z)

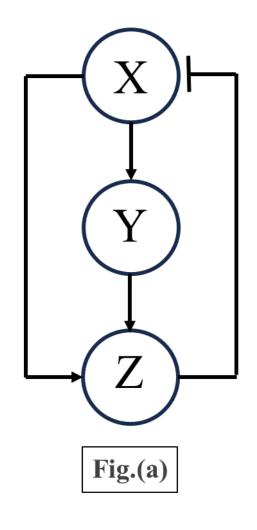
Mathematization of the Sample Networks:

Model system-1 (AND gate to Z)

1.
$$rac{dx}{dt} = v_x \left(rac{k_z^{h_z}}{k_z^{h_z} + z^{h_z}}
ight) - b_x \cdot x$$

2.
$$\frac{dy}{dt} = v_y \left(rac{x^{h_x}}{k_x^{h_x} + x^{h_x}}
ight) - b_y \cdot y$$

3.
$$\frac{dz}{dt} = v_z^2 \left(\frac{x^{h_x}}{k_x^{h_x} + x^{h_x}} \right) \left(\frac{y^{h_y}}{k_y^{h_y} + y^{h_y}} \right) - b_z \cdot z + D_z \cdot \nabla^2 z$$

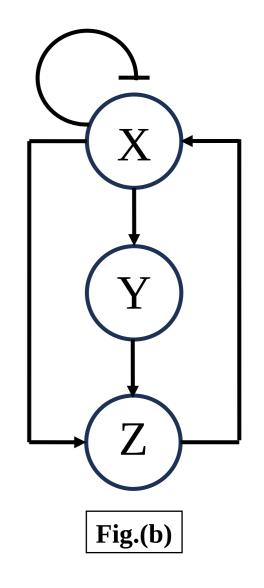


Model system-2 (AND gate to Z)

$$_{1.} \; rac{dx}{dt} = v_x \left(rac{k_x^{h_x}}{k_x^{h_x} + x^{h_x}} + rac{z^{h_z}}{k_z^{h_z} + z^{h_z}}
ight) - b_x x$$

2.
$$\frac{dy}{dt} = v_y \left(\frac{x^{h_x}}{k_x^{h_x} + x^{h_x}} \right) - b_y y$$

3.
$$\frac{dz}{dt} = v_z^2 \left(\frac{x^{h_x}}{k_x^{h_x} + x^{h_x}} \right) \left(\frac{y^{h_y}}{k_y^{h_y} + y^{h_y}} \right) - b_z z \quad + D_z \cdot \nabla^2 z$$



Model system-3 (OR gate to Z)

1.
$$rac{dx}{dt} = -b_x x + rac{v_x \left(rac{z}{k_z}
ight)^{h_z}}{1 + \left(rac{z}{k_z}
ight)^{h_z}}$$

2.
$$\frac{dy}{dt} = -b_y y + \frac{v_y}{1 + \left(\frac{x}{k_x}\right)^{h_x}}$$

3. $\frac{dz}{dt} = -b_z z + \frac{v_z \left(\left(\frac{x}{k_x}\right)^{h_x} + \left(\frac{y}{k_y}\right)^{h_y}\right)}{\left(\frac{x}{k_x}\right)^{h_x} + \left(\frac{y}{k_y}\right)^{h_y} + 1} + D_z \cdot \nabla^2 z$

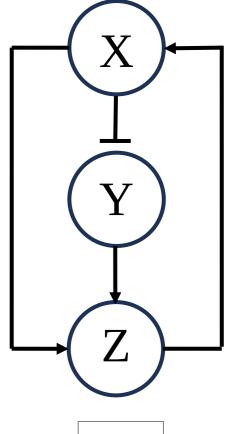
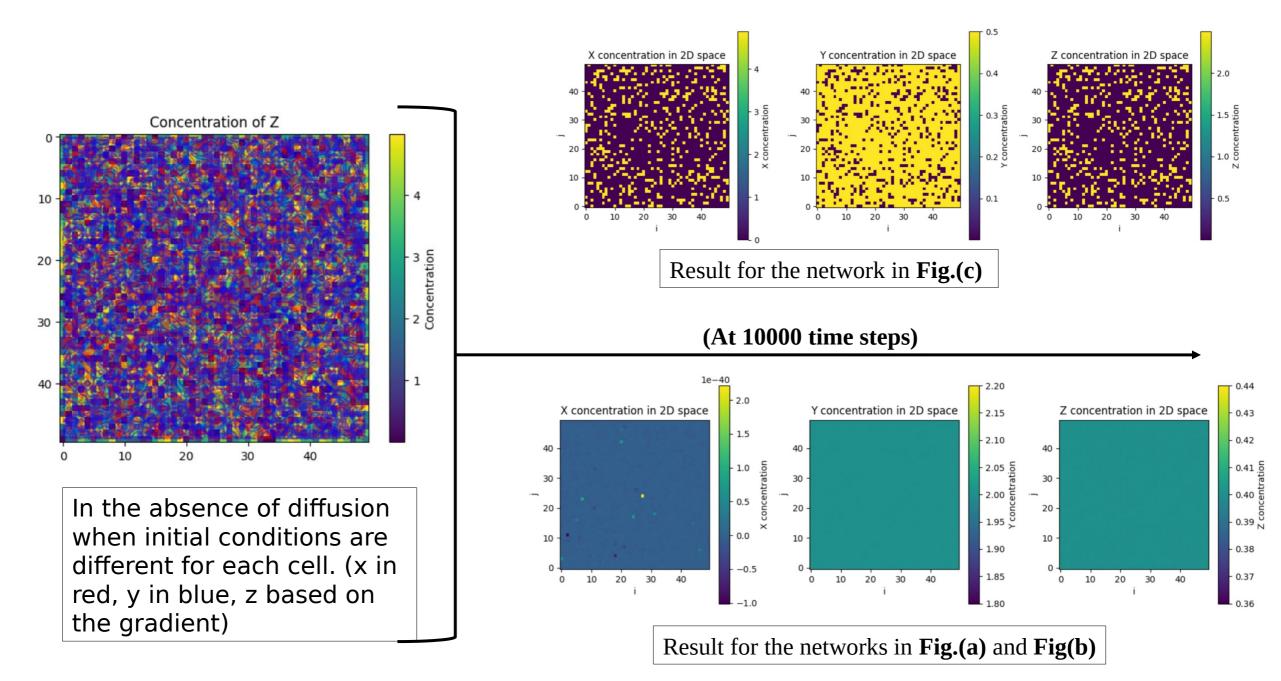


Fig.(c)



Future Aspects:

- · Scan parameter space for stable pattern formation.
- \cdot Scan parameter space more thoroughly for other networks.
- Primarily ask the question "what network topologies are amenable to single morphogen patterning?".

References:

Multistability, oscillations and bifurcations in feedback loops

Article in Mathematical Biosciences & Engineering · January 2010

DOI: 10.3934/mbe.2010.7.83 · Source: PubMed

CITATIONS	READS
22	453
2 authors:	

Yunjiao Wang

High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals

Luciano Marcon¹, Xavier Diego^{2,3}, James Sharpe^{2,3,4}, Patrick Müller^{1*}

Article

Cell Systems

Periodic spatial patterning with a single morphogen

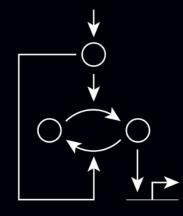
Graphical abstract

Authors

Sheng Wang, Jordi Garcia-Ojalvo, Michael B. Elowitz

An Introduction to Systems Biology

Design Principles of Biological Circuits



Uri Alon