Sea Shell pattern formation using discrete and continuous approach of modelling

Workshop on Flag,Landscape and signalling, IMSc -Ananta Dutta-

17/05/2024

THE VIRTUAL LABORATORY

HANS MEINHARDT

THE ALGORITHMIC BEAUTY OF SEA SHELLS

FOURTH EDITION

🖄 Springer

STEPHEN WOLFRAM A NEW KIND OF SCIENCE

Outline

- Sea shell development
- Continuous Approach
- Discrete Approach
- Results and comparison
- Future work

How they make it

- The initial formation of the molluscan shell occurs at the end of gastrulation
- controlled deposition of calcium carbonate
- The transcription factor "engrailed" is likely a key member of this GRN
- The molluscan protein perlucin contains a C-type lectin domain and has a carbohydrate binding ability

Discrete Approach

- Stephen Wolfram came up with this approach in 80's
- Cellular Automata
- In seashells, pigment cells in a narrow band on the shell's lip secrete pigments based on what the cells around them are doing.

Rule 90: "the simplest non-trivial cellular automaton",

111	110	101	100	011	010	001	000
0	1	0	1	1	0	1	0

Continuous Approach

Activation-Inhibition approach

Pigment deposition is under the control of a substance called the activator

$$\frac{\partial a}{\partial t} = \frac{\rho}{h+h_0} \left(\frac{a^2}{1+\kappa a^2} + \rho_0 \right) - \mu a + D_a \frac{\partial^2 a}{\partial x^2}$$
$$\frac{\partial h}{\partial t} = \sigma + \rho \frac{a^2}{1+\kappa a^2} - \frac{\nu}{c}h + D_h \frac{\partial^2 h}{\partial x^2}$$
$$\frac{dc}{dt} = \frac{\rho'}{x_{max} - x_{min}} \int_{x_{min}}^{x_{max}} a dx - \eta c$$

(By Hans Meinhart, 1987)

Continued...

Observation of the shell indicates that the number of traveling waves

is approximately constant over time.

C is a global hormone which monitors the total amount of activator along the growing edge.

Decay associated to the growing edge in constant.

The hormone c provides a negative feedback maintaining the number of traveling waves at an approximately constant level.

Simulations

Oliva porphyria.

*Changing h0 gives different pattern.(h0=0.001)

Mixture in Patterns

Stochastic Cellular Automata

Explaining mixture pattern using Stochastic cellular automata

Activation-Inhibition to explain mixture

Varying ho along the row we can get mixture of stripe and Triangle(ranging from 0.1 to 0.001)

Changing p0 gives different pattern formation as well

Future Work.....

- Starting this comparison from here can leads to explain more generalisation to map between a discrete and continuous system
- This mixture pattern indicate there should be some minimum regulation of activation to get any specific pattern
- Logic Gates implementation of the rules can generate any kind of pattern
- Interesting things starts to come up for many more rule, e.g Rule30.
- Biological relevance of this automata rules in gene regulatory networks of the species

Other patterns

Cymbiola innexa Indonesia, Jawa Timur, Surabaja NMR 57618. Common size 110 mm

References

- Space-time on a Seashell by Brian Hayes
- Stephen Wolfram. 1984. Cellular automata as models of complexity. Nature 341:419-424.
- Hans Meinhardt. 1995. The Algorithmic Beauty of Sea Shells. With contributions and images by Przemyslaw Prusinkiewicz and Deborah R. Fowler. New York: Springer-Verlag. Accompanied by simulation software for computers running the MS-DOS operating system.
- H. Meinhardt and M. Klinger. A model for pattern formation on the shells of molluscs. Journal of Theoretical Biology, 126:63–89, 1987.
- Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization
- Kevin M. Kocot1,2⁺, Felipe Aguilera1,3⁺, Carmel McDougall1, Daniel J. Jackson4 and Bernard M. Degnan1^{*}

